Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives
Abstract
:1. Introduction
2. Discussion
2.1. Instruments
2.1.1. Ultrasound
2.1.2. Ball Mills
2.1.3. Comparison of Planetary and Vibrating Ball Mills
2.2. Reaction Mechanism
2.3. Reaction Kinetics and Energetics
2.4. Monosubstitution
2.5. Regioselective Multiple Substitutions
2.6. Multiple Random Substitutions
2.7. Polymeric Cyclodextrin Derivatives
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szejtli, J. Downstream processing using cyclodextrins. Trends Biotechnol. 1989, 7, 170–174. [Google Scholar] [CrossRef]
- Wang, A.; Jin, W.; Chen, E.; Zhou, J.; Zhou, L.; Wei, S. Drug delivery function of carboxymethyl-β-cyclodextrin modified upconversion nanoparticles for adamantine phthalocyanine and their NIR-triggered cancer treatment. Dalton Trans. 2016, 45, 3853–3862. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.N.; Mooter, G. Van den The fate of ritonavir in the presence of darunavir. Int. J. Pharm. 2014, 475, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Wollenhaupt, M.; Krupička, M.; Marx, D. Should the Woodward-Hoffmann Rules Be Applied to Mechanochemical Reactions? ChemPhysChem 2015, 16, 1593–1597. [Google Scholar] [CrossRef]
- Brügner, O.; Walter, M. Temperature and loading rate dependent rupture forces from universal paths in mechanochemistry. Phys. Rev. Mater. 2018, 2, 113603. [Google Scholar] [CrossRef]
- Hernández, J.G.; Avila-Ortiz, C.G.; Juaristi, E. Chapter 9.11 Useful Chemical Activation Alternatives in Solvent-free Organic Reactions, 2nd ed.; Molander, G.A., Knochel, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 9, pp. 287–314. [Google Scholar] [CrossRef]
- Do, J.-L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. 2017, 3, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Suslick, K.S. Mechanochemistry and sonochemistry: Concluding remarks. Faraday Discuss. 2014, 170, 411–422. [Google Scholar] [CrossRef]
- Margetić, D.; Štrukil, V. Recent Advances in Mechanochemical Organic Synthesis. In Organic Synthesis—A Nascent Relook; Nandeshwarappa, B.P., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Katsaros, T.; Liritzis, I.; Laskaris, N. Identification of Theophrastus’ pigments egyptios yanos and psimythion from archaeological excavations. ArchéoSciences 2010, 34, 69–80. [Google Scholar] [CrossRef]
- Ling, A.R.; Baker, J.L. XCVI—Halogen derivatives of quinone. Part III. Derivatives of quinhydrone. J. Chem. Soc. Trans. 1893, 63, 1314–1327. [Google Scholar] [CrossRef]
- Cintas, P.; Cravotto, G.; Barge, A.; Martina, K. Interplay Between Mechanochemistry and Sonochemistry. Top. Curr. Chem. 2014, 369, 239–284. [Google Scholar] [CrossRef]
- Stolle, A.; Szuppa, T.; Leonhardt, S.E.S.; Ondruschka, B. Ball Milling in Organic Synthesis: Solutions and Challenges. Chem. Soc. Rev. 2011, 40, 2317–2329. [Google Scholar] [CrossRef]
- Boldyreva, E. Mechanochemistry of inorganic and organic systems: What is similar, what is different? Chem. Soc. Rev. 2013, 42, 7719. [Google Scholar] [CrossRef]
- Mukherjee, N.; Chatterjee, T.; Ranu, B.C. Reaction under Ball-Milling: Solvent-, Ligand-, and Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides. J. Org. Chem. 2013, 78, 11110–11114. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [Green Version]
- Jicsinszky, L.; Caporaso, M.; Tuza, K.; Martina, K.; Gaudino, E.C.; Cravotto, G. Nucleophilic Substitutions of 6I-O-Monotosyl-β-cyclodextrin in a Planetary Ball Mill. ACS Sust. Chem. Eng. 2016, 4, 919–929. [Google Scholar] [CrossRef]
- Menuel, S.; Doumert, B.; Saitzek, S.; Ponchel, A.; Delevoye, L.; Monflier, E.; Hapiot, F. Selective Secondary Face Modification of Cyclodextrins by Mechanosynthesis. J. Org. Chem. 2015, 80, 6259–6266. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Caporaso, M.; Gaudino, E.C.; Giovannoli, C.; Cravotto, G. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling. Molecules 2017, 22, 485. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Calsolaro, F.; Martina, K.; Bucciol, F.; Manzoli, M.; Cravotto, G. Reaction of oxiranes with cyclodextrins under high-energy ball-milling conditions. Beilstein J. Org. Chem. 2019, 15, 1448–1459. [Google Scholar] [CrossRef]
- Suslick, K.S. The Chemical Effects of Ultrasound. Sci. Am. 1989, 260, 80–86. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Tuza, K.; Cravotto, G.; Porcheddu, A.; Delogu, F.; Colacino, E. Influence of the milling parameters on the nucleophilic substitution reaction of activated β-cyclodextrins. Beilstein J. Org. Chem. 2017, 13, 1893–1899. [Google Scholar] [CrossRef] [Green Version]
- Jicsinszky, L.; Cravotto, G. Toward a Greener World—Cyclodextrin Derivatization by Mechanochemistry. Molecules 2021, 26, 5193. [Google Scholar] [CrossRef]
- Poulhes, F.; Rizzato, E.; BeRNAsconi, P.; Rosas, R.; Viel, S.; Jicsinszky, L.; Rockenbauer, A.; Bardelang, D.; Siri, D.; Gaudel-Siri, A.; et al. Synthesis and properties of a series of [small beta]-cyclodextrin/nitrone spin traps for improved superoxide detection. Org. Biomol. Chem. 2017, 15, 6358–6366. [Google Scholar] [CrossRef]
- Kakuk, G.; Zsoldos, I.; Csanády, Á.; Oldal, I. Contributions to the Modelling of the Milling Process in a Planetary Ball Mill. Rev. Adv. Mater. Sci. 2009, 22, 21–38. [Google Scholar]
- Oliva, E.; Mathiron, D.; Rigaud, S.; Monflier, E.; Sevin, E.; Bricout, H.; Tilloy, S.; Gosselet, F.; Fenart, L.; Bonnet, V.; et al. New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
- Jicsinszky, L.; Bucciol, F.; Manzoli, M.; Cravotto, G. Comparative Studies of Mechanochemically Synthesized Insoluble Beta-Cyclodextrin Polymers. Curr. Org. Chem. 2021, 25, 1923–1936. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Fenyvesi, E.; Hashimoto, H.; Ueno, A. Chapter 4. Cyclodextrin Derivatives. In Vol. 3. Cyclodextrins (Vol. Eds. J. Szejtli and T. Osa), Comprehensive Supramolecular Chemistry; Atwood, J.L., Davies, J.E., MacNicol, D.D., Vögtle, F., Eds.; Elsevier: Pergamon, NY, USA, 1996; pp. 57–188. [Google Scholar] [CrossRef]
- Gelb, R.I.; Schwartz, L.M.; Bradshaw, J.J.; Laufer, D.A. Acid dissociation of cyclohexaamylose and cycloheptaamylose. Bioorg. Chem. 1980, 9, 299–304. [Google Scholar] [CrossRef]
- Gelb, R.I.; Schwartz, L.M.; Laufer, D.A. Acid dissociation of cyclooctaamylose. Bioorg. Chem. 1982, 11, 274–280. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L.D.; Fenyvesi, É.; Crini, G. Water-insoluble beta-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Prog. Polym. Sci. 2018, 78, 1–23. [Google Scholar] [CrossRef]
- Law, H.; Benito, J.M.; García Fernández, J.M.; Jicsinszky, L.; Crouzy, S.; Defaye, J. Copper(II)-complex Directed Regioselective Mono-p-toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-aided Design. J. Phys. Chem. B 2011, 115, 7524–7532. [Google Scholar] [CrossRef]
- Bergeron, R.J.; Channing, M.A. Importance of cycloamylose substrate geometry and dynamic coupling in the deacylation of 3- and 4-nitrophenyl acetates. J. Am. Chem. Soc. 1979, 101, 2511–2516. [Google Scholar] [CrossRef]
- Beyrich, T.; John, B.; Samad, A. Hydrolysis and complex stability of nitroaryl esters of acetic acid and phenylacetic acid with β-cyclodextrin. Pharmazie 1991, 46, 460–461. [Google Scholar]
- Rogmann, N.; Seidel, J.; Mischnick, P. Formation of Unexpected Substitution Patterns in Sulfonylbutylation of Cyclomaltoheptaose Promoted by Host–guest Interaction. Carbohydr. Res. 2000, 327, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Wernick, D.L.; Savion, Z.; Levy, J. Selective esterolysis of nitrophenyl acetates in crystalline α-cyclodextrin complexes. J. Incl. Phenom. 1988, 6, 483–490. [Google Scholar] [CrossRef]
- Kumar, R.; Kaur, K.; Uppal, S.; Mehta, S.K. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrason. Sonochem. 2017, 37, 478–489. [Google Scholar] [CrossRef] [PubMed]
- Siva, S.; Li, C.; Cui, H.; Lin, L. Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 2019, 296, 111777. [Google Scholar] [CrossRef]
- Mohandoss, S.; Edison, T.N.J.I.; Atchudan, R.; Palanisamy, S.; Prabhu, N.M.; Napoleon, A.A.; You, S.; Lee, Y.R. Ultrasonic-assisted efficient synthesis of inclusion complexes of salsalate drug and β-cyclodextrin derivatives for potent biomedical applications. J. Mol. Liq. 2020, 319, 114358. [Google Scholar] [CrossRef]
- Maraulo, G.E.; dos Santos Ferreira, C.; Mazzobre, M.F. β-Cyclodextrin Enhanced Ultrasound-assisted Extraction As a Green Method to Recover Olive Pomace Bioactive Compounds. J. Food Process. Preserv. 2021, 45, e15194. [Google Scholar] [CrossRef]
- Hamdan, S.; Dumke, J.C.; El-Zahab, B.; Das, S.; Boldor, D.; Baker, G.A.; Warner, I.M. Strategies for controlled synthesis of nanoparticles derived from a group of uniform materials based on organic salts. J. Colloid Interface Sci. 2015, 446, 163–169. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Li, H. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction. Ultrason. Sonochem. 2017, 34, 281–288. [Google Scholar] [CrossRef]
- Cui, H.; Siva, S.; Lin, L. Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization and antibacterial activity. Ultrason. Sonochem. 2019, 56, 84–93. [Google Scholar] [CrossRef]
- Li, H.; Han, C. Sonochemical synthesis of cyclodextrin-coated quantum dots for optical detection of pollutant phenols in water. Chem. Mater. 2008, 20, 6053–6059. [Google Scholar] [CrossRef]
- Le Provost, R.; Wille, T.; Louise, L.; Masurier, N.; Müller, S.; Reiter, G.; Renard, P.-Y.; Lafont, O.; Worek, F.; Estour, F. Optimized strategies to synthesize β-cyclodextrin-oxime conjugates as a new generation of organophosphate scavengers. Org. Biomol. Chem. 2011, 9, 3026–3032. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Ren, T.; Zhang, J.-R.; Chen, H.-Y.; Zhu, J.-J.; Burda, C. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water. Electrochem. Commun. 2007, 9, 551–557. [Google Scholar] [CrossRef]
- Amanulla, B.; Subbu, H.K.R.; Ramaraj, S.K. A sonochemical synthesis of cyclodextrin functionalized Au-FeNPs for colorimetric detection of Cr6+ in different industrial waste water. Ultrason. Sonochem. 2018, 42, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Binello, A.; Stolle, A.; Curini, M.; Cravotto, G. Efficient Mechanochemical Complexation of Various Steroid Compounds with α-, β- and γ-cyclodextrin. Steroids 2015, 98, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Nozawa, Y.; Suzuki, K.; Sadzuka, Y.; Miyagishima, A.; Hirota, S. Effects of shear rate in roll mixing on mechanical complex formation of ibuprofen with β-cyclodextrin. Pharm. Acta. Helv. 1994, 69, 135–139. [Google Scholar] [CrossRef]
- Uekama, K.; Horikawa, T.; Horiuchi, Y.; Hirayama, F. In vitro and in vivo evaluation of delayed-release behavior of diltiazem from its O-carboxymethyl-O-ethyl-β-cyclodextrin complex. J. Control. Release 1993, 25, 99–106. [Google Scholar] [CrossRef]
- El-Gendy, G.A.; Katsuhide, T.; Keiji, Y.; Yoshinobu, N. Molecular behavior, dissolution characteristics and chemical stability of aspirin in the ground mixture and in the inclusion complex with di-O-methyl-β-cyclodextrin. Int. J. Pharm. 1986, 31, 25–31. [Google Scholar] [CrossRef]
- Tabary, N.; Mahieu, A.; Willart, J.-F.; Dudognon, E.; Danède, F.; Descamps, M.; Bacquet, M.; Martel, B. Characterization of the hidden glass transition of amorphous cyclomaltoheptaose. Carbohydr. Res. 2011, 346, 2193–2199. [Google Scholar] [CrossRef]
- Jug, M.; Mura, P. Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State. Pharmaceutics 2018, 10, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukushi, I.; Yamamuro, O.; Suga, H. Heat capacities and glass transitions of ground amorphous solid and liquid-quenched glass of tri-O-methyl-ß-cyclodextrin. J. Non-Cryst. Solids 1994, 175, 187–194. [Google Scholar] [CrossRef]
- Çelebi, N.; Erden, N. Interaction of naproxen with ß-cyclodextrin in ground mixture. Int. J. Pharm. 1992, 78, 183–187. [Google Scholar] [CrossRef]
- Chan, H.K.; Doelker, E. Polymorphic Transformation of Some Drugs Under Compression. Drug Dev. Ind. Pharm. 1985, 11, 315–332. [Google Scholar] [CrossRef]
- Shakhtshneider, T. Phase transformations and stabilization of metastable states of molecular crystals under mechanical activation. Solid State Ion. 1997, 101–103, 851–856. [Google Scholar] [CrossRef]
- Frömming, K.-H.; Szejtli, J. Chapeter 5. Preparation and Characterization of Cyclodextrin Complexes; Frömming, K.-H., Szejtli, J., Eds.; Springer: Dordrecht, The Netherlands, 1994; pp. 83–104. [Google Scholar] [CrossRef]
- Carli, C.D.; Bresciani, M.; Canal, T. Frattini Industrial Mechano-Chemical Production of Anti-Inflammatory Agent/Beta-CD Composite. In The 26th International Symposium on Controlled Release of Bioactive Materials and the Second Consumer and Diversified Products Conference, Boston Marriott Copley Place, Boston, MA, USA, 20–23 June 1999; Torchilin, V.P., Veronese, F.M., Eds.; Proceedings of International Symposium on Controlled Release of Bioactive Materials; Controlled Release Society: Montreal, ON, Canada, 1999; Volume 26, pp. 873–874. [Google Scholar]
- Merouani, S.; Hamdaoui, O.; Rezgui, Y.; Guemini, M. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles—Theoretical study. Ultrason. Sonochem. 2013, 20, 815–819. [Google Scholar] [CrossRef]
- Mukherjee, S. Chapter 14. Precious and Semiprecious Stones; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; pp. 367–375. [Google Scholar]
- Cintas, P.; Luche, J.-L. Green chemistry. The sonochemical approach. Green Chem. 1999, 1, 115–125. [Google Scholar] [CrossRef]
- Richards, W.T.; Loomis, A.L. The Chemical Effects of High Frequency Sound Waves I. A Preliminary Survey. J. Am. Chem. Soc. 1927, 49, 3086–3100. [Google Scholar] [CrossRef]
- Renaud, P. Note de laboratoire sur l’application des ultrasons à la preparation de composes organo-metalliques. Bull. Soc. Chim. Fr. 1950, 17, 1044–1045. [Google Scholar]
- Negrón-Mendoza, A.; Albarrán, G. Chemical Evolution and the Origin of Life; Ponnamperuma, C., Chela-Flores, J., Eds.; A. Deepak Publishing: Hampton, VA, USA, 1993; Volume 135, pp. 235–247. [Google Scholar] [CrossRef]
- Fuciarelli, A.; Sisk, E.C.; Thomas, R.M.; Miller, D.L. Induction of base damage in DNA solutions by ultrasonic cavitation. Free Radic. Biol. Med. 1995, 18, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Misra, A.K. Acylation of carbohydrates over Al2O3: Preparation of partially and fully acylated carbohydrate derivatives and acetylated glycosyl chlorides. Carbohydr. Res. 2006, 341, 339–350. [Google Scholar] [CrossRef]
- Bashari, A.; Hemmatinejad, N.; Pourjavadi, A. Smart and fragrant garment via surface modification of cotton fabric with cinnamon oil/stimuli responsive PNIPAAm/chitosan nano hydrogels. IEEE Trans. Nanobiosci. 2017, 16, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, Z.; Xiao, Y.; Zhang, S.; Wang, J. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Shao, H.; Wu, X.; Shi, S. A rapid synthesis of pyranoid glycals promoted by β-cyclodextrin and ultrasound. Chin. J. Chem. 2011, 29, 1434–1440. [Google Scholar] [CrossRef]
- Karthika, A.; Selvarajan, S.; Karuppasamy, P.; Suganthi, A.; Rajarajan, M. A novel highly efficient and accurate electrochemical detection of poisonous inorganic Arsenic (III) ions in water and human blood serum samples based on SrTiO3/β-cyclodextrin composite. J. Phys. Chem. Solids 2019, 127, 11–18. [Google Scholar] [CrossRef]
- Martina, K.; Calsolaro, F.; Zuliani, A.; Berlier, G.; Chávez-Rivas, F.; Moran, M.J.; Luque, R.; Cravotto, G. Sonochemically-promoted preparation of silica-anchored cyclodextrin derivatives for efficient copper catalysis. Molecules 2019, 24, 2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirouzmand, M.; Sani, P.S.; Ghasemi, Z.; Azizi, S. Citric acid-crosslinked β-cyclodextrin supported zinc peroxide as a biocompatible H2O2 scavenger. J. Biol. Inorg. Chem. 2020, 25, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, Y.; Liu, Z.; Wei, X.; Chen, J.; He, X.; Li, H.; Zhou, Y. A deep eutectic solvent modified magnetic β-cyclodextrin particle for solid-phase extraction of trypsin. Anal. Chim. Acta 2020, 1137, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-X.; Su, H.; Mao, Z.-W.; Ji, L.-N. Synthesis, biocompatibility and luminescence properties of quantum dots conjugated with amino acid-functionalized β-cyclodextrin. J. Lumin. 2012, 132, 16–22. [Google Scholar] [CrossRef]
- Rajkumar, T.; Kukkar, D.; Kim, K.-H.; Sohn, J.R.; Deep, A. Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. J. Ind. Eng. Chem. 2019, 72, 50–66. [Google Scholar] [CrossRef]
- Arai, T.; Hayashi, M.; Takagi, N.; Takata, T. One-pot synthesis of native and permethylated α-cyclodextrin-containing polyrotaxanes in water. Macromolecules 2009, 42, 1881–1887. [Google Scholar] [CrossRef]
- Kwon, T.; Song, B.; Nam, K.W.; Stoddart, J.F. Mechanochemical Enhancement of the Structural Stability of Pseudorotaxane Intermediates in the Synthesis of Rotaxanes. J. Am. Chem. Soc. 2022, 144, 12595–12601. [Google Scholar] [CrossRef]
- Braun, T.; Buvári-Barcza, Á.; Barcza, L.; Konkoly-Thege, I.; Fodor, M.; Migali, B. Mechanochemistry: A novel approach to the synthesis of fullerene compounds. Water soluble buckminsterfullerene—γ-cyclodextrin inclusion complexes via a solid-solid reaction. Solid State Ion. 1994, 74, 47–51. [Google Scholar] [CrossRef]
- Stuparu, M.C. Corannulene: A Curved Polyarene Building Block for the Construction of Functional Materials. Acc. Chem. Res. 2021, 54, 2858–2870. [Google Scholar] [CrossRef]
- Ji, D.; Wang, Z.; Zhu, Y.; Yu, H. One-step environmentally friendly exfoliation and functionalization of hexagonal boron nitride by β-cyclodextrin-assisted ball milling. Ceram. Int. 2020, 46, 21084–21089. [Google Scholar] [CrossRef]
- Tyagi, M.; Khurana, D.; Kartha, K.P.R. Solvent-free Mechanochemical Glycosylation in Ball Mill. Carbohydr. Res. 2013, 379, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.R.; Kartha, K.P.R. Solvent-free Synthesis of Thioglycosides by Ball Milling. Green Chem. 2009, 11, 953–956. [Google Scholar] [CrossRef]
- Martina, K.; Baricco, F.; Berlier, G.; Caporaso, M.; Cravotto, G. Efficient green protocols for preparation of highly functionalized β-cyclodextrin-grafted silica. ACS Sust. Chem. Eng. 2014, 2, 2595–2603. [Google Scholar] [CrossRef]
- Rinaldi, L.; Martina, K.; Baricco, F.; Rotolo, L.; Cravotto, G. Solvent-free copper-catalyzed azide-alkyne cycloaddition under mechanochemical activation. Molecules 2015, 20, 2837–2849. [Google Scholar] [CrossRef] [PubMed]
- Antle, V. Sulfoalkyl Ether Cyclodextrin Compositions. WO2009134347A2, 2009. [Google Scholar]
- Szabo, T.; Institoris, L.; Szejtli, J.; Szente, L.; Jodal, I. Methylated Cyclodextrin Type Compounds and Process for Preparing Same. US5008386A. 16/04/1991; Application granted 16/04/1991,
- Bergeron, R.J.; Meeley, M.P.; Machida, Y. Selective alkylation of cycloheptaamylose. Bioorg. Chem. 1976, 5, 121–126. [Google Scholar] [CrossRef]
- Meistelman, C.; Fuchs-Buder, T.; Raft, J. Sugammadex Development and Use in Clinical Practice. Curr. Anesth. Rep. 2013, 3, 122–129. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Manzoli, M.; Jicsinszky, L.; Cavalli, R.; Battaglia, L.; Cravotto, G. Medium-high frequency sonication dominates spherical-SiO2 nanoparticle size. Ultrason. Sonochem. 2022, 90, 106181. [Google Scholar] [CrossRef]
- Penteado, F.; Monti, B.; Sancineto, L.; Perin, G.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Ultrasound-Assisted Multicomponent Reactions, Organometallic and Organochalcogen Chemistry. Asian J. Org. Chem. 2018, 7, 2368–2385. [Google Scholar] [CrossRef]
- Brotchie, A.; Grieser, F.; Ashokkumar, M. Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Phys. Rev. Lett. 2009, 102, 084302. [Google Scholar] [CrossRef] [PubMed]
- Alban, J.; Lynch, C.A.R. The History of Grinding; SME (Society for Mining, Metallurgy, and Exploration): Englewood, CO, USA, 2005; p. 216. [Google Scholar]
- Margetić, D.; Štrukil, V. Practical Considerations in Mechanochemical Organic Synthesis. In Mechanochemical Organic Synthesis; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–54. [Google Scholar] [CrossRef]
- Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649. [Google Scholar] [CrossRef]
- Machover, S.B. Understanding the Solvent-free Nucleophilic Substitution Reaction Performed in the High Speed Ball Mill (HSBM): Reactions of Secondary Alkyl Halides and Alkali Metal-Halogen Salts. MSc Thesis, Department of Chemistry of the McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, USA, 2011. [Google Scholar]
- Robinson, T.M.; Jicsinszky, L.; Karginov, A.V.; Karginov, V.A. Inhibition of Clostridium perfringens epsilon toxin by β-cyclodextrin derivatives. Int. J. Pharm. 2017, 531, 714–717. [Google Scholar] [CrossRef]
- Griffith, A.A., VI. The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. London Ser. A 1921, 221, 163–198. [Google Scholar] [CrossRef] [Green Version]
- Elliott, H.A. An analysis of the conditions for rupture due to griffith cracks. Proc. Phys. Soc. 1947, 59, 208–223. [Google Scholar] [CrossRef]
- Sack, R.A. Extension of Griffithtextquotesingles theory of rupture to three dimensions. Proc. Phys. Soc. 1948, 58, 729–736. [Google Scholar] [CrossRef]
- Zhang, J.J. Rock physical and mechanical properties. Appl. Pet. Geomech. 2019, 29–83. [Google Scholar] [CrossRef]
- McPhee, C.; Reed, J.; Zubizarreta, I. Chapter 12. Geomechanics Tests. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2015; pp. 671–779. [Google Scholar] [CrossRef]
- Alrbaihat, M.; Al-Zeidaneen, F.K.; Abu-Afifeh, Q. Reviews of the kinetics of Mechanochemistry: Theoretical and Modeling Aspects. Mater. Today Proc. 2022, 65, 3651–3656. [Google Scholar] [CrossRef]
- Gil-González, E.; del Rocío Rodríguez-Laguna, M.; Sánchez-Jiménez, P.E.; Perejón, A.; Pérez-Maqueda, L.A. Unveiling mechanochemistry: Kinematic-kinetic approach for the prediction of mechanically induced reactions. J. Alloy. Compd. 2021, 866, 158925. [Google Scholar] [CrossRef]
- Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J.M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F.J.; et al. Hallmarks of mechanochemistry: From nanoparticles to technology. Chem. Soc. Rev. 2013, 42, 7571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhurkov, S.N. Kinetic concept of the strength of solids. Int. J. Fract. 1984, 26, 295–307. [Google Scholar] [CrossRef]
- Basedow, A.M.; Ebert, K.H. Effects of mechanical stress on the reactivity of polymers: Activation of acid hydrolysis of dextran by ultrasound. Polym. Bull. 1979, 1, 299–306. [Google Scholar] [CrossRef]
- Hutchings, B.P.; Crawford, D.E.; Gao, L.; Hu, P.; James, S.L. Feedback Kinetics in Mechanochemistry: The Importance of Cohesive States. Angew. Chem. Int. Ed. 2017, 56, 15252–15256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissette, A.J.; Fletcher, S.P. Mechanisms of Autocatalysis. Angew. Chem. Int. Ed. 2013, 52, 12800–12826. [Google Scholar] [CrossRef]
- Takacs, L. Self-sustaining reactions induced by ball milling. Prog. Mater Sci. 2002, 47, 355–414. [Google Scholar] [CrossRef]
- Fujita, K.; Nagamura, S.; Imoto, T. Convenient preparation and effective separation of the C-2 and C-3 tosylates of alpha-cyclodextrin. Tetrahedron Lett. 1984, 25, 5673–5676. [Google Scholar] [CrossRef]
- Yuan, D.-Q.; Tahara, T.; Chen, W.-H.; Okabe, Y.; Yang, C.; Yagi, Y.; Nogami, Y.; Fukudome, M.; Fujita, K. Functionalization of Cyclodextrins via Reactions of 2,3-anhydrocyclodextrins. J. Org. Chem. 2003, 68, 9456–9466. [Google Scholar] [CrossRef]
- Immel, S.; Fujita, K.; Fukudome, M.; Bolte, M. Two Stereoisomeric 3(i),2(ii)-anhydro-alpha-cyclodextrins: A Molecular Dynamics and Crystallographic Study. Carbohydr. Res. 2001, 336, 297–308. [Google Scholar] [CrossRef]
- Kasal, P.; Jindřich, J. Mono-6-Substituted Cyclodextrins—Synthesis and Applications. Molecules 2021, 26, 5065. [Google Scholar] [CrossRef] [PubMed]
- Petter, R.C.; Salek, J.S.; Sikorski, C.T.; Kumaravel, G.; Lin, F.T. Cooperative binding by aggregated mono-6-(alkylamino)-.beta.-cyclodextrins. J. Am. Chem. Soc. 1990, 112, 3860–3868. [Google Scholar] [CrossRef]
- Onozuka, S.; Kojima, M.; Hattori, K.; Toda, F. The Regiospecific Mono Tosylation of Cyclodextrins. Bull. Chem. Soc. Jpn. 1980, 53, 3221–3224. [Google Scholar] [CrossRef] [Green Version]
- Fujita, K.; Matsunaga, A.; Imoto, T. 6A6B, 6A6C, and 6A6D-ditosylates of -cyclodextrin. Tetrahedron Lett. 1984, 25, 5533–5536. [Google Scholar] [CrossRef]
- Fujita, K.; Ishizu, T.; Obe, K.; Minamiura, N.; Yamamoto, T. Preparation and enzymic structure determination of a complete set of 2A,6X-bis (O)-(sulfonyl)-β-cyclodextrins. J. Org. Chem. 1992, 57, 5606–5610. [Google Scholar] [CrossRef]
- Yamamura, H.; Iida, D.; Araki, S.; Kobayashi, K.; Katakai, R.; Kano, K.; Kawai, M. Polysulfonylated cyclodextrins. Part 11. Preparation and structural validation of three isomeric pentakis(6-O-mesitylsulfonyl)cyclomaltoheptaoses. J. Chem. Soc. Perkin Trans. 1999, 1, 3111–3115. [Google Scholar] [CrossRef]
- Fujita, K.; Egashira, Y.; Tahara, T.; Imoto, T.; Koga, T. Synthesis and structure determination of 3A,6X-Di-O-arenesulfonyl-∝-cyclodextrins. Tetrahedron Lett. 1989, 30, 1285–1288. [Google Scholar] [CrossRef]
- Fujita, K.; Tahara, T.; Yamamura, H.; Imoto, T.; Koga, T.; Fujioka, T.; Mihashi, K. Specific preparation and structure determination of 3A,3C,3E-tri-O-sulfonyl-β-cyclodextrin. J. Org. Chem. 1990, 55, 877–880. [Google Scholar] [CrossRef]
- Fujita, K.; Matsunaga, A.; Yamamura, H.; Imoto, T. Complete sets of structurally determined 6A,6X-unsymmetrically disubstituted β-cyclodextrins. 6A-S-phenyl-6X-O-(β-naphthylsulfonyl)-6A-thio-β-cyclodextrins and 6A-S-(tert-butyl)-6X-O-(β-naphthylsulfonyl)-6A-thio-β-cyclodextrins. J. Org. Chem. 1988, 53, 4520–4522. [Google Scholar] [CrossRef]
- Martina, K.; Trotta, F.; Robaldo, B.; Belliardi, N.; Jicsinszky, L.; Cravotto, G. Efficient Regioselective Functionalizations of Cyclodextrins Carried Out under Microwaves or Power Ultrasound. Tetrahedron Lett. 2007, 48, 9185–9189. [Google Scholar] [CrossRef]
- Menuel, S.; Saitzek, S.; Monflier, E.; Hapiot, F. Particle size effect in the mechanically assisted synthesis of β-cyclodextrin mesitylene sulfonate. Beilstein J. Org. Chem. 2020, 16, 2598–2606. [Google Scholar] [CrossRef] [PubMed]
- Noro, J.; Reis, R.L.; Cavaco-Paulo, A.; Silva, C. Ultrasound-assisted biosynthesis of novel methotrexate-conjugates. Ultrason. Sonochem. 2018, 48, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.R.; Forgo, P.; Stine, K.J.; D’souza, V.T. Methods for selective modifications of cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. [Google Scholar] [CrossRef] [PubMed]
- Kalakuntla, R.K.; Wille, T.; Provost, R.L.; Letort, S.; Reiter, G.; Müller, S.; Thiermann, H.; Worek, F.; Gouhier, G.; Lafont, O.; et al. New modified β-cyclodextrin derivatives as detoxifying agents of chemical warfare agents (I). Synthesis and preliminary screening: Evaluation of the detoxification using a half-quantitative enzymatic assay. Toxicol. Lett. 2013, 216, 200–205. [Google Scholar] [CrossRef]
- Carmona, T.; Marcelo, G.; Rinaldi, L.; Martina, K.; Cravotto, G.; Mendicuti, F. Soluble cyanine dye/β-cyclodextrin derivatives: Potential carriers for drug delivery and optical imaging. Dye. Pigm. 2015, 114, 204–214. [Google Scholar] [CrossRef]
- Trotta, F.; Martina, K.; Robaldo, B.; Barge, A.; Cravotto, G. Recent advances in the synthesis of cyclodextrin derivatives under microwaves and power ultrasound. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 3–7. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Ivanyi, R. Catalytic Transfer Hydrogenation of Sugar Derivatives. Carbohydr. Polym. 2001, 45, 139–145. [Google Scholar] [CrossRef]
- Liu, J.-Q.; Gao, S.-J.; Luo, G.-M.; Yan, G.-L.; Shen, J.-C. Artificial Imitation of Glutathione Peroxidase with 6-Selenium-Bridged β-Cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247, 397–400. [Google Scholar] [CrossRef]
- Djedaini-Pilard, F.; Gosnat, M.; Steinbruckner, S.; Dalbiez, J.P.; Crini, G.; Perly, B.; Gadelle, A. Mono-6-Tosyl-ß-Cyclodextrin: Preparation, Hydrolysis and Self-Inclusion Studies in Aqueous Solution. In Proceedings of the Ninth International Symposium on Cyclodextrins, Santiago de Compostela, Spain, 31 May–3 June 1998; Labandeira, J.J.T., Vila-Jato, J.L., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 73–76. [Google Scholar] [CrossRef]
- Heravi, M.M.; Ghavidel, M.; Mohammadkhani, L. Beyond a solvent: Triple roles of dimethylformamide in organic chemistry. RSC Adv. 2018, 8, 27832–27862. [Google Scholar] [CrossRef] [Green Version]
- Kornblum, N.; Jones, W.J.; Anderson, G.J. A New and Selective Method of Oxidation. The Conversion of Alkyl Halides and Alkyl Tosylates to Aldehydes. J. Am. Chem. Soc. 1959, 81, 4113–4114. [Google Scholar] [CrossRef]
- Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravotto, G.; Bicchi, C.; Tagliapietra, S.; Costa, L.; Di Carlo, S.; Nervi, C. New chiral selectors: Design and synthesis of 6-TBDMS-2,3-methyl β-cyclodextrin 2-2′ thioureido dimer and 6-TBDMS-2,3-methyl (or 2-methyl-3-acetyl) β-cyclodextrin bearing an (R) mosher acid moiety. Chirality 2004, 16, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C.; Cagliero, C.; Liberto, E.; Sgorbini, B.; Martina, K.; Cravotto, G.; Rubiolo, P. New asymmetrical per-substituted cyclodextrins (2-O-methyl-3-O-ethyl- and 2-O-ethyl-3-O-methyl-6-O-t-butyldimethylsilyl-β-derivatives) as chiral selectors for enantioselective gas chromatography in the flavour and fragrance field. J. Chromatogr. A 2010, 1217, 1106–1113. [Google Scholar] [CrossRef]
- Bom, A.; Bradley, M.; Cameron, K.; Clark, J.K.; van Egmond, J.; Feilden, H.; MacLean, E.J.; Muir, A.W.; Palin, R.; Rees, D.C.; et al. A Novel Concept of Reversing Neuromuscular Block: Chemical Encapsulation of Rocuronium Bromide by a Cyclodextrin-based Synthetic Host. Angew. Chem. 2002, 114, 275–280. [Google Scholar] [CrossRef]
- Jicsinszky, L.; Caporaso, M.; Martina, K.; Gaudino, E.C.; Cravotto, G. Efficient Mechanochemical Synthesis of Regioselective Persubstituted Cyclodextrin. Beilstein J. Org. Chem. 2016, 12, 2364–2371. [Google Scholar] [CrossRef] [PubMed]
- Cravotto, G.; Caporaso, M.; Jicsinszky, L.; Martina, K. Enabling Technologies and Green Processes in Cyclodextrin Chemistry. Beilstein J. Org. Chem. 2016, 12, 278–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeoye, O.; Conceição, J.; Serra, P.A.; da Silva, A.B.; Duarte, N.; Guedes, R.C.; Corvo, M.C.; Ricardo, A.-A.; Jicsinszky, L.; Casimiro, T.; et al. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; effects of derivatization, molar ratio and preparation method. Carbohydr. Polym. 2020, 227, 115287. [Google Scholar] [CrossRef]
- Tarannum, N.; Kumar, D.; Kumar, N. β-Cyclodextrin-Based Nanocomposite Derivatives: State of the Art in Synthesis, Characterization and Application in Molecular Recognition. ChemistrySelect 2022, 7, e202200140. [Google Scholar] [CrossRef]
- Qiu, C.; McClements, D.J.; Jin, Z.; Wang, C.; Qin, Y.; Xu, X.; Wang, J. Development of nanoscale bioactive delivery systems using sonication: Glycyrrhizic acid-loaded cyclodextrin metal-organic frameworks. J. Colloid Interface Sci. 2019, 553, 549–556. [Google Scholar] [CrossRef]
- Shen, M.; Zhou, J.; Elhadidy, M.; Xianyu, Y.; Feng, J.; Liu, D.; Ding, T. Cyclodextrin metal–organic framework by ultrasound-assisted rapid synthesis for caffeic acid loading and antibacterial application. Ultrason. Sonochem. 2022, 86, 106003. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, T.; Wang, C.; He, Y.; Zhang, X.; Li, G.; Chen, Y.; Li, J.; Lin, Y.; Xu, X.; et al. MOF Capacitates Cyclodextrin to Mega-Load Mode for High-Efficient Delivery of Valsartan. Pharm. Res. 2019, 36, 117. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xing, C.-Y.; Ke, D.; Chen, L.; Qiu, Z.-J.; Zeng, S.-L.; Li, B.-J.; Zhang, S. Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO2 Capture. ACS Appl. Mater. Interfaces 2019, 12, 3032–3041. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Choi, Y.H.; Joo, I.W.; Lee, J.E. Mechanochemical Synthesis of CD-MOFs and Application as a Cosmetic Ingredient. Bull. Korean Chem. Soc. 2021, 42, 737–739. [Google Scholar] [CrossRef]
- Solms, J.L.T.-P. Including Resins and Method of Manufacturing Thereof (Einschlussharze und Verfahren zu ihrer Herstellung). Application granted 09/08/1973. DE1493047A1.
- Hu, X.; Ke, Y.; Zhao, Y.; Lu, S.; Deng, Q.; Yu, C.; Peng, F. Synthesis, characterization and solution properties of β-cyclodextrin-functionalized polyacrylamide/montmorillonite nanocomposites. Colloids Surf. A 2019, 560, 336–343. [Google Scholar] [CrossRef]
- Concheiro, A.; Alvarez-Lorenzo, C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev. 2013, 65, 1188–1203. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, H.; An, Y.; Ren, J.; Zheng, X.; Zhao, C.; Zhang, S. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance: Role of β-cyclodextrin. Sep. Purif. Technol. 2019, 228, 115735. [Google Scholar] [CrossRef]
- Li, D.Q.; Ma, M. Nanoporous polymers: New nanosponge absorbent media. Filtr. Sep. 1999, 36, 26–28. [Google Scholar] [CrossRef]
- Cavalli, R.; Trotta, F.; Tumiatti, W. Cyclodextrin-based Nanosponges for Drug Delivery. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 209–213. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, R.; Gao, X.; Weng, J.; Liu, Y.; Gui, T.; Yang, S.; Wang, D.; Chen, X.; Liu, J. Mechanochemical synthesis of reticular β-cyclodextrin polyurethanes for the decontamination of phenolic micropollutants. Chem. Eng. J. 2023, 453, 139987. [Google Scholar] [CrossRef]
- Chen, G.B.; Tang, K.W. Preparation of gas chromatographic capillary columns with beta-cyclodextrin polymer stationary phase modified with methyl phenyl silicone(OV-17). Chin. J. Chrom./Zhongguo Hua Xue Hui 2000, 18, 343–345. [Google Scholar]
- Haghighi, A.; Li, L. A hybrid physics-based and data-driven approach for characterizing porosity variation and filament bonding in extrusion-based additive manufacturing. Addit. Manuf. 2020, 36, 101399. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Bos, F.P.; Perrot, A.; da Silva, W.R.L.; Nerella, V.N.; Fataei, S.; Wolfs, R.J.M.; Sonebi, M.; Roussel, N. Extrusion-based additive manufacturing with cement-based materials—Production steps, processes, and their underlying physics: A review. Cem. Concr. Res. 2020, 132, 106037. [Google Scholar] [CrossRef]
- Das, A.; Gilmer, E.L.; Biria, S.; Bortner, M.J. Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Appl. Polym. Mater. 2021, 3, 1218–1249. [Google Scholar] [CrossRef]
- Pedrazzo, A.R.; Caldera, F.; Zanetti, M.; Appleton, S.L.; Dhakar, N.K.; Trotta, F. Mechanochemical green synthesis of hyper-crosslinked cyclodextrin polymers. Beilstein J. Org. Chem. 2020, 16, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Puentes, A.A.; Rincón, S.; García-Gurrola, A.; Zepeda, A.; Martínez-Bustos, F. Preparation and Characterization of Succinylated Nanoparticles from High-Amylose Starch via the Extrusion Process Followed by Ultrasonic Energy. Food Bioprocess Technol. 2019, 12, 1672–1682. [Google Scholar] [CrossRef]
- Pedrazzo, A.R.; Cecone, C.; Trotta, F.; Zanetti, M. Mechanosynthesis of β-Cyclodextrin Polymers Based on Natural Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2021, 9, 14881–14889. [Google Scholar] [CrossRef]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Rubin Pedrazzo, A.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef]
- Rupérez, D.; Gracia-Vallés, N.; Clavero, E.; Silva, F.; Nerín, C. Mechanochemically Scaled-Up Alpha Cyclodextrin Nanosponges: Their Safety and Effectiveness as Ethylene Scavenger. Nanomaterials 2022, 12, 2900. [Google Scholar] [CrossRef]
- Pedrazzo, A.R.; Trotta, F.; Hoti, G.; Cesano, F.; Zanetti, M. Sustainable mechanochemical synthesis of beta-cyclodextrin polymers by twin screw extrusion. Environ. Sci. Pollut. Res. 2021, 29, 251–263. [Google Scholar] [CrossRef]
Model | Formula | Legend | Used For | Literature |
---|---|---|---|---|
Simple | dc/dt = −k∙cn | n: reaction order (not necessarily integer) n = 0.5 Phase boundary controlled reaction (contracting area) n = 0.67 Phase boundary controlled reaction (contracting volume) ET: activation energy | kaolinite amorphization | [103,104] |
Probability | v = −Km∙χ∙Smax(1−e−k∙t) | v: reaction rate, Km: the probability of reaction, χ: contacting probability of particles in collisions, Smax: contacting area of A and B components collisions | phenomenological rate law calculations | [105] |
Interatomic bond breakage (Zhurkov) | K = k0∙e−((E0−∆E)/R∙T) | k0: bond dissociation constant; E0 bond dissociation energy, ∆E: activation energy reduction when bond dissociated without stress | [106] | |
Boltzmann distribution (Basedow) | Ks = kS0∙e−(Es/a∙J) | ks0: shear-induced degradation constant, Es: shear activation energy, J: input rate is, a: average amount of mechanical energy in each bond in a sheared system | degradation of polymeric chains | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jicsinszky, L.; Rossi, F.; Solarino, R.; Cravotto, G. Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives. Molecules 2023, 28, 467. https://doi.org/10.3390/molecules28020467
Jicsinszky L, Rossi F, Solarino R, Cravotto G. Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives. Molecules. 2023; 28(2):467. https://doi.org/10.3390/molecules28020467
Chicago/Turabian StyleJicsinszky, László, Federica Rossi, Roberto Solarino, and Giancarlo Cravotto. 2023. "Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives" Molecules 28, no. 2: 467. https://doi.org/10.3390/molecules28020467
APA StyleJicsinszky, L., Rossi, F., Solarino, R., & Cravotto, G. (2023). Comparison of the Conventional and Mechanochemical Syntheses of Cyclodextrin Derivatives. Molecules, 28(2), 467. https://doi.org/10.3390/molecules28020467