Removal of Zinc from Concentrated Galvanic Wastewater by Sodium Trithiocarbonate: Process Optimization and Toxicity Assessment
Abstract
:1. Introduction
2. Results
2.1. Selected Physicochemical Parameters of the Solution of Sodium Trithiocarbonate Used in the Study (Na2CS3)
2.2. Selected Physicochemical and Toxicological Parameters of Concentrated Galvanic Wastewater Used in the Study
2.3. Removal of Zinc from Galvanic Wastewater by Sodium Carbonate (Na2CO3), Calcium Hydroxide Suspension (Ca(OH)2), and Sodium Hydroxide (NaOH)
2.4. The Optimization of the Removal of Zinc (Zn) from Galvanic Wastewater by Sodium Trithiocarbonate (Na2CS3)
2.5. The Assessment of the Phytotoxicity of Galvanic Wastewater before and after Treatment by Sodium Trithiocarbonate (Na2CS3)
3. Discussion
3.1. Selected Physicochemical Parameters of the Solution of Sodium Trithiocarbonate Used in the Study (Na2CS3)
3.2. Selected Physicochemical and Toxicological Parameters of Concentrated Galvanic Wastewater Used in the Study
3.3. Removal of Zinc from Galvanic Wastewater by Sodium Carbonate (Na2CO3), Calcium Hydroxide Suspension (Ca(OH)2) and Sodium Hydroxide (NaOH)
3.4. Optimization of the Removal of Zinc from Galvanic Wastewater by Sodium Trithiocarbonate (Na2CS3)
3.5. Toxicological Findings
4. Materials and Methods
4.1. Reagents, Chemicals and Synthesis of Na2CS3
4.2. Origin of the Galvanic Wastewater and Sampling Methodology
4.3. Analytical Methods
4.4. Design of Experiments (Central Composite Design, CCD, and Response Surface Methodology, RSM)
4.5. Experimental Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statemen
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fergusson, J.E. The Heavy Elements: Chemistry, Environmental Impact and Health Effects; Pergamon Press: Oxford, UK, 1990. [Google Scholar]
- Sobhanardakani, S.; Tayebi, L.; Farmany, A. Toxic metal (Pb, Hg, and As) contamination of muscle, gill and liver tissues of Otolithes ruber, Pampus argenteus, Parastromateus niger, Scomberomorus commerson and Onchorynchus mykiss. World Appl. Sci. J. 2011, 14, 1453–1456. [Google Scholar]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arabian J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef] [Green Version]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- El-Sherif, I.Y.; Tolani, S.; Ofosu, K.; Mohamed, O.A.; Wanekaya, A.K. Polymeric nanofibers for the removal of Cr(III) from tannery waste water. J. Environ. Manag. 2013, 129, 410–413. [Google Scholar] [CrossRef]
- Borba, C.E.; Guirardello, R.; Silva, E.A.; Veit, M.T.; Tavares, C.R.G. Removal of nickel(II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves. Biochem. Eng. J. 2006, 30, 184–191. [Google Scholar] [CrossRef]
- Taseidifar, M.; Makavipour, F.; Pashley, R.M.; Rahman, A.F.M.M. Removal of heavy metal ions from water using ion flotation. Environ. Technol. Innov. 2017, 8, 182–190. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- García-Niño, W.R.; Pedraza-Chaverrí, J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem. Toxicol. 2014, 69, 182–201. [Google Scholar] [CrossRef]
- Tjandraatmadja, G.; Diaper, C. Sources of Critical Contaminants in Domestic Wastewater: Contaminant Contribution from Household Products. CSIRO: Water for a Healthy Country National Research Flagship. Australia. 2006. Available online: https://publications.csiro.au/rpr/download?pid=procite:e8e1f460-b821-4c47-871c-3a2eb7a77c5d&dsid=DS1 (accessed on 20 November 2022).
- Mansourri, G.; Madani, M. Examination of the level of heavy metals in wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol. 2016, 6, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.dcceew.gov.au/environment/protection/npi/substances/fact-sheets/zinc-and-compounds (accessed on 20 November 2022).
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012. [Google Scholar]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Abdusamadzoda, D.; Safonov, A.; Rodlovskaya, E. Zinc-Containing Effluent Treatment Using Shewanella xiamenensis Biofilm Formed on Zeolite. Materials 2021, 14, 1760. [Google Scholar] [CrossRef]
- Pozdniakova, T.A.; Mazur, L.P.; Boaventura, R.A.R.; Vilar, V.J.P. Brown macro-algae as natural cation exchangers for the treatment of zinc containing wastewaters generated in the galvanizing process, J. Clean Prod. 2016, 119, 38–49. [Google Scholar] [CrossRef]
- Zueva, S.B.; Ferella, F.; Innocenzi, V.; De Michelis, I.; Corradini, V.; Ippolito, N.M.; Vegliò, F. Recovery of Zinc from Treatment of Spent Acid Solutions from the Pickling Stage of Galvanizing Plants. Sustainability 2021, 13, 407. [Google Scholar] [CrossRef]
- John, M.; Heuss-Assbichler, S.; Ulrich, A. Recovery of Zn from wastewater of zinc plating industry by precipitation of doped ZnO nanoparticles, Int. J. Environ. Sci. Technol. 2016, 13, 2127–2134. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M.; Kozik, V.; Bąk, A.; Barbusiński, K.; Jazowiecka-Rakus, J.; Jampilek, J. Removal of Heavy Metal Ions from Wastewaters: An Application of Sodium Trithiocarbonate and Wastewater Toxicity Assessment. Materials 2021, 14, 655. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Shvetsova, M. Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae. Materials 2020, 13, 3624. [Google Scholar] [CrossRef]
- Kanawade, S.M.; Gaikwad, R.W. Removal of Zinc Ions from Industrial Effluent by Using Cork Powder as Adsorbent. Int. J. Chem. Eng. Appl. 2011, 2, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Trivunac, K.; Sekulić, Z.; Stevanovic, S. Zinc removal from wastewater by a complexation–microfiltration process. J. Serb. Chem. Soc. 2012, 77, 1661–1670. [Google Scholar] [CrossRef]
- Kouakou, U.; Ello, A.S.; Yapo, J.A.; Trokourey, A. Adsorption of iron and zinc on commercial activated carbon. J. Environ. Chem. Ecotoxicol. 2013, 5, 168–171. [Google Scholar] [CrossRef]
- Ghorbani, M.; Eisazadeh, H.; Ghoreyshi, A.A. Removal of Zinc Ions from Aqueous Solution Using Polyaniline Nanocomposite Coated on Rice Husk. Iran. J. Energy Environ. 2012, 3, 66–71. [Google Scholar] [CrossRef]
- Johnson, P.D.; Girinathannair, P.; Ohlinger, K.N.; Ritchie, S.; Teuber, L.; Kirby, J. Enhanced Removal of Heavy Metals in Primary Treatment Using Coagulation and Flocculation. Water Environ. Res. 2008, 80, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, E.; Tuerkan, A. Biosorption of chromium(VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 2008, 155, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Gupta, R.; Sharma, R.K. Green and Sustainable Pathways for Wastewater Purification; Elsevier: Amsterdam, The Netherlands, 2019; pp. 355–383. [Google Scholar]
- Park, J.-H.; Choi, G.-J.; Kim, S.-H. Effects of pH and slow mixing conditions on heavy metal hydroxide precipitation. J. Korea. Org. Res. Recycl. Assos. 2014, 22, 50–56. [Google Scholar]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Thomas, M.; Białecka, B.; Zdebik, D. Removal of copper, nickel and tin from model and real industrial wastewater using sodium trithiocarbonate. The negative impact of complexing compounds. Arch. Environ. Prot. 2018, 44, 33–47. [Google Scholar] [CrossRef]
- Thomas, M.; Białecka, B.; Zdebik, D. Use of sodium trithiocarbonate for remove of chelated copper ions from industrial wastewater originating from the electroless copper plating process. Arch. Environ. Prot. 2018, 44, 32–42. [Google Scholar] [CrossRef]
- Thomas, M.; Zdebik, D.; Białecka, B. Using Sodium Trithiocarbonate to Precipitate Heavy Metals from Industrial Wastewater–from the Laboratory to Industrial Scale. Pol. J. Environ. Stud. 2018, 27, 1–11. [Google Scholar] [CrossRef]
- Fu, F.; Zeng, H.; Cai, Q.; Qiu, R.; Yu, J.; Xiong, Y. Effective removal of coordinated copper from wastewater using a new dithiocarbamate-type supramolecular heavy metal precipitant. Chemosphere 2007, 69, 1783–1789. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, X.; Liu, Y.; Yan, S.; Hu, Z.; Ni, Y. Study on the treatment of copper-electroplating wastewater by chemical trapping and flocculation. Sep. Purif. Technol. 2003, 31, 91–95. [Google Scholar] [CrossRef]
- USEPA. Treatability Manual, Technologies for Control/Removal of Pollutants, Office of Research and Development. USEPA Washington 1981, 3, 1–677. [Google Scholar]
- Chang, Y.K.; Leu, M.H.; Chang, J.E.; Lin, T.F.; Chiang, L.C.; Shih, P.H.; Chen, T.C. Combined two-stage xanthate processes or the treatment of copper-containing wastewater. Eng. Life. Sci. 2007, 7, 75–80. [Google Scholar] [CrossRef]
- Chang, Y.K.; Chang, J.E.; Lin, T.T.; Hsu, Y.M. Integrated copper-containing wastewater treatment using xanthate process. J. Hazard. Mater. 2002, 94, 89–99. [Google Scholar] [CrossRef]
- Stechman, M.; Orłowska, M. Evaluation of the Usefulness of Sodium Trithiocarbonate for the Treatment of Wastewater and Waste Solutions Containing of Heavy Metals Compared with Trisodium 2,4,6-Trimercaptotriazine; Institute of Inorganic Chemistry: Gliwice, Poland, 2010. unpublished. (In Polish) [Google Scholar]
- James, C.M. Synthesis and Characterisation of Inorganic Trithiocarbonates, Perthiocarbonates and Related 1,1-Dithiolate Compounds. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät, Universität zu Köln, Köln, Germany, 2021. Available online: https://kups.ub.uni-koeln.de/54581/1/Dissertation_2021_ChristopherMJames_KUPS.pdf (accessed on 25 November 2022).
- Öztel, M.D.; Kuleyin, A.; Akbal, F. Treatment of zinc plating wastewater by combination of electrocoagulation and ultrafiltration process. Water Sci. Technol. 2020, 82, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.; Su, T.; Gao, Y.; Chen, Y.; Zhu, S.; Liu, C.; Wang, X.; Qu, Z.; Zhang, Y.; Zhang, H. Enrichment and recycling of Zn from electroplating wastewater as zinc phosphate via coupled coagulation and hydrothermal route. Arab. J. Chem. 2022, 15, 103664. [Google Scholar] [CrossRef]
- Ghorpade, A.; Ahammed, M.M. Water treatment sludge for removal of heavy metals from electroplating wastewater. Environ. Eng. Res. 2018, 23, 92–98. [Google Scholar] [CrossRef]
- Gabbita, K.V.; Huang, J.Y.C. Dehydrogenases activity of activated sludge. Toxicol. Environ. Chem. 1984, 8, 151–164. [Google Scholar] [CrossRef]
- Nweke, C.O. Kinetics of zinc toxicity to environmental bacterial isolates. Taubaté 2009, 4, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, D. Inhibition of respiratory system in Azotobacter vinelandi by divalent metal ions. FEBS Lett. 1978, 96, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, M.; Anraku, Y. Succinate and NADH oxidase systems of Escherichia coli membrane vesicles: Mechanism of selective inhibition of the system by zinc ions. J. Biochem. 1974, 76, 967–976. [Google Scholar]
- Perez-Garzia, A.; Codina, J.C.; Cazoria, F.M.; De Vicente, A. Rapid respirometric toxicity test: Sensitivity to metals. Bull. Environ. Contam. Toxicol. 1993, 50, 703–708. [Google Scholar] [CrossRef]
- Beard, S.J.; Hughes, M.N.; Poole, R.K. Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS Microbiol. Lett. 1995, 131, 205–210. [Google Scholar] [CrossRef]
- Mielcarz-Skalska, L.; Smolińska, B. Response of Lepidium sativum to soil contamination with zinc in molecular and nanoparticle form. World Sci. News Int. Scienfitic J. 2018, 114, 55–67. Available online: http://www.worldscientificnews.com/wp-content/uploads/2018/09/WSN-114-2018-55-67-1.pdf (accessed on 1 December 2022).
- Hartinger, L. Handbook of Wastewater and Recycling Technology for the Metalworking Industry; Carl Hanser: Muenchen, Germany; Wien, Austria, 1991. [Google Scholar]
- Gattow, G.; Behrendt, W. Carbon Sulfides and their Inorganic and Complex Chemistry; Georg Thieme Publishers: Stuttgart, Germany, 1977. [Google Scholar]
- Stechman, M.; Różycka, D.; Mateńko, H.; Marszałek, J.; Wojtycha, Z.; Jamroży, J.; Zaczkowski, L.; Sufczyński, T. Sodium Trithiocarbonate Manufacturing Method. PL198453. 1 November 2001. [Google Scholar]
- BobrowskaKrajewska, K.; Dąbek, M.; Kmieć, B.; Krajewski, J. Possibility of removing a trace amounts of heavy metals from wastewater. Arch. Environ. Prot. 1994, 3–4, 73–87. [Google Scholar]
- BobrowskaKrajewska, K.; Dąbek, M.; Kmieć, B.; Krajewski, J. Selected issues of synthesis and application of sodium tritiocarbonate. Chemik. 1994, 6, 155–158. [Google Scholar]
- Kuc, J.; Thomas, M.; Grochowalska, I.; Kulczyk, R.; Mikosz, G.; Mrózek, F.; Janik, D.; Korta, J.; Cwynar, K. Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant. Molecules. 2022, 27, 5740. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Barbusiński, K.; Kalemba, K.; Piskorz, P.J.; Kozik, V.; Bąk, A. Optimization of the Fenton Oxidation of Synthetic Textile Wastewater Using Response Surface Methodology. Fibres Text. East. Eur. 2017, 6, 108–113. [Google Scholar] [CrossRef]
- Asgari, G.; Shabanloo, A.; Salari, M.; Eslami, F. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network. Environ. Res. 2020, 184, 109367. [Google Scholar] [CrossRef]
- Serrano, L.Z.Z.; Lara, N.O.O.; Vera, R.R.R.; Cholico-González, D. Removal of Fe(III), Cd(II), and Zn(II) as Hydroxides by Precipitation–Flotation System. Sustainability 2021, 13, 11913. [Google Scholar] [CrossRef]
- Abba, A.B.; Saggai, S.; Touil, Y.; Al-Ansari, N.; Kouadri, S.; Nouasria, F.Z.; Najm, H.M.; Mashaan, N.S.; Eldirderi, M.M.A.; Khedher, K.M. Copper and Zinc Removal from Wastewater Using Alum Sludge Recovered from Water Treatment Plant. Sustainability 2022, 14, 9806. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Morsy, R.M.; Hewehy, M.A.; Razek, T.M.; Hamid, M.M. Treatment of industrial electroplating wastewater for metals removal via electrocoagulation continous flow reactors. Water Pract. Technol. 2022, 17, 555–566. [Google Scholar] [CrossRef]
- Gómez Aguilar, D.L.; Rodríguez Miranda, J.P.; Astudillo Miller, M.X.; Maldonado Astudillo, R.I.; Esteban Muñoz, J.A. Removal of Zn(II) in Synthetic Wastewater Using Agricultural Wastes. Metals 2020, 10, 1465. [Google Scholar] [CrossRef]
- Duricova, A.; Samesova, D. Distribution of the toxic metals in system water–sludge in the biological water treatment plant. Ecology and Environmental Protection. In Proceedings of the 14th International Multidisciplinary Scientific GeoConference SGEM, Albena, Bulgaria, 17–26 June 2014. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Scientific Publishing House PWN: Warsaw, Poland, 1999. (In Polish) [Google Scholar]
- Alloway, B.J. Zinc in Soils and Crop Nutrition, 2nd ed.; International Zinc Association: Brussels, Belgium; International Fertilizer Industry Association: Paris, France, 2008; Available online: https://www.topsoils.co.nz/wp-content/uploads/2014/09/Zinc-in-Soils-and-Crop-Nutrition-Brian-J.-Alloway.pdf (accessed on 1 December 2022).
- McCauley, A.; Jones, C.; Jacobsen, J. Plant nutrient functions and deficiency and toxicity symptoms. Nutr. Manag. Module 2011, 9, 1–16. Available online: https://mtvernon.wsu.edu/path_team/Plant-Nutrient-Functions-and-Deficiency-and-Toxicity-Symptoms-MSU-2013.pdf (accessed on 1 December 2022).
- Fargašová, A. Phytotoxic Effects of Cd, Zn, Pb, Cu and Fe on Sinapis Alba L. Seedlings and their Accumulation in Roots and Shoots. Biol. Plantarum 2001, 44, 471–473. [Google Scholar] [CrossRef]
- PN-EN ISO 5667-6; Water Quality—Sampling—Part 6: Guidelines for Sampling Rivers and Streams. International Organization for Standardization: Geneva, Switzerland, 2016.
- PN-EN ISO 10523; Water Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2008.
- PN EN 27888; Water Quality—Determination of Electrical Conductivity. International Organization for Standardization: Geneva, Switzerland, 1999.
- PN-EN ISO 7027-1; Water Quality. Determination of Turbidity. International Organization for Standardization: Geneva, Switzerland, 2016.
- PN-EN ISO 7887; Water Quality—Examination and Determination of Colour. International Organization for Standardization: Geneva, Switzerland, 2012.
- PN-EN 872; Water Quality. Determination of Suspended Solids. Method by Filtration through Glass Fibre Filters. International Organization for Standardization: Geneva, Switzerland, 2007.
- PN-ISO 9280; Water Quality—Determination of Sulfate—Gravimetric Method Using Barium Chloride. International Organization for Standardization: Geneva, Switzerland, 2002.
- PN-ISO 9297; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method). International Organization for Standardization: Geneva, Switzerland, 1994.
- PN-ISO 8288; Water Quality—Determination of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead—Flame Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 2002.
- EN ISO 18763; Soil Quality Determination of the Toxic Effects of Pollutants on Germination and Early Growth of Higher. International Organization for Standardization: Geneva, Switzerland, 2016.
- PN-C-84042; Sodium Sulfide for Industrial Use. International Organization for Standardization: Geneva, Switzerland, 1997.
Parameter | Unit | Result * |
---|---|---|
pH | - | 13.5 ± 0.1 |
Appearance | - | Clear, dark red |
Density, at 23 °C | g/mL | 1.377 ± 0.017 |
Concentration (Na2CS3) | % | 39.5 ± 0.1 |
Concentration (SO32− + S2O32−) | % | 0.20 ± 0.05 |
Substances insoluble in H2O | mg/L | <0.01 |
Copper (Cu) | mg/L | <5 |
Nickel (Ni) | mg/L | <10 |
Zinc (Zn) | mg/L | <2 |
Cadmium (Cd) | mg/L | <2 |
Lead (Pb) | mg/L | <20 |
Iron (Fe) | mg/L | 38.8 ± 0.2 |
Total carbon ** | % | 6.73 ± 0.24 |
Total hydrogen ** | % | 1.40 ± 0.54 |
Total nitrogen ** | % | <0.01 |
Total sulphur ** | % | 49.01 ± 0.75 |
Parameter | Unit | Result * |
---|---|---|
pH | - | 3.1 ± 0.1 |
Specific electrical conductivity (SEC) | mS/cm | 20.31 ± 2.03 |
Salinity | g NaCl/L | 10.16 ± 1.02 |
Turbidity | FAU | 19 ± 2 |
Color | mg Pt/L | <10 |
Total Suspended Solids (TSS) | mg/L | 12.5 ± 1.2 |
Chemical Oxygen Demand (COD) | mg O2/L | 2900 ± 145 |
Total Organic Carbon (TOC) | mg/L | 985 ± 49 |
Chloride | mg/L | 6300 ± 315 |
Sulphate | mg/L | 65 ± 3 |
Total phosphorus (Total P) | mg/L | <0.3 |
Total nitrogen (Total N) | mg/L | 37 ± 2 |
Complexing compounds (recalculated as EDTA) | mg/L | 70 ± 4 |
Zinc (Zn) | mg/L | 1534 ± 77 |
Copper (Cu) | mg/L | <0.05 |
Nickel (Ni) | mg/L | 0.23 ± 0.01 |
Cadmium (Cd) | mg/L | <0.05 |
Lead (Pb) | mg/L | <0.05 |
Iron (Fe) | mg/L | 1.01 ± 0.05 |
(undiluted) ASAT ** (dehydrogenase activity) | % | Complete inhibition of dehydrogenase activity |
(1:10) ASAT ** (dehydrogenase activity) | % | Complete inhibition of dehydrogenase activity |
Run | Experimental Conditions | Experimental Results * | ||
---|---|---|---|---|
pH | V Na2CS3 (mL/L) | Time (min) | Zn (mg/L) | |
1 | 9.0 | 0.030 | 5.0 | 1.55 ± 0.2 |
2 | 9.0 | 0.030 | 15.0 | 1.49 ± 0.15 |
3 | 9.0 | 0.040 | 5.0 | 0.98 ± 0.10 |
4 | 9.0 | 0.040 | 15.0 | 0.92 ± 0.10 |
5 | 11.0 | 0.030 | 5.0 | 0.50 ± 0.05 |
6 | 11.0 | 0.030 | 15.0 | 0.47 ± 0.05 |
7 | 11.0 | 0.040 | 5.0 | 0.36 ± 0.04 |
8 | 11.0 | 0.040 | 15.0 | 0.30 ± 0.03 |
9 | 8.3 | 0.035 | 10.0 | 1.70 ± 0.17 |
10 | 11.7 | 0.035 | 10.0 | 0.42 ± 0.04 |
11 | 10.0 | 0.027 | 10.0 | 0.45 ± 0.05 |
12 | 10.0 | 0.043 | 10.0 | 0.33 ± 0.03 |
13 | 10.0 | 0.035 | 1.6 | 0.39 ± 0.04 |
14 | 10.0 | 0.035 | 18.4 | 0.37 ± 0.04 |
15 (C) ** | 10.0 | 0.035 | 10.0 | 0.42 ± 0.04 |
16 (C) | 10.0 | 0.035 | 10.0 | 0.41 ± 0.04 |
Parameter | Evaluation of Effects, Zn, mg/L, R2 = 0.9421, R2adj = 0.8552, 3 Parameter, 1 Block, 16 Experiments, MS = 0.0336 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Standard Error | p-Value * | −95% Confidence Interval | +95% Confidence Interval | Factor | Standard Error of Factor | Lower Confidence Interval | Upper Confidence Interval | |
Constant value | 3.396 | 0.129 | 0.0222 | 0.079 | 0.712 | 0.396 | 0.129 | 0.079 | 0.712 |
pH (L) ** | −0.800 | 0.099 | 0.0002 | −1.043 | −0.557 | −0.400 | 0.050 | −0.521 | −0.279 |
pH (Q) *** | 0.549 | 0.121 | 0.0039 | 0.254 | 0.844 | −0.274 | 0.060 | 0.127 | 0.422 |
V Na2CS3 (L) | −0.242 | 0.099 | 0.0507 | −0.485 | 0.001 | −0.121 | 0.050 | −0.242 | 0.001 |
V Na2CS3 (Q) | 0.075 | 0.121 | 0.5555 | −0.220 | 0.370 | 0.038 | 0.060 | −0.110 | 0.185 |
Time (L) | −0.036 | 0.099 | 0.7316 | −0.279 | 0.207 | −0.018 | 0.050 | −0.139 | 0.104 |
Time (Q) | 0.068 | 0.121 | 0.5923 | −0.227 | 0.363 | 0.034 | 0.060 | −0.113 | 0.182 |
**** pH (L) relative to V Na2CS3 (L) | 0.208 | 0.130 | 0.1608 | −0.110 | 0.525 | 0.104 | 0.065 | −0.055 | 0.262 |
**** pH (L) relative to Time (L) | 0.008 | 0.130 | 0.9558 | −0.310 | 0.325 | 0.004 | 0.065 | −0.155 | 0.162 |
**** V Na2CS3 (L) relative to Time (L) | −0.007 | 0.130 | 0.9558 | −0.325 | 0.310 | −0.004 | 0.065 | −0.162 | 0.155 |
Parameter | Evaluation of Effects, Zn, mg/L, R2 = 0.9173, R2adj = 0.8622, 3 Parameter, 1 Block, 16 Experiments, MS = 0.0320 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effect | Standard Error | p-Value * | −95% Confidence Interval | +95% Confidence Interval | Factor | Standard Error of Factor | Lower Confidence Interval | Upper Confidence Interval | ||
Constant value | 0.396 | 0.126 | 0.01199 | 0.110 | 0.681 | 0.396 | 0.126 | 0.110 | 0.681 | |
pH (L) ** | −0.800 | 0.097 | 0.00002 | −1.019 | −0.581 | −0.400 | 0.048 | −0.510 | −0.290 | |
pH (Q) *** | 0.549 | 0.118 | 0.00117 | 0.283 | 0.815 | 0.274 | 0.059 | 0.141 | −0.408 | |
V Na2CS3 (L) | −0.242 | 0.097 | 0.03400 | −0.461 | −0.023 | −0.121 | 0.048 | −0.231 | −0.011 | |
V Na2CS3 (Q) | 0.075 | 0.118 | 0.53829 | −0.191 | 0.341 | 0.038 | 0.059 | −0.095 | 0.171 | |
Time (L) | −0.036 | 0.097 | 0.72111 | −0.255 | 0.183 | −0.018 | 0.048 | −0.127 | 0.092 | |
Time (Q) | 0.068 | 0.118 | 0.57641 | −0.198 | 0.334 | 0.034 | 0.059 | −0.099 | 0.167 |
Parameter | Evaluation of Effects, Zn, mg/L, R2 = 0.9173, R2adj = 0.8622, 3 Parameter, 1 Block, 16 Experiments, MS = 0.0320 | |||
---|---|---|---|---|
SS *** | **** MS | ***** F | p-Value | |
pH (L) * | 2.185 | 2.185 | 68.222 | 0.000017 |
pH (Q) ** | 0.698 | 0.698 | 21.794 | 0.001171 |
V Na2CS3 (L) | 0.200 | 0.200 | 6.238 | 0.033997 |
V Na2CS3 (Q) | 0.013 | 0.013 | 0.409 | 0.538292 |
Time (L) | 0.004 | 0.004 | 0.136 | 0.721105 |
Time (Q) | 0.011 | 0.011 | 0.336 | 0.576406 |
Error | 0.288 | 0.032 | – | – |
Parameter | Regression Coefficients, R2 = 0.9173, R2adj = 0.8622, 3 Parameter, 1 Block, 16 Experiments, MS = 0.0320 | |||||
---|---|---|---|---|---|---|
Regression Coefficient | *** SE | t-Value **** df = 9 | 95% Confidence Interval Lower Limit | 95% Confidence Interval Upper Limit | ***** p-Value | |
Intercept | 34.707 | 7.592 | 4.572 | 17.533 | 51.881 | 0.001344 |
pH (L) * | −5.890 | 1.177 | −5.004 | −8.552 | −3.227 | 0.000735 |
pH (Q) ** | 0.274 | 0.059 | 4.668 | 0.141 | 0.408 | 0.001171 |
V Na2CS3 (L) | −129.512 | 164.921 | −0.785 | −502.589 | 243.564 | 0.452454 |
V Na2CS3 (Q) | 1504.599 | 2351.944 | 0.640 | −3815.868 | 6825.066 | 0.538292 |
Time (L) | −0.031 | 0.048 | −0.642 | −0.139 | 0.078 | 0.536893 |
Time (Q) | 0.001 | 0.002 | 0.580 | −0.004 | 0.007 | 0.576406 |
Parameter | Zn, mg/L after 5 Min | Zn, mg/L after 10 Min | Zn, mg/L after 15 Min | Zn, mg/L after 20 Min |
---|---|---|---|---|
Concentration of Zn, predicted | 0.20 | 0.15 | 0.17 | 0.25 |
Concentration of Zn, experimental | 0.15 ± 0.03 | 0.21 ± 0.03 | 0.20 ± 0.02 | 0.20 ± 0.02 |
Parameter | Unit | Result * | Effect (%) ** |
---|---|---|---|
pH | - | 10.75 ± 0.05 | - |
Specific electrical conductivity (SEC) | mS/cm | 20.61 ± 2.06 | ↑ 1.48 |
Salinity | g NaCl/L | 12.02 ± 1.20 | ↑ 18.31 |
Turbidity | FAU | <10 | - |
Color | mg Pt/L | <10 | - |
Total Suspended Solids (TSS) | mg/L | 4 ± 1 | ↓ 68.00 |
Chemical Oxygen Demand (COD) | mg O2/L | 2860 ± 143 | ↓ 1.38 |
Total Organic Carbon (TOC) | mg/L | 930 ± 47 | ↓ 5.58 |
Chloride | mg/L | 6250 ± 313 | ↓ 0.79 |
Sulphate | mg/L | 62 ± 3 | ↓ 4.62 |
Total phosphorus (Total P) | mg/L | <0.3 | < 0.3 |
Total nitrogen (Total N) | mg/L | 32.0 ± 2 | ↓ 13.51 |
Complexing compounds (calculated as EDTA) | mg/L | 69 ± 4 | ↓ 1.43 |
Zinc (Zn) | mg/L | 0.15 ± 0.03 | ↓ 99.99 |
Copper (Cu) | mg/L | <0.05 | - |
Nickel (Ni) | mg/L | 0.074 ± 0.001 | ↓ 67.83 |
Cadmium (Cd) | mg/L | <0.05 | - |
Lead (Pb) | mg/L | <0.05 | - |
Iron (Fe) | mg/L | 0.115 ± 0.003 | ↓ 88.61 |
(undiluted) ASAT *** (dehydrogenase activity) | % | −70 (±10) | |
(1:10) ASAT *** (dehydrogenase activity) | % | −15 (±10) |
Tasted Plant | Average Length | SS | df | MS | F | p |
---|---|---|---|---|---|---|
Sinapis alba | Root | 3.35 | 27 | 0.12 | 55.41 | <0.001 |
Shoot | 9.04 | 27 | 0.08 | 112.90 | <0.001 | |
Lepidium sativum | Root | 1.39 | 27 | 0.05 | 328.54 | <0.001 |
Shoot | 1.40 | 27 | 0.05 | 261.37 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, M.; Melichová, Z.; Šuránek, M.; Kuc, J.; Więckol-Ryk, A.; Lochyński, P. Removal of Zinc from Concentrated Galvanic Wastewater by Sodium Trithiocarbonate: Process Optimization and Toxicity Assessment. Molecules 2023, 28, 546. https://doi.org/10.3390/molecules28020546
Thomas M, Melichová Z, Šuránek M, Kuc J, Więckol-Ryk A, Lochyński P. Removal of Zinc from Concentrated Galvanic Wastewater by Sodium Trithiocarbonate: Process Optimization and Toxicity Assessment. Molecules. 2023; 28(2):546. https://doi.org/10.3390/molecules28020546
Chicago/Turabian StyleThomas, Maciej, Zuzana Melichová, Matej Šuránek, Joanna Kuc, Angelika Więckol-Ryk, and Paweł Lochyński. 2023. "Removal of Zinc from Concentrated Galvanic Wastewater by Sodium Trithiocarbonate: Process Optimization and Toxicity Assessment" Molecules 28, no. 2: 546. https://doi.org/10.3390/molecules28020546
APA StyleThomas, M., Melichová, Z., Šuránek, M., Kuc, J., Więckol-Ryk, A., & Lochyński, P. (2023). Removal of Zinc from Concentrated Galvanic Wastewater by Sodium Trithiocarbonate: Process Optimization and Toxicity Assessment. Molecules, 28(2), 546. https://doi.org/10.3390/molecules28020546