Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins
Abstract
:1. Introduction
2. Discussion
2.1. Characterization of ZHS and ZHS−CNTs Hybrids Flame Retardants
2.2. The Thermal Properties of EP and Its Composites
2.3. Flame Retardant Properties of EP and Its Composites
2.4. The Char Layers of EP and Its Composites
3. Materials and Methods
3.1. Raw Materials
3.2. Preparation of ZHS and ZHS−CNTs Hybrids Flame Retardants
3.3. Preparation of Flame-Retardant Epoxy Composites
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zheng, Z.H.; Liu, Y.H.; Dai, B.Y.; Meng, C.Y.; Guo, Z.X. Fabrication of cellulose-based halogen-free flame retardant and its synergistic effect with expandable graphite in polypropylene. Carbohydr. Polym. 2019, 213, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Babu, H.V.; Llorca, J.; Wang, D.Y. Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: Synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Adv. 2016, 6, 59226–59236. [Google Scholar] [CrossRef]
- He, W.T.; Song, P.A.; Yu, B.; Fang, Z.P.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, L.; Zhang, A.L.; Wang, W.D.; Wang, Z.Z.; Zhang, J.Z.; Feng, J.B.; Huo, S.Q.; Zeng, X.S.; Song, P.A. An iron phenylphosphinate@graphene oxide nanohybrid enabled flame-retardant, mechanically reinforced, and thermally conductive epoxy nanocomposites. Chem. Eng. J. 2023, 454, 140424. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Bifulco, A.; Imparato, C.; Aronne, A.; Malucelli, G. Flame retarded polymer systems based on the sol-gel approach: Recent advances and future perspectives. J. Sol. Gel. Sci. Technol. 2022, 1–25. [Google Scholar] [CrossRef]
- de Oliveira, C.R.S.; Batistella, M.A.; Guelli Ulson De Souza, S.M.D.A.; Ulson De Souza, A.A. Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applications. Carbohydr. Polym. 2021, 266, 118108. [Google Scholar] [CrossRef]
- Ai, L.; Chen, S.; Zeng, J.; Yang, L.; Liu, P. Synergistic flame retardant effect of an intumescent flame retardant containing boron and magnesium hydroxide. ACS Omega 2019, 4, 3314–3321. [Google Scholar] [CrossRef]
- Xu, S.; Li, J.; Ye, Q.; Shen, L.; Lin, H.J. Flame-retardant ethylene vinyl acetate composite materials by combining additions of aluminum hydroxide and melamine cyanurate: Preparation and characteristic evaluations. J. Colloid Interface Sci. 2021, 589, 525–531. [Google Scholar] [CrossRef]
- Zhang, B.; Han, J. Synthesis of microencapsulated zinc stannate and its application in flame-retardant poly(vinyl chloride) membrane material. Fire Mater. 2018, 42, 109–118. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Yuan, Y.; Pan, Y.-T.; Wang, D.-Y.; Yang, R.J. Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 40951–40960. [Google Scholar] [CrossRef] [PubMed]
- Aschberger, K.; Campia, I.; Pesudo, L.Q.; Radovnikovic, A.; Reina, V. Chemical alternatives assessment of different flame retardants–A case study including multi-walled carbon nanotubes as synergist. Environ. Int. 2017, 101, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Shi, Y.Q.; Yuan, B.H.; Qiu, S.L.; Xing, W.Y.; Hu, W.Z.; Song, L.; Lo, S.M.; Hu, Y. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J. Mater. Chem. A 2015, 3, 8034–8044. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, H.; Shi, Y.; Song, L.; Zhang, Y.; Hu, Y.; Hu, W. The influence of zinc hydroxystannate on reducing toxic gases (CO, NOx and HCN) generation and fire hazards of thermoplastic polyurethane composites. J. Hazard. Mater. 2016, 314, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.T.; Li, Z.W.; Yu, L.G.; Zhang, Z.J. Preparation of zinc hydroxystannate nanocomposites coated by organophosphorus and investigation of their effect on mechanical properties and flame retardancy of poly(vinyl chloride). RSC Adv. 2015, 5, 99291–99298. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Qu, H.; Tian, C.M. Zinc hydroxystannate and zinc stannate as flame-retardant agents for flexible poly(vinyl chloride). J. Appl. Polym. Sci. 2005, 98, 1469–1475. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Du, F.; Douglas, J.F.; Winey, K.I.; Harris, R.H.; Shields, J.R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928–933. [Google Scholar] [CrossRef]
- Huang, G.B.; Wang, S.Q.; Song, P.A.; Wu, C.L.; Chen, S.Q.; Wang, X. Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos. Part A Appl. Sci. Manuf. 2014, 59, 18–25. [Google Scholar] [CrossRef]
- Liu, S.; Fang, Z.; Yan, H.; Chevali, V.S.; Wang, H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A Appl. Sci. Manuf. 2016, 89, 26–32. [Google Scholar] [CrossRef]
- Zhang, X.S.; Shi, M.W. Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles. J. Hazard Mater. 2018, 365, 9–15. [Google Scholar] [CrossRef]
- Sang, B.; Li, Z.W.; Yu, L.G.; Li, X.H.; Zhang, Z.J. Preparation of zinc hydroxystannate-titanate nanotube flame retardant and evaluation its smoke suppression efficiency for flexible polyvinyl chloride matrix. Mater. Lett. 2017, 204, 133–137. [Google Scholar] [CrossRef]
- Gao, T.T.; Chen, L.C.; Li, Z.W.; Yu, L.G.; Wu, Z.S.; Zhang, Z.J. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride). Nanoscale Res. Lett. 2016, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Xiao, Y.; Qian, Z.; Yang, Y.; Jia, P.; Song, L.; Hu, Y.; Ma, C.; Gui, Z. A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites. Chem. Eng. J. 2023, 451, 137823. [Google Scholar] [CrossRef]
- Gong, K.; Cai, L.; Shi, C.; Gao, F.; Yin, L.; Qian, X.; Zhou, K. Organic-inorganic hybrid engineering MXene derivatives for fire resistant epoxy resins with superior smoke suppression. Compos. Part A Appl. Sci. Manuf. 2022, 161, 107109. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, B.; Song, N.; Chen, T.; Zhang, Q.; Li, C.; Jiang, J.; Chen, T.; Yu, Y.; Liu, L.X. Machine learning-guided design of organic phosphorus-containing flame retardants to improve the limiting oxygen index of epoxy resins. Chem. Eng. J. 2023, 455, 140547. [Google Scholar] [CrossRef]
- Su, X.Q.; Yi, Y.W.; Tao, J.; Qi, H.Q. Synergistic effect of zinc hydroxystannate with intumescent flame-retardants on fire retardancy and thermal behavior of polypropylene. Polym. Degrad. Stab. 2012, 97, 2128–2135. [Google Scholar] [CrossRef]
- Xu, W.Z.; Chen, R.; Xu, J.Y.; Zhong, D.; Cheng, Z.H. Nickel hydroxide and zinc hydroxystannate dual modified graphite carbon nitride for the flame retardancy and smoke suppression of epoxy resin. Polym. Degrad. Stab. 2020, 182, 109366. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Hou, Y.B.; Hu, Y.; Hu, W.Z. Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater. Chem. Phys. 2018, 214, 154–164. [Google Scholar] [CrossRef]
- Liu, X.W.; Wu, W.H.; Qi, Y.X.; Qu, H.Q.; Xu, J.Z. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin. J. Therm. Anal. Calorim. 2016, 126, 553–559. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, H.; Han, J. Zinc hydroxystannate microencapsulated to improve its safety and application to flame-retardant, smoke-suppressed polyvinyl chloride composites. J. Alloys Compd. 2017, 776, 1063–1067. [Google Scholar] [CrossRef]
- Qian, X.D.; Pan, H.F.; Xing, W.Y.; Song, L.; Yuen, R.K.K.; Hu, Y. Thermal Properties of Novel 9,10-Dihydro-9-oxa-10- phosphaphenanthrene 10-Oxide-based Organic/Inorganic Hybrid Materials Prepared by Sol-Gel and UV-Curing Processes. Ind. Eng. Chem. Res. 2012, 51, 85–94. [Google Scholar] [CrossRef]
- Wu, K.; Song, L.; Hu, Y.; Lu, H.D.; Kandola, B.; Kandare, E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flflame retardancy in epoxy resin. Prog. Org. Coat. 2009, 65, 490–497. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2004, 43, 1731–1742. [Google Scholar] [CrossRef]
- Landi, B.J.; Ruf, H.J.; Evans, C.M.; Cress, C.D.; Raffaelle, R.P. Purity assessment of single-wall carbon nanotubes, using optical absorption spectroscopy. J. Phys. Chem. B 2005, 109, 9952–9965. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, F.; Bourbigot, S.; Le Bras, M.; Delobel, R.; Foulon, M. Charring of fire retarded ethylene vinyl acetate copolymer—Magnesium hydroxide/zinc borate formulations. Polym. Degrad. Stab. 2000, 69, 83–92. [Google Scholar] [CrossRef]
Samples | T-10%/°C | Tmax/°C | Char Residues at 700 °C/% |
---|---|---|---|
EP | 386 | 399 | 13.9 |
EP/CNTs | 382 | 397 | 16.5 |
EP/ZHS | 371 | 384 | 24.1 |
EP/ZHS-CNTs | 371 | 386 | 24.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Wan, M.; Qian, X.; Jing, J.; Zhou, K. Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins. Molecules 2023, 28, 6820. https://doi.org/10.3390/molecules28196820
Shi C, Wan M, Qian X, Jing J, Zhou K. Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins. Molecules. 2023; 28(19):6820. https://doi.org/10.3390/molecules28196820
Chicago/Turabian StyleShi, Congling, Mei Wan, Xiaodong Qian, Jingyun Jing, and Keqing Zhou. 2023. "Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins" Molecules 28, no. 19: 6820. https://doi.org/10.3390/molecules28196820
APA StyleShi, C., Wan, M., Qian, X., Jing, J., & Zhou, K. (2023). Zinc Hydroxystannate/Carbon Nanotube Hybrids as Flame Retardant and Smoke Suppressant for Epoxy Resins. Molecules, 28(19), 6820. https://doi.org/10.3390/molecules28196820