Isomeric Activity Cliffs—A Case Study for Fluorine Substitution of Aminergic G Protein-Coupled Receptor Ligands
Abstract
:1. Introduction
2. Results
2.1. FiSAR Sets
2.2. Activity Cliffs in FiSAR Sets
2.3. MMP Networks
2.4. Computational Workflow to Rank the Positions for Fluorine Substitution
3. Materials and Methods
3.1. Compounds and Activity Data
3.2. Fluorinated Compound Sets
3.3. Activity Cliffs
3.4. Matched Molecular Pairs
3.5. MMP Networks
3.6. Computational Workflow Used to Predict the Most Potent Fluorine Derivative
3.6.1. Induced-Fit Docking (IFD)
3.6.2. Molecular Dynamics (MD)
3.6.3. Quantum Polarized Ligand Docking (QPLD)
3.6.4. Binding Free Energy Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Selçuk, B.; Erol, I.; Durdağı, S.; Adebali, O. Evolutionary association of receptor-wide amino acids with G protein–coupling selectivity in aminergic GPCRs. Life Sci. Alliance 2022, 5, e202201439. [Google Scholar] [CrossRef] [PubMed]
- Van Baelen, A.C.; Robin, P.; Kessler, P.; Maïga, A.; Gilles, N.; Servent, D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front. Mol. Biosci. 2022, 9, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Huckle, J.; Newman, J.; Reid, D.L. Trends in small molecule drug properties: A developability molecule assessment perspective. Drug Discov. Today 2022, 103366. [Google Scholar] [CrossRef] [PubMed]
- Pietruś, W.; Kurczab, R.; Stumpfe, D.; Bojarski, A.J.; Bajorath, J. Data-driven analysis of fluorination of ligands of aminergic g protein coupled receptors. Biomolecules 2021, 11, 1647. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Han, J.; Fustero, S.; Medio-Simon, M.; Sedgwick, D.M.; Santi, C.; Ruzziconi, R.; Soloshonok, V.A. Fluorine-Containing Drugs Approved by the FDA in 2018. Chem.–A Eur. J. 2019, 25, 11797–11819. [Google Scholar] [CrossRef]
- Ursu, O.; Holmes, J.; Bologa, C.G.; Yang, J.J.; Mathias, S.L.; Stathias, V.; Nguyen, D.T.; Schürer, S.; Oprea, T. DrugCentral 2018: An update. Nucleic Acids Res. 2019, 47, D963–D970. [Google Scholar] [CrossRef]
- Pietruś, W.; Kafel, R.; Bojarski, A.J.; Kurczab, R. Hydrogen Bonds with Fluorine in Ligand–Protein Complexes-the PDB Analysis and Energy Calculations. Molecules 2022, 27, 1005. [Google Scholar] [CrossRef]
- Link, J.O.; Rhee, M.S.; Tse, W.C.; Zheng, J.; Somoza, J.R.; Rowe, W.; Begley, R.; Chiu, A.; Mulato, A.; Hansen, D.; et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020, 584, 614–618. [Google Scholar] [CrossRef]
- Scott, J.S.; Moss, T.A.; Balazs, A.; Barlaam, B.; Breed, J.; Carbajo, R.J.; Chiarparin, E.; Davey, P.R.J.; Delpuech, O.; Fawell, S.; et al. Discovery of AZD9833, a Potent and Orally Bioavailable Selective Estrogen Receptor Degrader and Antagonist. J. Med. Chem. 2020, 63, 14530–14559. [Google Scholar] [CrossRef]
- Fleischhacker, W.W.; Podhorna, J.; Gröschl, M.; Hake, S.; Zhao, Y.; Huang, S.; Keefe, R.S.E.; Desch, M.; Brenner, R.; Walling, D.P.; et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: A double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry 2021, 8, 191–201. [Google Scholar] [CrossRef]
- Swallow, S. Fluorine in Medicinal Chemistry. In Progress in Medicinal Chemistry; Lawton, G., Witty, D.R., Eds.; Elsevier B.V.: Edinburgh, UK, 2015; Volume 54, pp. 65–133. ISBN 0306-0012. [Google Scholar]
- Budzik, B.; Garzya, V.; Shi, D.; Foley, J.J.; Rivero, R.A.; Langmead, C.J.; Watson, J.; Wu, Z.; Forbes, I.T.; Jin, J. 2′ Biaryl amides as novel and subtype selective M1 agonists. Part I: Identification, synthesis, and initial SAR. Bioorg. Med. Chem. Lett. 2010, 20, 3540–3544. [Google Scholar] [CrossRef] [PubMed]
- Budzik, B.; Garzya, V.; Shi, D.; Walker, G.; Lauchart, Y.; Lucas, A.J.; Rivero, R.A.; Langmead, C.J.; Watson, J.; Wu, Z.; et al. 2′ Biaryl amides as novel and subtype selective M1 agonists. Part II: Further optimization and profiling. Bioorg. Med. Chem. Lett. 2010, 20, 3545–3549. [Google Scholar] [CrossRef] [PubMed]
- Tye, H.; Mueller, S.G.; Prestle, J.; Scheuerer, S.; Schindler, M.; Nosse, B.; Prevost, N.; Brown, C.J.; Heifetz, A.; Moeller, C.; et al. Novel 6,7,8,9-tetrahydro-5H-1,4,7,10a-tetraaza-cyclohepta[f]indene analogues as potent and selective 5-HT2C agonists for the treatment of metabolic disorders. Bioorg. Med. Chem. Lett. 2011, 21, 34–37. [Google Scholar] [CrossRef]
- Roberts, L.R.; Fish, P.V.; Ian Storer, R.; Whitlock, G.A. 6,7-Dihydro-5H-pyrrolo[1,2-a] imidazoles as potent and selective α1A adrenoceptor partial agonists. Bioorg. Med. Chem. Lett. 2009, 19, 3113–3117. [Google Scholar] [CrossRef] [PubMed]
- Grychowska, K.; Olejarz-Maciej, A.; Blicharz, K.; Pietruś, W.; Karcz, T.; Kurczab, R.; Koczurkiewicz, P.; Doroz-Płonka, A.; Latacz, G.; Keeri, A.R.; et al. Overcoming undesirable hERG affinity by incorporating fluorine atoms: A case of MAO-B inhibitors derived from 1 H-pyrrolo-[3,2-c]quinolines. Eur. J. Med. Chem. 2022, 236, 114329. [Google Scholar] [CrossRef]
- Staroń, J.; Pietruś, W.; Bugno, R.; Kurczab, R.; Satała, G.; Warszycki, D.; Lenda, T.; Wantuch, A.; Hogendorf, A.S.; Hogendorf, A.; et al. Tuning the activity of known drugs via the introduction of halogen atoms, a case study of SERT ligands – Fluoxetine and fluvoxamine. Eur. J. Med. Chem. 2021, 220, 113533. [Google Scholar] [CrossRef]
- Childers, W.E.; Havran, L.M.; Asselin, M.; Bicksler, J.J.; Chong, D.C.; Grosu, G.T.; Shen, Z.; Abou-Gharbia, M.A.; Bach, A.C.; Harrison, B.L.; et al. The synthesis and biological evaluation of quinolyl-piperazinyl piperidines as potent serotonin 5-HT1A antagonists. J. Med. Chem. 2010, 53, 4066–4084. [Google Scholar] [CrossRef]
- O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Xiong, Y.; Ullman, B.; Choi, J.S.K.; Cherrier, M.; Strah-Pleynet, S.; Decaire, M.; Dosa, P.I.; Feichtinger, K.; Teegarden, B.R.; Frazer, J.M.; et al. Synthesis and in vivo evaluation of phenethylpiperazine amides: Selective 5-hydroxytryptamine2A receptor antagonists for the treatment of insomnia. J. Med. Chem. 2010, 53, 5696–5706. [Google Scholar] [CrossRef]
- Favor, D.A.; Powers, J.J.; White, A.D.; Fitzgerald, L.W.; Groppi, V.; Serpa, K.A. 6-Alkoxyisoindolin-1-one based dopamine D2 partial agonists as potential antipsychotics. Bioorg. Med. Chem. Lett. 2010, 20, 5666–5669. [Google Scholar] [CrossRef]
- Budzik, B.; Wang, Y.; Shi, D.; Wang, F.; Xie, H.; Wan, Z.; Zhu, C.; Foley, J.J.; Nuthulaganti, P.; Kallal, L.A.; et al. M3 muscarinic acetylcholine receptor antagonists: SAR and optimization of bi-aryl amines. Bioorg. Med. Chem. Lett. 2009, 19, 1686–1690. [Google Scholar] [CrossRef]
- Kurczab, R. The evaluation of QM/MM-driven molecular docking combined with MM/GBSA calculations as a halogen-bond scoring strategy. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2017, 73, 188–194. [Google Scholar] [CrossRef]
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. KNIME: The Konstanz Information Miner. 2008, pp. 319–326. Available online: https://www.knime.com (accessed on 7 February 2022).
- OpenEye Scietific Software. OEChem TK: Santa Fe, New Mexico, USA, 2012.
- Stumpfe, D.; Hu, H.; Bajorath, J. Advances in exploring activity cliffs. J. Comput. Aided. Mol. Des. 2020, 34, 929–942. [Google Scholar] [CrossRef]
- Kenny, P.W.; Sadowski, J. Structure Modification in Chemical Databases. In Chemoinformatics in Drug Discovery; Wiley Blackwell: Hoboken, NJ, USA, 2005; ISBN 9783527603749. [Google Scholar]
- Hussain, J.; Rea, C. Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J. Chem. Inf. Model. 2010, 50, 339–348. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.; Vogt, M.; Stumpfe, D.; Bajorath, J. MMP-cliffs: Systematic identification of activity cliffs on the basis of matched molecular pairs. J. Chem. Inf. Model. 2012, 52, 1138–1145. [Google Scholar] [CrossRef]
- Stumpfe, D.; Hu, Y.; Dimova, D.; Bajorath, J. Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J. Med. Chem. 2014, 57, 18–28. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided. Mol. Des. 2010, 24, 591–604. [Google Scholar] [CrossRef]
- Grychowska, K.; Chaumont-Dubel, S.; Kurczab, R.; Koczurkiewicz, P.; Deville, C.; Krawczyk, M.; Pietruś, W.; Satała, G.; Buda, S.; Piska, K.; et al. Dual 5-HT6 and D3 Receptor Antagonists in a Group of 1 H-Pyrrolo[3,2- c]quinolines with Neuroprotective and Procognitive Activity. ACS Chem. Neurosci. 2019, 10, 3183–3196. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Schrodinger Desmond 2017. Available online: https://www.schrodinger.com/products/desmond (accessed on 7 February 2022).
- Lomize, A.L.; Todd, S.C.; Pogozheva, I.D. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci. 2022, 31, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Abascal, J.L.F.; Sanz, E.; García Fernández, R.; Vega, C. A potential model for the study of ices and amorphous water: TIP4P/Ice. J. Chem. Phys. 2005, 122, 234511. [Google Scholar] [CrossRef] [Green Version]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef]
- Cho, A.E.; Guallar, V.; Berne, B.J.; Friesner, R. Importance of accurate charges in molecular docking: Quantum Mechanical/Molecular Mechanical (QM/MM) approach. J. Comput. Chem. 2005, 26, 915–931. [Google Scholar] [CrossRef] [Green Version]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988. [Google Scholar] [CrossRef]
Target-Based FiSAR Set | Fluorinated Compounds | |||
---|---|---|---|---|
M1 | ||||
pPot = 8.10 | pPot = 7.90 ΔpPot = −0.2 | pPot = 7.60 ΔpPot = −0.5 | ||
pPot = 6.30 ΔpPot = −1.8 | pPot = 5.60 ΔpPot = −2.5 | |||
5HT2a | ||||
pPot = 8.82 | pPot = 7.80 ΔpPot = −1.02 | pPot = 6.49 ΔpPot = −2.33 |
Target-Based FiSAR Set | Fluorinated Compounds | Activity Cliffs | |||
---|---|---|---|---|---|
5HT1b | pPot = 9.10 | pPot = 8.60 ΔpPot = −0.5 | pPot = 7.70 ΔpPot = −1.4 | pPot = 7.50 ΔpPot = −1.6 | NO |
5HT1d | pPot = 9.40 | pPot = 9.10 ΔpPot = −0.3 | pPot = 8.50 ΔpPot = −0.9 | pPot = 8.60 ΔpPot = −0.8 | NO |
5HT1a | pPot = 8.30 ΔpPot = −1.0 | pPot = 8.60 ΔpPot = −0.7 | pPot = 9.30 | pPot = 7.30 ΔpPot = −2.0 | YES |
SET A | ||||
SET B |
Target-Based FiSAR Set | Fluorinated Compounds | Activity Cliffs | ||
---|---|---|---|---|
5HT2a | YES | |||
pPot = 8.41 | pPot = 6.56 ΔpPot = −1.84 | |||
5HT2a | YES | |||
pPot = 8.44 | pPot = 7.74 ΔpPot = −0.5 | pPot = 6.27 ΔpPot = −2.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietruś, W.; Kurczab, R.; Warszycki, D.; Bojarski, A.J.; Bajorath, J. Isomeric Activity Cliffs—A Case Study for Fluorine Substitution of Aminergic G Protein-Coupled Receptor Ligands. Molecules 2023, 28, 490. https://doi.org/10.3390/molecules28020490
Pietruś W, Kurczab R, Warszycki D, Bojarski AJ, Bajorath J. Isomeric Activity Cliffs—A Case Study for Fluorine Substitution of Aminergic G Protein-Coupled Receptor Ligands. Molecules. 2023; 28(2):490. https://doi.org/10.3390/molecules28020490
Chicago/Turabian StylePietruś, Wojciech, Rafał Kurczab, Dawid Warszycki, Andrzej J. Bojarski, and Jürgen Bajorath. 2023. "Isomeric Activity Cliffs—A Case Study for Fluorine Substitution of Aminergic G Protein-Coupled Receptor Ligands" Molecules 28, no. 2: 490. https://doi.org/10.3390/molecules28020490
APA StylePietruś, W., Kurczab, R., Warszycki, D., Bojarski, A. J., & Bajorath, J. (2023). Isomeric Activity Cliffs—A Case Study for Fluorine Substitution of Aminergic G Protein-Coupled Receptor Ligands. Molecules, 28(2), 490. https://doi.org/10.3390/molecules28020490