Curing Regime-Modulating Insulation Performance of Anhydride-Cured Epoxy Resin: A Review
Abstract
:1. Introduction
2. Reaction Mechanism of Anhydride-Cured Epoxy Resin
2.1. Bisphenol-A Epoxy Resin Matrix
2.2. Anhydride Curing Agent
2.3. Accelerator and Matching Technology
3. Curing Kinetics
3.1. Characteristic Temperature
3.2. Non-Model Fitting Curing Kinetics
3.3. Model-Fitting Curing Kinetics
4. Crosslinking Structure Dependent Insulation Performance
5. Curing Regime
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, J.; Wang, Y.; Ran, Z.; Yao, H.; Du, B.; Takada, T. Molecular Structure Modulated Trap Distribution and Carrier Migration in Fluorinated Epoxy Resin. Molecules 2020, 25, 3071. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, Q.; Wang, C.; Bu, Y.; Zhang, J.; Peng, Z. Dielectric Relaxation Characteristics of Epoxy Resin Modified with Hydroxyl-Terminated Nitrile Rubber. Molecules 2020, 25, 4128. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Gao, J.; Sun, W. Ameliorated Mechanical and Dielectric Properties of Heat-Resistant Radome Cyanate Composites. Molecules 2020, 25, 3117. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Chen, J.; Shi, X.; Li, X. Surface Flashover Characteristics of Epoxy Resin Composites in SF6/CF4 Gas Mixture with DC Voltage. Energies 2022, 15, 4675. [Google Scholar] [CrossRef]
- Li, J.; Liang, H.; Chen, Y.; Du, B. Promising Functional Graded Materials for Compact Gaseous Insulated Switchgears/Pipelines. High Volt. 2020, 5, 231–240. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Y.; Zhao, H. The Effect of a Metal Particle on Surface Charge Accumulation Behavior of Epoxy Insulator with Zoning Coating. Energies 2022, 15, 4730. [Google Scholar] [CrossRef]
- Ohki, Y.; Ishii, H.; Hirai, N. Degradation of Soft Epoxy Resin for Cable Penetrations Induced by Simulated Severe Accidents. Energies 2021, 14, 6932. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Jia, W.; Cheng, L.; Guo, F.; Xie, L.; Wu, W.; Chen, W. Flashover Voltage of Epoxy FRP Insulators with Different Surface Roughness and Groove under Nanosecond Pulses in SF6. Energies 2022, 15, 2202. [Google Scholar] [CrossRef]
- Kong, X.X. Electric Field Distribution and Regulation Methods of Valve-Side Bushing Insulation for a Converter Transformer. Ph.D. Thesis, Tianjin University, Tianjin, China, 2020. [Google Scholar]
- Li, J.; Kong, X.; Du, B.; Sato, K.; Konishi, S.; Tanaka, Y.; Miyake, H.; Takada, T. Effects of High Temperature and High Electric Field on the Space Charge Behaviors in Epoxy Resin for Power Module. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 882–890. [Google Scholar] [CrossRef]
- Jyothi, N.S.; Ramu, T.S.; Manoj, M. Temperature Distribution in Resin Impregnated Paper Insulation for Transformer Bushings. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 931–938. [Google Scholar] [CrossRef]
- Teng, C.; Zhou, Y.; Li, S. Regulation of Temperature Resistivity Characteristics of Insulating Epoxy Composite by Incorporating Positive Temperature Coefficient Material. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 512–520. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, P.; Zhu, M.; Li, J.; Li, Y.; Wang, Z.; Huang, L. Temperature Effects on the Dielectric Properties and Breakdown Performance of h-BN/Epoxy Composites. Materials 2019, 12, 4112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, T.; Sawa, F.; Ozaki, T. Influence of Temperature On Mechanical and Insulation Properties of Epoxy-Layered Silicate Nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 445–452. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, S.; Liang, H.; Zhou, F.; Du, B. Thermal-elastic Free Energy Driven Electrical Tree Breakdown Process in Epoxy Resin under Temperature Gradient. Mater. Today Commun. 2022, 33, 104951. [Google Scholar] [CrossRef]
- Bengtsson, T.; Dijkhuizen, F.; Ming, L. Repetitive Fast Voltage Stresses-Causes and Effects. IEEE Electr. Insul. Mag. 2009, 25, 26–39. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Du, B.; Yang, W.; Yin, L.; Tanaka, Y. Space Charge Injection Characteristics of Epoxy/C60 Nanocomposite. Proc. CSEE 2022, 42, 4974–4981. [Google Scholar]
- Kim, H.; Char, K. Dielectric Changes During the Curing of Epoxy Resin-based. Bulle. Korean Chem. Soc. 1999, 20, 1329–1334. [Google Scholar]
- Hassan, M.K.; Tucker, S.J.; Abukmail, A. Polymer Chain Dynamics in Epoxy-based Composites as Investigated by Broadband Dielectric Spectroscopy. Arab. J. Chem. 2016, 9, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Thakur, Y.; Dong, R.; Lin, M. Optimizing Nanostructure to Achieve High Dielectric Response with Low Loss in Strongly Dipolar Polymers. Nano Energy 2015, 16, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhang, F.; Wang, X. Modification of Epoxy Resin with Epoxidized Hydroxyl Terminated Polybutadiene Liquid Rubber. Modern Plast. Process. Appl. 2020, 32, 4–7. [Google Scholar]
- Jang, I.; Shin, K.H.; Yang, I. Enhancement of Thermal Conductivity of BN/Epoxy Composite Through Surface Modification with Silane Coupling Agents. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 64–72. [Google Scholar] [CrossRef]
- Hong, Z.; Dang, Z.; Zha, J. Dielectric Properties of Silica Hollow Spheres/Epoxy Nanocomposites. In Proceedings of the 2012 IEEE 10th International Conference on the Properties and Applications of Dielectric Materials, Bangalore, India, 24–28 July 2012; IEEE: New York, NY, USA, 2012; pp. 24–28. [Google Scholar]
- Li, C.Z. Study on the Effect of Cure Conditions on the Structure and Properties of Modified Epoxy Systems. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2017. [Google Scholar]
- Rothenhäusler, F.; Ruckdaeschel, H. l-Arginine as Bio-Based Curing Agent for Epoxy Resins: Temperature-Dependence of Mechanical Properties. Polymers 2022, 14, 4696. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kang, H.; Lee, J.H.; Kwon, S.H.; Lee, S.G. Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials 2022, 12, 2353. [Google Scholar] [CrossRef] [PubMed]
- May, C. Epoxy Resins: Chemistry and Technology; Routledge: London, UK, 2018. [Google Scholar]
- Ellis, B. Chemistry and Technology of Epoxy Resins; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Li, J.; Wang, Y.; Chen, H.; Liang, H.; Yao, H.; Zhang, C.; Du, B. Polishing Orientation Affecting Surface Charging and Flashover Characteristics of GIL/GIS Epoxy Spacer. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1625–1632. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.H.; Dong, J.N.; Liang, H.C.; Du, B.X.; Xu, Y.S.; Li, X.L. Surface Charging Affecting Metal Particle Lifting Behaviours around Epoxy Spacer of HVDC GIL/GIS. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1546–1552. [Google Scholar] [CrossRef]
- Du, B.X.; Ran, Z.Y.; Li, J.; Liang, H.C.; Yao, H. Fluorinated Epoxy Insulator with Interfacial Conductivity Graded Material for HVDC Gas Insulated Pipeline. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1305–1312. [Google Scholar] [CrossRef]
- Bifulco, A.; Marotta, A.; Passaro, J.; Costantini, A.; Cerruti, P.; Gentile, G.; Ambrogi, V.; Malucelli, G.; Branda, F. Thermal and Fire Behavior of a Bio-Based Epoxy/Silica Hybrid Cured with Methyl Nadic Anhydride. Polymers 2020, 12, 1661. [Google Scholar] [CrossRef]
- He, X.; Xu, X.; Wan, Q.; Bo, G.; Yan, Y. Synthesis and Characterization of Dimmer-Acid-Based Nonisocyanate Polyurethane and Epoxy Resin Composite. Polymers 2017, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Whang, W.T.; Chen, C.H.; Huang, S.C.; Chen, K.C. Novel Siloxane-Modified Epoxy Resins as Promising Encapsulant for LEDs. Polymers 2020, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wu, X.; Guo, Z.; Dong, P.; Ge, Q.; Wei, L.; Sun, Z. Electrical Tree Characteristics of Bisphenol A Epoxy Resin/Maleopimaric Anhydride Curing System. Polymers 2022, 14, 3867. [Google Scholar] [CrossRef]
- Guo, P.X. Study on the Effects of Curing Regime on the Insulation Properties of Epoxy-Anhydride Systems. Master’s Thesis, Tianjin University, Tianjin, China, 2022. [Google Scholar]
- Kumar, V. Role of Accelerator in Curing of Epoxy-Anhydride Pressure Impregnant. IEEE Trans. Dielectr. Electr. Insul. 2012, 19, 968–972. [Google Scholar] [CrossRef]
- Kolar, F.; Svitilova, J. Kinetics and Mechanism of Curing Epoxy/Anhydride Systems. Acta Geodyn. Geomater. 2007, 4, 85–92. [Google Scholar]
- Fischer, R.F. Polyesters from Epoxides and Anhydrides. J. Polym. Sci. 1960, 44, 155–172. [Google Scholar] [CrossRef]
- Zhao, W.; An, L.; Wang, S. Recyclable High-Performance Epoxy-Anhydride Resins with DMP-30 as the Catalyst of Transesterification Reactions. Polymers 2021, 13, 296. [Google Scholar] [CrossRef]
- Li, J.; Guo, P.; Kong, X.; Wang, Y.; Yang, Y.; Liu, F.; Du, B. Curing Kinetics and Dielectric Properties of Anhydride Cured Epoxy Resin with Different Accelerator Contents. IEEE Trans. Dielectr. Electr. Insul. 2022; in press. [Google Scholar] [CrossRef]
- Sun, H. Study on Curing Kinetics and Properties of Shape Memory Epoxy Resin with Two-Stage Curing Characteristic. Ph.D. Thesis, Harbin Institute of Technology, Harbin, China, 2014. [Google Scholar]
- Zhu, L.; Wang, Z.; Rahman, M.B.; Shen, W.; Zhu, C. The Curing Kinetics of E-Glass Fiber/Epoxy Resin Prepreg and the Bending Properties of Its Products. Materials 2021, 14, 4673. [Google Scholar] [CrossRef]
- Bernath, A.; Kärger, L.; Henning, F. Accurate Cure Modeling for Isothermal Processing of Fast Curing Epoxy Resins. Polymers 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Vyazovkin, S. Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules 2020, 25, 2813. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromol. Rapid Commun. 2006, 27, 1515–1532. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Z.; Yan, B. Kinetics of Epoxy Resin Curing and The Effects of Varying the Amount of Accelerator. J. Beijing Univ. Chem. Technol. (Natur. Sci.) 2020, 47, 75–80. [Google Scholar]
- Málek, J. The Kinetic Analysis of Non-Isothermal Data. Thermochim. Acta 1992, 200, 257–269. [Google Scholar] [CrossRef]
- Bi, Q.; Hao, L.; Yuan, D.; Zhang, Q.; Xu, P. Curing Kinetics of Epoxy/Alumina Composite System for Basin Insulator. High Volt. Eng. 2019, 45, 2758–2765. [Google Scholar]
- Ma, Z.; Gao, J. Curing Kinetics of o-Cresol Formaldehyde Epoxy Resin and Succinic Anhydride System Catalyzed by Tertiary Amine. J. Phys. Chem. B 2006, 110, 12380–12383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, X.; Cheng, J. Study on Curing Kinetics of Diglycidyl 1,2-Cyclohexane Dicarboxylate Epoxy/Episulfide Resin System with Hexahydro-4-Methylphthalic Anhydride as A Curing Agent. J. Thermal Analy. Calor. 2015, 120, 1893–1903. [Google Scholar] [CrossRef]
- Xu, H.; Tian, G.; Meng, Y. Cure Kinetics of a Nadic Methyl Anhydride Cured Tertiary Epoxy Mixture. Thermochim. Acta 2021, 701, 178942. [Google Scholar] [CrossRef]
- Hardis, R.; Jessop, J.; Peters, F.E. Cure Kinetics Characterization and Monitoring of an Epoxy Resin Using DSC, Raman Spectroscopy, and DEA. Comp. Part A Appl. Sci. Manuf. 2013, 49, 100–108. [Google Scholar] [CrossRef]
- Jordan, C.; Galy, J.; Pascault, J. Measurement of the Extent of Reaction of an Epoxy-Cycloaliphatic Amine System and Influence of the Extent of Reactionon Its Dynamic and Static Mechanical Properties. J. Appl. Polym. Sci. 1992, 46, 859–871. [Google Scholar] [CrossRef]
- Yang, Y.; Plovie, B.; Chiesura, G. Fully Integrated Flexible Dielectric Monitoring Sensor System for Real-Time In Situ Prediction of the Degree of Cure and Glass Transition Temperature of an Epoxy Resin. IEEE Trans. Instru. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Artbauer, J. Electric Strength of Polymers. J. Phys. D Appl. Phys. 1999, 29, 446. [Google Scholar] [CrossRef]
- Alhabill, F.N.; Vaughan, A.S.; Andritsch, T. Effect of Stoichiometry on AC and DC Breakdown of Silicon Nitride/Epoxy Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 1231–1237. [Google Scholar] [CrossRef]
- Do Nascimento, E.; Ramos, A.; Windmoller, D. Breakdown, Free-volume and Dielectric Behavior of the Nanodielectric Coatings Based on Epoxy/Metal Oxides. J. Mater. Sci. Mater. Electro. 2016, 27, 9240–9254. [Google Scholar] [CrossRef]
- Guo, H.L.; Zheng, J.; Gan, J.Q. Relationship Between Crosslinking Structure and Low Dielectric Constant of Hydrophobic Epoxies Based on Substituted Biphenyl Mesogenic Units. RSC Adv. 2015, 5, 88014–88020. [Google Scholar] [CrossRef]
- Yu, H.; Tong, Z.; Chen, P. Effects of Different Parameters On Thermal and Mechanical Properties of Aminated Graphene/Epoxy Nanocomposites Connected by Covalent: A Molecular Dynamics Study. Curr. Appl. Phys. 2020, 20, 510–518. [Google Scholar] [CrossRef]
- Fu, K.X. Structure Design and Selection of Epoxy Resin Crosslinked Network for High Voltage Insulation. Ph.D. Thesis, North China Electric Power University, Beijing, China, 2020. [Google Scholar]
- Fu, K.X.; Xie, Q.; Lv, F.C. Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Polymers 2019, 11, 975. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; He, J.; Yu, Y. Molecular Dynamics Simulation on Thermomechanical Properties of Epoxy Resin/Anhydride System. Insul. Mater. 2020, 53, 38–43. [Google Scholar]
- Xie, Q.; Liang, S.; Liu, B. Structure, Microparameters and Properties of Crosslinked DGEBA/MTHPA: A Molecular Dynamics Simulation. AIP Adv. 2018, 8, 075332. [Google Scholar] [CrossRef] [Green Version]
- Saeedi, I.A.; Andritsch, T.; Vaughan, A.S. The Influence of the Molecular Architecture on the Thermal and the Dielectric Properties of Epoxy Resin Networks. In Proceedings of the 2018 12th International Conference on the Properties and Applications of Dielectric Materials, Xi’an, China, 20–24 May 2018; IEEE: New York, NY, USA, 2018; pp. 328–331. [Google Scholar]
- Li, J.; Guo, P.; Kong, X.; Wang, Y.; Li, F.; Du, B. Curing Curing Degree Dependence of Dielectric Properties of Bisphenol-A Based Epoxy Resin Cured with Methyl Hexahydrophthalic Anhydride. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 2702–2709. [Google Scholar] [CrossRef]
- Alhabill, F.N.; Ayoob, R.; Andritsch, T. Effect of Resin/Hardener Stoichiometry on Electrical Behavior of Epoxy Networks. IEEE Trans. Dielectr. Electr. Insul. 2018, 24, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Vaughan, A.S.; Lewin, P.L. The Effect of Resin Stoichiometry and Nanoparticle Addition on Epoxy/Silica Nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 895–905. [Google Scholar] [CrossRef]
- Vryonis, O.; Riarh, S.; Andritsch, T. Stoichiometry and Molecular Dynamics of Anhydride-Cured Epoxy Resin Incorporating Octa-glycidyl POSS Co-Monomer. Polymer 2020, 213, 123312. [Google Scholar] [CrossRef]
- Amirova, L.R.; Khamidullin, O.L.; Andrianova, K.A. Thermal Properties of Epoxy-Anhydride Formulations Cured Using Phosphonium Accelerators. Polym. Bull. 2018, 75, 5253–5267. [Google Scholar] [CrossRef]
- Gou, H.L.; Zhang, B.W.; Wei, W. Triphenylphosphine-Containing Microcapsules Fabricated from Pickering Emulsions as a Thermal Latent Curing Accelerator for an Epoxy/Anhydride System. Polym. Inter. 2021, 70, 1680–1691. [Google Scholar] [CrossRef]
- Saeedi, I.A.; Vaughan, A.S.; Andritsch, T. The Effect of Curing Conditions on the Electrical Properties of an Epoxy Resin. In Proceedings of the 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Toronto, ON, Canada, 16–19 October 2016; IEEE: New York, NY, USA, 2016; pp. 461–464. [Google Scholar]
- Uzay; Cagri; Boztepe. Effect of Post-Curing Heat Treatment on Mechanical Properties of Fiber Reinforced Polymer (FRP) Composites. Mater. Test. 2017, 59, 366–372. [Google Scholar] [CrossRef]
- Guerrero, P.; Caba, K.; Valea, A. Influence of Cure Schedule and Stoichiometry on the Dynamic Mechanical Behaviour of Tetrafunctional Epoxy Resins Cured with Anhydrides. Polymer 1996, 37, 2195–2200. [Google Scholar] [CrossRef]
DMP-30 (wt%) | Ti/(°C) | Tp/(°C) | Tt/(°C) |
---|---|---|---|
0.1 | 102.3 | 144.2 | 167.7 |
0.2 | 96.5 | 139.85 | 164.1 |
0.5 | 95.8 | 138.1 | 159.8 |
1 | 92.1 | 134.6 | 156.55 |
DMP-30 (wt%) | Kissinger Method | Friedman Method | F-W-O Method |
---|---|---|---|
0.1 | 93.67 | 85.403 | 95.894 |
0.2 | 75.947 | 77.392 | 79.032 |
0.5 | 73.781 | 75.412 | 76.921 |
1 | 70.99 | 65.861 | 74.102 |
Parameter | Kamal Model | n-Level Reaction Model |
---|---|---|
k1 | 0.0275 | / |
k1 | 0.3008 | / |
m | 0.4912 | / |
n | 1.5060 | / |
Ea | / | 75.9469 |
n | / | 0.9135 |
A | / | 7.2839 × 108 |
Post-Curing Process | Parameter α (kV/mm) | Parameter β |
---|---|---|
80% + 1 h | 50.72 | 13.55 |
80% + 2 h | 51.83 | 16.83 |
80% + 4 h | 54.92 | 10.22 |
80% + 8 h | 53.11 | 8.956 |
90% + 1 h | 52.30 | 10.84 |
90% + 2 h | 54.07 | 14.66 |
90% + 4 h | 56.85 | 11.18 |
90% + 8 h | 55.48 | 15.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Aung, H.H.; Du, B. Curing Regime-Modulating Insulation Performance of Anhydride-Cured Epoxy Resin: A Review. Molecules 2023, 28, 547. https://doi.org/10.3390/molecules28020547
Li J, Aung HH, Du B. Curing Regime-Modulating Insulation Performance of Anhydride-Cured Epoxy Resin: A Review. Molecules. 2023; 28(2):547. https://doi.org/10.3390/molecules28020547
Chicago/Turabian StyleLi, Jin, Hein Htet Aung, and Boxue Du. 2023. "Curing Regime-Modulating Insulation Performance of Anhydride-Cured Epoxy Resin: A Review" Molecules 28, no. 2: 547. https://doi.org/10.3390/molecules28020547
APA StyleLi, J., Aung, H. H., & Du, B. (2023). Curing Regime-Modulating Insulation Performance of Anhydride-Cured Epoxy Resin: A Review. Molecules, 28(2), 547. https://doi.org/10.3390/molecules28020547