Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure–Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Silico ADMET/TOPKAT Prediction
2.2. Biological Evaluation
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 1-Aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline Derivatives 3 a–r
3.2.1. 1-(Phenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3a), C17H19O2N
3.2.2. 1-(2′-Hydroxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3b), C17H18O3N
3.2.3. 1-(3′-Hydroxy-4′-methoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3c), C18H21O4N
3.2.4. 1-(3′,4′-Dimethoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3d), C19H23O4N
3.2.5. 1-(3′-Bromo-4′-hydroxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3e), C17H18O3NBr
3.2.6. 1-(5′-Bromo-2′-hydroxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3f), C17H18O3NBr
3.2.7. 1-(2′-Bromo-4′,5′-dimethoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3g), C19H22O4NBr
3.2.8. 1-(2′-Bromo-5′-hydroxy-4′-methoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3h), C18H20O4NBr
3.2.9. 1-(3′,4′-Methylenedioxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3i), C18H19O4N
3.2.10. 1-(2′-Bromo-4′,5′-methylenedioxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3j), C18H18O4NBr
3.2.11. 1-(4′,5′-Methylenedioxy-2′-chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3k), C18H18O4NCl
3.2.12. 1-(5′-Bromo-4′-hydroxy-3′-methoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3l), C18H20O4NBr
3.2.13. 1-(4′-Nitrophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3m), C17H18O4N2
3.2.14. 1-(3′-Nitrophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3n), C17H18O4N2
3.2.15. 1-(3′-Bromophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3o), C17H18O2NBr
3.2.16. 1-(2′-Methoxyphenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3p), C17H18O4N2
3.2.17. 1-(4′-Dimethylaminophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3q), C19H24O2N2
3.2.18. 1-(4′-Chlorophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (3r), C19H24O2N2
3.3. Reduction of 1-(Nitrophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines
3.3.1. 1-(4′-Aminophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (4a), C19H24O2N2
3.3.2. 1-(3′-Aminophenyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (4b), C19H24O2N2
3.4. In Silico ADMET/TOPKAT Evaluation
3.5. Biological Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kukula-Koch, W.; Widelski, J. Alkaloids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 163–198. [Google Scholar]
- Singh, S.; Pathak, N.; Fatima, E.; Negi, A.S. Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Euro. J. Med. Chem. 2021, 226, 113839. [Google Scholar] [CrossRef] [PubMed]
- Quevedo, R.; Baquero, E.; Quinones, M.L. 1-Phenylisoquinoline larvicidal activity against Culex quinquefasciatus. Nat. Prod. Res. 2012, 26, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Konz, E.; Kruse, H. 1-Phenylisoquinoline Derivatives, Pharmaceutical Products Containing These Compounds and Their Use. U.S. Patent 4547508A, 15 October 1985. [Google Scholar]
- Georgiev, V.S.; Carlson, R.P.; Van Inwegen, R.G.; Khandwala, A. Drug-induced modifications of the immune response. 1. Substituted 1-phenylisoquinolines. J. Med. Chem. 1979, 22, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.K.; Sekhar, K.V.G.C.; Chander, S.; Kunjiappan, S.; Murugesan, S. Medicinal chemistry perspectives of 1,2,3,4-tetrahydroisoquinoline analogs—Biological activity and SAR studies. RSC Adv. 2021, 11, 12254–12287. [Google Scholar]
- Seo, J.W.; Srisook, E.; Son, H.J.; Hwang, O.; Cha, Y.-N.; Chi, D.Y. Syntheses of tetrahydroisoquinoline derivatives that inhibit NO production in activated BV-2 microglial cells. Eur. J. Med. Chem. 2008, 43, 1160–1170. [Google Scholar] [CrossRef]
- Cheng, P.; Huang, N.; Jiang, Z.-Y.; Zhang, Q.; Zheng, Y.-T.; Chen, J.-J.; Zhang, X.-M.; Ma, Y.-B. 1-Aryl-tetrahydroisoquinoline analogs as active anti-HIV agents in vitro. Bioorg. Med. Chem. Lett. 2008, 18, 2475–2478. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.S.C.; Abdoli, A.; Sarma-Mamillapalle, V.K. Inhibitors of the detoxifying enzyme of the phytoalexin brassinin based on quinoline and isoquinoline scaffolds. Molecules 2017, 22, 1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plazas, E.; Avila, M.C.; Muñoz, D.R.; Cuca, S.L.E. Natural isoquinoline alkaloids: Pharmacological features and multi-target potential for complex diseases. Pharmacol. Res. 2022, 177, 106126. [Google Scholar] [CrossRef] [PubMed]
- Lima, N.M.; Ferreira, E.D.; Fernandes, M.Y.; Lima, F.A.; Neves, K.R.; Carmo, M.R.; de Andrade, G.M. Neuroinflammatory response to experimental stroke is inhibited by boldine. Behav. Pharmacol. 2017, 28, 223–237. [Google Scholar] [CrossRef]
- Kapadia, N.; Harding, W. Aporphine Alkaloids as Ligands for Serotonin Receptors. Med. Chem. 2016, 6, 241–249. [Google Scholar] [CrossRef]
- Huang, W.L.; Song, X.Q.; Peng, S.X.; Huang, Z.Y. The synthesis and biological activity of substituted tetrahydroisoquinoline compounds. Yao Xue Xue Bao. 1990, 25, 815–823. [Google Scholar] [PubMed]
- Perrey, D.A.; Decker, A.M.; Li, J.X.; Gilmour, B.P.; Thomas, B.F.; Harris, D.L.; Runyon, S.P.; Zhang, Y. The importance of the 6- and 7-positions of tetrahydroisoquinolines as selective antagonists for the orexin 1 receptor. Bioorg. Med. Chem. 2015, 23, 5709–5724. [Google Scholar] [CrossRef] [Green Version]
- Debono, A.J.; Xie, J.H.; Ventura, S.; Pouton, C.W.; Capuano, B.; Scammells, P.J. Synthesis and biological evaluation of N-substituted noscapine analogues. Chem. Med. Chem. 2012, 7, 2122–2133. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, Q.; Shi, J.S.; Sun, A.S.; Huang, X.N. Effects of protopine on intracellular calcium and the PKC activity of rat aorta smooth muscle. Sheng Li Xue Bao. 2005, 57, 240–246. [Google Scholar]
- Lucena-Serrano, C.; Lucena-Serrano, A.; Rivera, A.; López-Romero, J.M.; Valpuesta, M.; Díaz, A. Synthesis and dopaminergic activity of a series of new 1-aryltetrahydroisoquinolines and 2-substituted 1-aryl-3-tetrahydrobenzazepines. Bioorg. Chem. 2018, 80, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Gitto, R.; Ferro, S.; Agnello, S.; De Luca, L.; De Sarro, G.; Russo, E.; Vullo, D.; Supuran, C.T.; Chimirri, A. Synthesis and evaluation of pharmacological profile of 1-aryl-6,7-dimethoxy-3,4-dihydroisoquinoline-2(1H)-sulfonamides. Bioorg. Med. Chem. 2009, 17, 3659–3664. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, G.L.; Sall, D.J.; Monn, J.A. Synthesis and evaluation of 3-substituted analogues of 1,2,3,4-tetrahydroisoquinoline as inhibitors of phenylethanolamine N-methyltransferase. J. Med. Chem. 1988, 31, 824–830. [Google Scholar] [CrossRef]
- Yang, K.; Jin, G.; Wu, J. The neuropharmacology of (-)-stepholidine and its potential applications. Curr Neuropharmacol. 2007, 5, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Faheem, Karan Kumar, B.; Venkata Gowri Chandra Sekhar, K.; Chander, S.; Kunjiappan, S.; Murugesan, S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin. Drug. Discov. 2021, 16, 1119–1147. [Google Scholar] [CrossRef]
- Surh, Y.J.; Kim, H.J. Neurotoxic effects of tetrahydroisoquinolines and underlying mechanisms. Exp. Neurobiol. 2010, 19, 63–70. [Google Scholar] [CrossRef]
- Możdżeń, E.; Kajta, M.; Wąsik, A.; Lenda, T.; Antkiewicz-Michaluk, L. Salsolinol, an Endogenous Compound Triggers a Two-Phase Opposing Action in the Central Nervous System. Neurotox. Res. 2015, 27, 300–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britton, D.R.; Rivier, C.; Shier, T.; Bloom, F.; Vale, W. In vivo and in vitro effects of tetrahydroisoquinolines and other alkaloids on rat pituitary function. Biochem. Pharmacology. 1982, 31, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Mirzaev, Y.R.; Zhurakulov, S.N.; Sanoev, Z.I.; Vinogradova, V.I.; Sagdullayev, S.S. Atypical neuroleptic property of 1-phenyltetrahydroisoquinoline structure. Uz. Patent 06321, 10 October 2020. (In Russian). [Google Scholar]
- Usmanov, P.B.; Jumayev, I.Z.; Rustamov, S.Y.; Zaripov, A.A.; Esimbetov, A.T.; Zhurakulov, S.N.; Vinogradova, V.I. The Combined Inotropic and Vasorelaxant Effect of DHQ-11, a Conjugate of Flavonoid Dihydroquercetin with Isoquinoline Alkaloid 1-aryl-6, 7-dimethoxy-1, 2.3, 4-tetrahydroisoquinoline. Biomed. Pharmacol. J. 2021, 14, 651–661. [Google Scholar] [CrossRef]
- Rejepov, J.; Rakhmanova, H.; Azamatov, A. Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure—Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico. Am. J. Med. Sci. Pharm. Res. 2020, 2, 130–133. [Google Scholar]
- Rakhmanova, K.A.; Zhurakulov, S.N.; Tursunkhodjayeva, F.M.; Azamatov, A.A.; Saidkhodjayeva, D.M.; Jumayev, I.Z. Analgesic and Anti-Inflammatory Effects of 1-(4’-Dimethylaminophenyl)-6, 7-Dimethoxy-1,2,3,4-Tetrahydroisoquinoline Hydrochloride. Biomed. Pharmacol. J. 2022, 15, 891–895. [Google Scholar] [CrossRef]
- Azamatov, A.A.; Rezhepov, Z.; Rakhmanova, K.A.; Zhurakulov, S.N.; Vinogradova, V.I. A Drug That Exhibits Antiarrhythmic and Local Anesthetic Activity A Drug that Exhibits Antiarrhythmic and Local Anesthetic Activity. Uz Patent 06757, 28 February 2022. (In Russian). [Google Scholar]
- Terenteva, E.O.; Khashimova, Z.S.; Tseomashko, N.E.; Tsay, E.A.; Zhurakulov, S.N.; Saidov, A.S.; Vinogradova, V.I.; Azimova, S.S. Chemical Modification of Tetrahydroisoquinolines and their Cytotoxic Activity. Asian J. Pharm. Pharmacol. 2017, 3, 66–78. [Google Scholar]
- Zhurakulov, S.N.; Vinogradova, V.; Levkovich, M. Synthesis of 1-aryltetrahydroisoquinoline alkaloids and their analogs. Chem. Nat. Comp. 2013, 49, 70–74. [Google Scholar] [CrossRef]
- Niyazmetov, A.; Terent’eva, E.; Khamidova, U.; Khashimova, Z.; Azimova, S.S.; Vinogradova, V. Synthesis of derivatives of the 2-arylquinoline alkaloid dubamine and their cytotoxicity. Chem. Nat. Comp. 2020, 56, 511–517. [Google Scholar] [CrossRef]
- Vass, A.; Dudás, J.; Tόth, J.; Varma, R.S. Solvent-free reduction of aromatic nitro compounds with alumina-supported hydrazine under microwave irradiation. Tetrahedron Lett. 2001, 42, 5347–5349. [Google Scholar] [CrossRef]
- Abe, K.; Saitoh, T.; Horiguchi, Y.; Utsunomiya, I.; Taguchi, K. Synthesis and neurotoxicity of tetrahydroisoquinoline derivatives for studying Parkinson’s disease. Biol. Pharm. Bull. 2005, 28, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Youssef, F.S.; Ovidi, E.; Musayeib, N.M.A.; Ashour, M.L. Morphology, anatomy and secondary metabolites investigations of Premna odorata Blanco and evaluation of its anti-tuberculosis activity using in vitro and in silico studies. Plants 2021, 10, 1953. [Google Scholar] [CrossRef] [PubMed]
- Elhady, S.S.; Youssef, F.S.; Alahdal, A.M.; Almasri, D.M.; Ashour, M.L. Anti-hyperglycaemic evaluation of Buddleia indica leaves using in vitro, in vivo and in silico studies and its correlation with the major phytoconstituents. Plants. 2021, 10, 2351. [Google Scholar] [CrossRef] [PubMed]
- Europe, C.O. European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes: Explanatory Report on the Convention Opened for Signature on 18 March 1986; Council of Europe Press: Strasbourg, France, 1993. [Google Scholar]
- Litchfield, J.J.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar] [PubMed]
Compounds | Absorption Level | Solubility Level | BBB Level | PPB Level | CPY2D6 | Hepatotoxic | Alog p98 | PSA-2D |
---|---|---|---|---|---|---|---|---|
3a | 0 | 2 | 1 | True | NI | TOX | 3.021 | 30.67 |
3b | 0 | 3 | 2 | True | NI | TOX | 2.779 | 51.49 |
3c | 0 | 3 | 2 | True | NI | TOX | 2.763 | 60.42 |
3d | 0 | 2 | 1 | True | NI | TOX | 2.989 | 48.53 |
3e | 0 | 2 | 1 | True | NI | TOX | 3.528 | 51.46 |
3f | 0 | 2 | 1 | True | NI | TOX | 3.528 | 51.46 |
3g | 0 | 2 | 1 | True | NI | TOX | 3.737 | 48.53 |
3h | 0 | 2 | 2 | True | NI | TOX | 3.511 | 60.42 |
3i | 0 | 2 | 2 | True | NI | TOX | 2.789 | 48.53 |
3j | 0 | 2 | 1 | True | NI | TOX | 3.538 | 48.53 |
3k | 0 | 2 | 1 | True | NI | TOX | 3.454 | 48.53 |
3l | 0 | 2 | 2 | True | NI | TOX | 3.511 | 60.42 |
3m | 0 | 2 | 2 | True | NI | TOX | 2.916 | 73.49 |
3n | 0 | 2 | 2 | True | NI | TOX | 2.916 | 73.49 |
3o | 0 | 2 | 1 | True | NI | TOX | 3.770 | 30.67 |
3p | 0 | 2 | 1 | True | NI | TOX | 3.686 | 30.67 |
3q | 0 | 3 | 2 | True | NI | TOX | 2.275 | 57.21 |
3r | 0 | 3 | 2 | True | NI | TOX | 2.275 | 57.21 |
4a | 0 | 2 | 1 | True | NI | TOX | 3.021 | 30.67 |
4b | 0 | 3 | 2 | True | NI | TOX | 2.779 | 51.49 |
Compounds | Ames Prediction | Rat Chronic LOAEL | Skin Irritancy | Ocular Irritancy | Rat Female FDA | Rat Male FDA |
---|---|---|---|---|---|---|
3a | Non-mutagen | 0.026 | None | Mild | Non-carcinogen | Non-carcinogen |
3b | Non-mutagen | 0.041 | None | Mild | Non-carcinogen | Non-carcinogen |
3c | Non-mutagen | 0.022 | None | Severe | Non-carcinogen | Non-carcinogen |
3d | Non-mutagen | 0.012 | None | Severe | Non-carcinogen | Non-carcinogen |
3e | Non-mutagen | 0.019 | None | Severe | Non-carcinogen | Non-carcinogen |
3f | Non-mutagen | 0.010 | None | Severe | Non-carcinogen | Non-carcinogen |
3g | Non-mutagen | 0.007 | None | Mild | Non-carcinogen | Non-carcinogen |
3h | Non-mutagen | 0.013 | None | Mild | Non-carcinogen | Non-carcinogen |
3i | Non-mutagen | 0.008 | Mild | Mild | Non-carcinogen | Non-carcinogen |
3j | Non-mutagen | 0.005 | None | Mild | Non-carcinogen | Non-carcinogen |
3k | Non-mutagen | 0.004 | None | Mild | Non-carcinogen | Non-carcinogen |
3l | Non-mutagen | 0.013 | None | Severe | Non-carcinogen | Non-carcinogen |
3m | Non-mutagen | 0.006 | Mild | Severe | Non-carcinogen | Non-carcinogen |
3n | Non-mutagen | 0.008 | Mild | Mild | Non-carcinogen | Non-carcinogen |
3o | Non-mutagen | 0.012 | None | Mild | Non-carcinogen | Non-carcinogen |
3p | Non-mutagen | 0.009 | None | Severe | Non-carcinogen | Non-carcinogen |
3q | Non-mutagen | 0.018 | None | Mild | Non-carcinogen | Non-carcinogen |
3r | Non-mutagen | 0.022 | None | Mild | Non-carcinogen | Non-carcinogen |
4a | Non-mutagen | 0.026 | None | Mild | Non-carcinogen | Non-carcinogen |
4b | Non-mutagen | 0.041 | None | Mild | Non-carcinogen | Non-carcinogen |
Compound | LD50, mg/kg | Compound | LD50, mg/kg |
---|---|---|---|
3a | 280 (250.0 ± 313.6) | 3k | 520 (456.1 ± 592.8) |
3b | 375 (334.8 ± 420.0) | 3l | 1560 (1392.8 ± 1747.2) |
3c | 980 (867.2 ± 1107.4) | 3m | 1950 (1695.6 ± 2242.5) |
3d | 670 (587.7 ± 763.8) | 3n | 525 (460.5 ± 598.5) |
3e | 3850 (3347.8 ± 4427.5) | 3o | 710 (628.3 ± 80.,3) |
3f | 305 (270 ± 344.6) | 3p | 300 (265.4 ± 339.0) |
3g | 290 (258.9 ± 330.6) | 3q | 1250 (110.6 ± 1412) |
3h | 550 (482.4 ± 627.0) | 3r | 740 (649.1 ± 843.6) |
3i | 280 (243.4 ± 322.0) | 4a | 1050 (929.2 ± 1176.0) |
3j | 730 (651.7 ± 817.6) | 4b | 750 (657.8 ± 855.0) |
Compound a | Onset of Anesthesia (min) | Duration of Complete Anesthesia (%) | Total Duration of Anesthesia (min) |
---|---|---|---|
Lidocaine | 5.0 ± 0.5 | 100 | 52.7 ± 4.9 |
3a | 3.0 ± 1.1 | +50 | 53.0 ± 4.6 |
3b | 1.0 ± 0.4 | +50 | 44.0 ± 1.5 |
3c | 3.0 ± 0.8 | +40 | 70.0 ± 4.5 |
3d | 2.0 ± 0.7 | +60 | 70.0 ± 2.1 |
3e | 5.0 ± 0.9 | +49 | 80.0 ± 3.2 |
3f | 1.0 ± 0.5 | +160 | 64.0 ± 3.8 |
3g | 2.0 ± 1.0 | +90 | 44.0 ± 3.5 |
3h | 1.0 ± 0.4 | +170 | 40.0 ± 3.2 |
3i | 2.0 ± 0.4 | +80 | 57.0 ± 3.7 |
3j | 2.0 ± 1.0 | +90 | 52.0 ± 4.0 |
3k | 2.0 ± 1.2 | +90 | 43.0 ± 4.5 |
3l | 5.0 ± 1.2 | +140 | 89.0 ± 3.0 |
3m | 3.0 ± 0.4 | +80 | 48.0 ± 2.8 |
3n | 3.0 ± 1.0 | +260 | 37.0 ± 3.2 |
3o | 2.0 ± 0.4 | +130 | 115.0 ± 3.8 |
3p | 3.0 ± 0.8 | +300 | 67.0 ± 3.6 |
3q | 2.0 ± 0.6 | +220 | 45.0 ± 4.1 |
3r | 2.0 ± 0.6 | +150 | 35.0 ± 3.4 |
4a | 2.0 ± 0.7 | +40 | 25.0 ± 4.0 |
4b | 3.0 ± 0.7 | +0 | 44.0 ± 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azamatov, A.A.; Zhurakulov, S.N.; Vinogradova, V.I.; Tursunkhodzhaeva, F.; Khinkar, R.M.; Malatani, R.T.; Aldurdunji, M.M.; Tiezzi, A.; Mamadalieva, N.Z. Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure–Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico. Molecules 2023, 28, 477. https://doi.org/10.3390/molecules28020477
Azamatov AA, Zhurakulov SN, Vinogradova VI, Tursunkhodzhaeva F, Khinkar RM, Malatani RT, Aldurdunji MM, Tiezzi A, Mamadalieva NZ. Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure–Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico. Molecules. 2023; 28(2):477. https://doi.org/10.3390/molecules28020477
Chicago/Turabian StyleAzamatov, Azizbek A., Sherzod N. Zhurakulov, Valentina I. Vinogradova, Firuza Tursunkhodzhaeva, Roaa M. Khinkar, Rania T. Malatani, Mohammed M. Aldurdunji, Antonio Tiezzi, and Nilufar Z. Mamadalieva. 2023. "Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure–Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico" Molecules 28, no. 2: 477. https://doi.org/10.3390/molecules28020477
APA StyleAzamatov, A. A., Zhurakulov, S. N., Vinogradova, V. I., Tursunkhodzhaeva, F., Khinkar, R. M., Malatani, R. T., Aldurdunji, M. M., Tiezzi, A., & Mamadalieva, N. Z. (2023). Evaluation of the Local Anesthetic Activity, Acute Toxicity, and Structure–Toxicity Relationship in Series of Synthesized 1-Aryltetrahydroisoquinoline Alkaloid Derivatives In Vivo and In Silico. Molecules, 28(2), 477. https://doi.org/10.3390/molecules28020477