Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause
Abstract
:1. Introduction
2. Results
2.1. Locomotor Activity Test
2.2. Forced Swim Test
2.2.1. Latency to the First Immobility (s)
2.2.2. Total Time of Immobility (s)
3. Discussion
4. Material and Methods
4.1. Ethics
4.2. Animals
4.3. Drugs
4.4. Ovarectomy
4.5. Experimental Groups
4.6. Behavioral Tests
4.6.1. Locomotor Activity Test (LAT)
4.6.2. Forced Swim Test (FST)
Forced Swim Pre-Test (Acute Stressor)
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- McEwen, B.S.; Akil, H. Revisiting the stress concept: Implications for affective disorders. J. Neurosci. 2020, 40, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. In Anxiety Disorders: Rethinking and Understanding Recent Discoveries (Advances in Experimental Medicine and Biology, 1191); Kim, Y.K., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 1191, pp. 141–153. [Google Scholar]
- Ben-Azu, B.; Emokpae, O.; Ajayi, A.M.; Jarikre, T.A.; Orhode, V.; Aderibigbe, A.O.; Umukoro, S.; Iwalewa, E.O. Repeated psychosocial stress causes glutamic acid decarboxylase isoform-67, oxidative-Nox-2 changes and neuroinflammation in mice: Prevention by treatment with a neuroactive flavonoid, morin. Brain Res. 2020, 1744, 146917. [Google Scholar] [CrossRef] [PubMed]
- Oladapo, O.M.; Ben-Azu, B.; Ajayi, A.M.; Emokpae, O.; Eneni, A.O.; Omogbiya, I.A.; Iwalewa, E.O. Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: Involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J. Mol. Neurosci. 2021, 71, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Valentino, R.J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Front. Neuroendocrinol. 2014, 35, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Bangasser, D.A.; Eck, S.R.; Ordoñes Sanchez, E. Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019, 44, 129–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.L.; Girdler, S.S.; Meltzer-Brody, S.E.; Stika, C.S.; Thurston, R.C.; Clark, C.T.; Prairie, B.A.; Moses-Kolko, E.; Joffe, H.; Wisner, K.L. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: A novel heuristic model. Am. J. Psychiatry 2015, 172, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Slavich, G.M.; Sacher, J. Stress, sex hormones, inflammation, and major depressive disorder: Extending social signal transduction theory of depression to account for sex differences in mood disorders. Psychopharmacology 2019, 236, 3063–3079. [Google Scholar] [CrossRef]
- Albert, K.; Pruessner, J.; Newhouse, P. Estradiol levels modulate brain activity and negative responses to psychosocial stress across the menstrual cycle. Psychoneuroendocrinology 2015, 59, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Giannini, A.; Caretto, M.; Genazzani, A.R.; Simoncini, T. Neuroendocrine changes during menopausal transition. Endocrines 2021, 2, 405–416. [Google Scholar] [CrossRef]
- Rocca, W.A.; Grossardt, B.R.; Geda, Y.E.; Gostout, B.S.; Bower, J.H.; Maraganore, D.M.; de Andrade, M.; Melton, L.J. Long-term risk of depressive and anxiety symptoms after early bilateral oophorectomy. Menopause 2018, 25, 1275–1285. [Google Scholar] [CrossRef]
- Soares, C.N. Depression in peri- and postmenopausal women: Prevalence, pathophysiology and pharmacological management. Drugs Aging 2013, 30, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Mulhall, S.; Andel, R.; Anstey, K.J. Variation in symptoms of depression and anxiety in midlife women by menopausal status. Maturitas 2018, 108, 7–12. [Google Scholar] [CrossRef]
- Talaulikar, V. Menopause transition: Physiology and symptoms. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 81, 3–7. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization and Columbia University. Group Interpersonal Therapy (IPT) for Depression (WHO generic field-trial version 1.0); WHO: Geneva, Switzerland, 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/250219/WHO-MSD-MER-16.4-eng.pdf (accessed on 7 September 2022).
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; WHO: Geneva, Switzerland, 2017. Available online: https://apps.who.int/iris/handle/10665/254610 (accessed on 7 September 2022).
- Taylor, M. Psychological consequences of surgical menopause. J. Reprod. Med. 2001, 46, 317–324. [Google Scholar] [PubMed]
- Henderson, V.W.; Sherwin, B.B. Surgical versus natural menopause: Cognitive issues. Menopause 2007, 14, 572–579. [Google Scholar] [CrossRef]
- Estrada-Camarena, E.; López-Rubalcava, C.; Hernández-Aragón, A.; Mejía-Mauries, S.; Picazo, O. Long-term ovariectomy modulates the antidepressant-like action of estrogens, but not of antidepressants. J. Psychopharmacol. 2011, 25, 1365–1377. [Google Scholar] [CrossRef]
- Puga-Olguín, A.; Rodríguez-Landa, J.F.; Rovirosa-Hernández, M.J.; Germán-Ponciano, L.J.; Caba, M.; Meza, E.; Guillén-Ruiz, G.; Olmos-Vázquez, O.J. Long-term ovariectomy increases anxiety- and despair-like behaviors associated with lower Fos immunoreactivity in the lateral septal nucleus in rats. Behav. Brain Res. 2019, 360, 185–195. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F. Considerations of timing post-ovariectomy in mice and rats in studying anxiety- and depression-like behaviors associated with surgical menopause in women. Front. Behav. Neurosci. 2022, 16, 829274. [Google Scholar] [CrossRef]
- Kou, S.-T. Efficacy comparison of menopausal irritability between acupuncture and medication: A randomized controlled trial. Zhongguo Zhen Jiu Chin. Acupunct. Moxibustion 2014, 34, 455–458. [Google Scholar]
- Zhou, J.; Wang, X.; Feng, L.; Xiao, L.; Yang, R.; Zhu, X.; Shi, H.; Hu, Y.; Chen, R.; Boyce, P.; et al. Venlafaxine vs. fluoxetine in postmenopausal women with major depressive disorder: An 8-week, randomized, single-blind, active-controlled study. BMC Psychiatry 2021, 21, 260. [Google Scholar] [CrossRef]
- Kargozar, R.; Azizi, H.; Salari, R. A review of effective herbal medicines in controlling menopausal symptoms. Electron Physician 2017, 9, 5826–5833. [Google Scholar] [CrossRef]
- Kenda, M.; Glavač, N.K.; Nagy, M.; Sollner Dolenc, M. Herbal products used in menopause and for gynecological disorders. Molecules 2021, 26, 7421. [Google Scholar] [CrossRef] [PubMed]
- López-Rubalcava, C.; Estrada-Camarena, E. Mexican medicinal plants with anxiolytic or antidepressant activity: Focus on preclinical research. J. Ethnopharmacol. 2016, 186, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Cases, J.; Ibarra, A.; Feuillère, N.; Roller, M.; Sukkar, S.G. Pilot trial of Melissa officinalis L. leaf extract in the treatment of volunteers suffering from mild-to-moderate anxiety disorders and sleep disturbances. Med. J. Nutrition Metab. 2011, 4, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, D.; Bhat, Z.A. Apigenin 7-glucoside from Stachys tibetica Vatke and its anxiolytic effect in rats. Phytomedicine 2014, 21, 1010–1014. [Google Scholar] [CrossRef]
- Medina, J.H.; Paladini, A.C.; Wolfman, C.; de Stein, M.L.; Calvo, D.; Diaz, L.E.; Peña, C. Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol. 1990, 40, 2227–2231. [Google Scholar] [CrossRef]
- Zanoli, P.; Avallone, R.; Baraldi, M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000, 71, S117–S123. [Google Scholar] [CrossRef]
- Salgueiro, J.B.; Ardenghi, P.; Dias, M.; Ferreira, M.B.C.; Izquierdo, I.; Medina, J.H. Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol. Biochem. Behav. 1997, 58, 887–891. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F.; Hernández-López, F.; Cueto-Escobedo, J.; Herrera-Huerta, E.V.; Rivadeneyra-Domínguez, E.; Bernal-Morales, B.; Romero-Avendaño, E. Chrysin (5,7-dihydroxyflavone) exerts anxiolytic-like effects through GABAA receptors in a surgical menopause model in rats. Biomed. Pharmacother. 2019, 109, 2387–2395. [Google Scholar] [CrossRef]
- Germán-Ponciano, L.J.; Puga-Olguín, A.; Rovirosa-Hernández, M.J.; Caba, M.; Meza, E.; Rodríguez-Landa, J.F. Differential effects of acute and chronic treatment with the flavonoid chrysin on anxiety-like behavior and Fos immunoreactivity in the lateral septal nucleus in rats. Acta Pharm. 2020, 70, 387–397. [Google Scholar] [CrossRef] [Green Version]
- German-Ponciano, L.J.; Rosas-Sánchez, G.U.; Ortiz-Guerra, S.I.; Soria-Fregozo, C.; Rodríguez-Landa, J.F. Effects of chrysin on mRNA expression of 5-HT1A and 5-HT2A receptors in the raphe nuclei and hippocampus. Rev. Bras. Farmacogn. 2021, 31, 353–360. [Google Scholar] [CrossRef]
- Cueto-Escobedo, J.; Andrade-Soto, J.; Lima-Maximino, M.; Maximino, C.; Hernández-López, F.; Rodríguez-Landa, J.F. Involvement of GABAergic system in the antidepressant-like effects of chrysin (5,7-dihydroxyflavone) in ovariectomized rats in the forced swim test: Comparison with neurosteroids. Behav. Brain Res. 2020, 386, 112590. [Google Scholar] [CrossRef] [PubMed]
- Frye, C.A. Progesterone reduces depressive behavior of young ovariectomized, aged progestin receptor knockout, and aged wild type mice in the tail suspension test. J. Psychopharmacol. 2011, 25, 421–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Landa, J.F.; Contreras, C.M.; Bernal-Morales, B.; Gutiérrez-García, A.G.; Saavedra, M. Allopregnanolone reduces immobility in the forced swimming test and increases the firing rate of lateral septal neurons through actions on the GABAA receptor in the rat. J. Psychopharmacol. 2007, 21, 76–84. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F.; Olmos-Vázquez, O.J.; Dutra da Costa, B.P.; Lima-Maximino, M.; Maximino, C.; Guillén-Ruiz, G. Actions of progesterone on depression-like behavior in a model of surgical menopause are mediated by GABAA receptors. Sal. Ment. 2020, 43, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Picazo, O.; Estrada-Camarena, E.; Hernández-Aragon, A. Influence of the post-ovariectomy time frame on the experimental anxiety and the behavioural actions of some anxiolytic agents. Eur. J. Pharmacol. 2006, 530, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Moiety, F.M.; Salem, H.A.; Mehanna, R.A.; Abdel-Ghany, B.S. Comparative study on induction and effects of surgical menopause in a female rat model: A prospective case control study. Int. J. Clin. Exp. Med. 2015, 8, 9403–9411. [Google Scholar]
- Chung-Park, M. Anxiety attacks following surgical menopause. Nurse Pract. 2006, 31, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Kingsberg, S.A.; Larkin, L.C.; Liu, J.H. Clinical effects of early or surgical menopause. Obstet. Gynecol. 2020, 135, 853–868. [Google Scholar] [CrossRef]
- Monteleone, P.; Mascagni, G.; Giannini, A.; Genazzani, A.R.; Simoncini, T. Symptoms of menopause—Global prevalence, physiology and implications. Nat. Rev. Endocrinol. 2018, 14, 199–215. [Google Scholar] [CrossRef]
- During, A.; Coutel, X.; Bertheaume, N.; Penel, G.; Olejnik, C. Long term ovariectomy-induced osteoporosis is associated with high stearoyl-CoA desaturase indexes in rat femur. Calcif. Tissue Int. 2020, 106, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Bossé, R.; Di Paolo, T. The modulation of brain dopamine and GABAA receptors by estradiol: A clue for CNS changes occurring at menopause. Cell. Mol. Neurobiol. 1996, 16, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Landa, J.F.; Cueto-Escobedo, J.; Puga-Olguín, A.; Rivadeneyra-Domínguez, E.; Bernal-Morales, B.; Herrera-Huerta, E.V.; Santos-Torres, A. The phytoestrogen genistein produces similar effects as 17β-estradiol on anxiety-like behavior in rats at 12 weeks after ovariectomy. Biomed. Res. Int. 2017, 2017, 9073816. [Google Scholar] [CrossRef] [Green Version]
- Ryu, A.; Kim, T.H. Premenstrual syndrome: A mini review. Maturitas 2015, 82, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Billioti de Gage, S.; Begaud, B.; Bazin, F.; Verdoux, H.; Dartigues, J.F.; Peres, K.; Kurth, T.; Pariente, A. Benzodiazepine use and risk of dementia: Prospective population based study. BMJ 2012, 345, e6231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, S.L.; Dublin, S.; Yu, O.; Walker, R.; Anderson, M.; Hubbard, R.A.; Crane, P.K.; Larson, E.B. Benzodiazepine use and risk of incident dementia or cognitive decline: Prospective population based study. BMJ 2016, 352, i90. [Google Scholar] [CrossRef] [Green Version]
- Dassanayake, T.; Michie, P.; Carter, G.; Jones, A. Effects of benzodiazepines, antidepressants and opioids on driving: A systematic review and meta-analysis of epidemiological and experimental evidence. Drug Saf. 2011, 34, 125–156. [Google Scholar] [CrossRef]
- Orriols, L.; Philip, P.; Moore, N.; Castot, A.; Gadegbeku, B.; Delorme, B.; Mallaret, M.; Lagarde, E. Benzodiazepine-like hypnotics and the associated risk of road traffic accidents. Clin. Pharmacol. Ther. 2011, 89, 595–601. [Google Scholar] [CrossRef]
- Fujita, M.; Woods, S.W.; Verhoeff, N.P.L.G.; Abi-Dargham, A.; Baldwin, R.M.; Zoghbi, S.S.; Soares, J.C.; Jatlow, P.A.; Krystal, J.H.; Rajeevan, N.; et al. Changes of benzodiazepine receptors during chronic benzodiazepine administration in humans. Eur. J. Pharmacol. 1999, 368, 161–172. [Google Scholar] [CrossRef]
- Uzun, S.; Kozumplik, O.; Jakovljević, M.; Sedić, B. Side effects of treatment with benzodiazepines. Psychiatr. Danub. 2010, 22, 90–93. [Google Scholar]
- Rodríguez-Landa, J.F.; Cueto-Escobedo, J.; Flores-Aguilar, L.A.; Rosas-Sánchez, G.U.; Rovirosa-Hernández, M.J.; García-Orduña, F.; Carro-Juárez, M. The aqueous crude extracts of Montanoa frutescens and Montanoa grandiflora reduce immobility faster than fluoxetine through GABAA receptors in rats forced to swim. J. Evid. Based Integr. Med. 2018, 23, 2515690X18762953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Demeneghi, R.; Rodríguez-Landa, J.F.; Guzmán-Gerónimo, R.I.; Acosta-Mesa, H.G.; Meza-Alvarado, E.; Vargas-Moreno, I.; Herrera-Meza, S. Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. Int. J. Food Sci. Nutr. 2019, 70, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Lagunes-Merino, O.; Rodríguez-Landa, J.F.; Caba, M.; Carro-Juárez, M.; García-Orduña, F.; Saavedra-Vélez, M.; Puga-Olguín, A.; de Jesús Rovirosa-Hernández, M. Acute effect of an infusion of Montanoa tomentosa on despair-like behavior and activation of oxytocin hypothalamic cells in Wistar rats. J. Tradit. Complement. Med. 2020, 10, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Guasti, A.; Picazo, O. The actions of diazepam and serotonergic anxiolytics vary according to the gender and the estrous cycle phase. Pharmacol. Biochem. Behav. 1990, 37, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.M.; Molina, M.; Saavedra, M.; Martínez-Mota, L. Lateral septal neuronal firing rate increases during proestrus-estrus in the rat. Physiol. Behav. 2000, 68, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, M.J.; Agrati, D.; Pereira, M.; Uriarte, N.; Fernández-Guasti, A.; Ferreira, A. Experimental anxiety in the black and white model in cycling, pregnant and lactating rats. Physiol. Behav. 2005, 84, 279–286. [Google Scholar] [CrossRef]
- Araujo, A.P.N.; DeLucia, R.; Scavone, C.; Planeta, C.S. Repeated predictable or unpredictable stress: Effects on cocaine-induced locomotion and cyclic AMP-dependent protein kinase activity. Behav. Brain Res. 2003, 139, 75–81. [Google Scholar] [CrossRef]
- Pechlivanova, D.M.; Stoynev, A.G.; Tchekalarova, J.D. The effects of chronic losartan pretreatment on restraint stress-induced changes in motor activity, nociception and pentylenetetrazol generalized seizures in rats. Folia Med. 2011, 53, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filho, C.B.; Jesse, C.R.; Donato, F.; Giacomeli, R.; del Fabbro, L.; da Silva Antunes, M.; de Gomes, M.G.; Goes, A.T.R.; Boeira, S.P.; Prigol, M.; et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+, K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysin. Neuroscience 2015, 289, 367–380. [Google Scholar] [CrossRef]
- Kalueff, A.V.; Tuohimaa, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res. Protoc. 2004, 13, 151–158. [Google Scholar] [CrossRef]
- Fentress, J.C. Interrupted ongoing behaviour in two species of vole (Microtus agrestis and Clethrionomys britannicus). I. Response as a function of preceding activity and the context of an apparently ‘Irrelevant’ motor pattern. Anim. Behav. 1968, 16, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Enginar, N.; Hatipoğlu, I.; Firtina, M. Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats. Pharmacol. Biochem. Behav. 2008, 89, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Moyaho, A.; Valencia, J. Grooming and yawning trace adjustment to unfamiliar environments in laboratory Sprague-Dawley rats (Rattus norvegicus). J. Comp. Psychol. 2002, 116, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Perrot-Sinal, T.S.; Gregus, A.; Boudreau, D.; Kalynchuk, L.E. Sex and repeated restraint stress interact to affect cat odor-induced defensive behavior in adult rats. Brain Res. 2004, 1027, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Landa, J.F.; Hernández-Figueroa, J.D.; Hernández-Calderón, B.C.; Saavedra, M. Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Sturman, O.; Germain, P.-L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Wexler, Y.; Benjamini, Y.; Golani, I. Vertical exploration and dimensional modularity in mice. R. Soc. Open Sci. 2018, 5, 180069. [Google Scholar] [CrossRef] [Green Version]
- Renner, M.J. Experience-dependent changes in exploratory behavior in the adult rat (Rattus norvegicus): Overall activity level and interactions with objects. J. Comp. Psychol. 1987, 101, 94–100. [Google Scholar] [CrossRef]
- Klenerová, V.; Sída, P.; Krejcí, I.; Hlinák, Z.; Hynie, S. Effects of two types of restraint stress on spontaneous behavior of Sprague-Dawley and Lewis rats. J. Physiol. Pharmacol. 2007, 58, 83–94. [Google Scholar]
- Porsolt, R.D.; le Pichon, M.; Jalfre, M. Depression: A new animal model sensitive to antidepressant treatments. Nature 1977, 266, 730–732. [Google Scholar] [CrossRef]
- Campus, P.; Maiolati, M.; Orsini, C.; Cabib, S. Altered consolidation of extinction-like inhibitory learning in genotype-specific dysfunctional coping fostered by chronic stress in mice. Behav. Brain Res. 2016, 315, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Espejo, E.F.; Miñano, F.J. Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt’s test. Neuroscience 1999, 88, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Inglis, F.M.; Moghaddam, B. Dopaminergic innervation of the amygdala is highly responsive to stress. J. Neurochem. 1999, 72, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Contreras, C.M.; Chacón, L.; Rodríguez-Landa, J.F.; Bernal-Morales, B.; Gutiérrez-García, A.G.; Saavedra, M. Spontaneous firing rate of lateral septal neurons decreases after forced swimming test in Wistar rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 343–348. [Google Scholar] [CrossRef]
- Bouchez, G.; Millan, M.J.; Rivet, J.M.; Billiras, R.; Boulanger, R.; Gobert, A. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: A dialysis study of circadian variation and stress-induced modulation. Brain Res. 2012, 1452, 47–60. [Google Scholar] [CrossRef]
- Duncan, G.; Johnson, K.; Breese, G. Topographic patterns of brain activity in response to swim stress: Assessment by 2-deoxyglucose uptake and expression of Fos-like immunoreactivity. J. Neurosci. 1993, 13, 3932–3943. [Google Scholar] [CrossRef]
- Sherwin, E.; Gigliucci, V.; Harkin, A. Regional specific modulation of neuronal activation associated with nitric oxide synthase inhibitors in an animal model of antidepressant activity. Behav. Brain Res. 2017, 316, 18–28. [Google Scholar] [CrossRef]
- Contreras, C.M.; Rodríguez-Landa, J.F.; Gutiérrez-García, A.G.; Bernal-Morales, B. The lowest effective dose of fluoxetine in the forced swim test significantly affects the firing rate of lateral septal nucleus neurones in the rat. J. Psychopharmacol. 2001, 15, 231–236. [Google Scholar] [CrossRef]
- Borsini, F.; Lecci, A.; Sessarego, A.; Frassine, R.; Meli, A. Discovery of antidepressant activity by forced swimming test may depend on pre-exposure of rats to a stressful situation. Psychopharmacology 1989, 97, 183–188. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F.; Contreras, C.M.; García-Ríos, R.I. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: Participation of the GABAA receptor. Behav. Pharmacol. 2009, 20, 614–622. [Google Scholar] [CrossRef]
- Goutman, J.D.; Waxemberg, M.D.; Doñate-Oliver, F.; Pomata, P.E.; Calvo, D.J. Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. Eur. J. Pharmacol. 2003, 461, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Zorumski, C.F.; Paul, S.M.; Covey, D.F.; Mennerick, S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol. Stress 2019, 11, 100196. [Google Scholar] [CrossRef] [PubMed]
- Saeedi Saravi, S.S.; Arefidoust, A.; Yaftian, R.; Saeedi Saravi, S.S.; Dehpour, A.R. 17α-ethinyl estradiol attenuates depressive-like behavior through GABAA receptor activation/nitrergic pathway blockade in ovariectomized mice. Psychopharmacology 2016, 233, 1467–1485. [Google Scholar] [CrossRef] [PubMed]
- Edinoff, A.N.; Odisho, A.S.; Lewis, K.; Kaskas, A.; Hunt, G.; Cornett, E.M.; Kaye, A.D.; Kaye, A.; Morgan, J.; Barrilleaux, P.S.; et al. Brexanolone, a GABAA modulator, in the treatment of postpartum depression in adults: A comprehensive review. Front. Psychiatry 2021, 12, 699740. [Google Scholar] [CrossRef]
- Wongsamitkul, N.; Maldifassi, M.C.; Simeone, X.; Baur, R.; Ernst, M.; Sigel, E. α subunits in GABAA receptors are dispensable for GABA and diazepam action. Sci. Rep. 2017, 7, 15498. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-15400-0. [Google Scholar]
- NOM-062-ZOO-1999; Especificaciones Técnicas para la Producción, Cuidado y Uso de los Animales de Laboratorio, Secretaría de Agricultura, Ganadería, Desarrollo Rural. Pesca y Alimentación: México City, Mexico, 1999.
- Russell, W.M.S.; Burch, R.L.; Hume, C.W. The Principles of Humane Experimental Technique; Johns Hopkins Bloomberg School of Public Health: Baltimore, MD, USA, 2005; Available online: http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc (accessed on 1 September 2022).
- Rodríguez-Landa, J.F.; Vicente-Serna, J.; Rodríguez-Blanco, L.A.; Rovirosa-Hernández, M.J.; García-Orduña, F.; Carro-Juárez, M. Montanoa frutescens and Montanoa grandiflora extracts reduce anxiety-like behavior during the metestrus-diestrus phase of the ovarian cycle in Wistar rats. Biomed. Res. Int. 2014, 2014, 938060. [Google Scholar] [CrossRef] [Green Version]
- Sotocinal, S.G.; Sorge, R.E.; Zaloum, A.; Tuttle, A.H.; Martin, L.J.; Wieskopf, J.S.; Mapplebeck, J.C.S.; Wei, P.; Zhan, S.; Zhang, S.; et al. The rat grimace scale: A partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 2011, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Contreras, C.M.; Rodríguez-Landa, J.F.; Gutiérrez-García, A.G.; Mendoza-López, M.R.; García-Ríos, R.I.; Cueto-Escobedo, J. Anxiolytic-like effects of human amniotic fluid and its fatty acids in Wistar rats. Behav. Pharmacol. 2011, 22, 655–662. [Google Scholar] [CrossRef]
- Armario, A.; Gavaldà, A.; Martí, O. Forced swimming test in rats: Effect of desipramine administration and the period of exposure to the test on struggling behavior, swimming, immobility and defecation rate. Eur. J. Pharmacol. 1988, 158, 207–212. [Google Scholar] [CrossRef]
- Suvrathan, A.; Tomar, A.; Chattarji, S. Effects of chronic and acute stress on rat behaviour in the forced-swim test. Stress 2010, 13, 533–540. [Google Scholar] [CrossRef]
- Jameel, M.K. Effect of various physical stress models on serum cortisol level in Wistar rats. J. Clin. Diagn. Res. 2014, 8, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Contarteze, R.V.L.; Manchado, F.D.B.; Gobatto, C.A.; de Mello, M.A.R. Stress biomarkers in rats submitted to swimming and treadmill running exercises. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008, 151, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Weizman, R.; Weizman, A.; Kook, K.A.; Vocci, F.; Deutsch, S.I.; Paul, S.M. Repeated swim stress alters brain benzodiazepine receptors measured in vivo. J. Pharmacol. Exp. Ther. 1989, 249, 701–707. [Google Scholar] [PubMed]
- Shirayama, Y.; Chen, A.C.-H.; Nakagawa, S.; Russell, D.S.; Duman, R.S. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 2002, 22, 3251–3261. [Google Scholar] [CrossRef]
- Martínez-Mota, L.; López-Rubalcava, C.; Rodríguez-Manzo, G. Ejaculation induces long-lasting behavioural changes in male rats in the forced swimming test: Evidence for an increased sensitivity to the antidepressant desipramine. Brain Res. Bull. 2005, 65, 323–329. [Google Scholar] [CrossRef]
Variable/Group (mg/kg) | Pre-Test | Test | Totals |
---|---|---|---|
(A) Crossing (s) | |||
Vehicle | 54.39 ± 9.02 | 31.94 ± 6.00 + | 43.17 ± 5.92 |
Chrysin | |||
0.5 | 51.00 ± 2.39 | 23.22 ± 3.60 +* | 37.11 ± 3.97 |
1.0 | 50.00 ± 3.05 | 43.11 ± 3.07 | 46.56 ± 2.26 |
2.0 | 54.56 ± 3.10 | 45.44 ± 3.80 | 50.00 ± 2.62 |
Allopregnanolone | |||
0.5 | 53.61 ± 6.35 | 32.61 ± 4.27 + | 43.11 ± 4.50 |
1.0 | 46.44 ± 4.16 | 43.23 ± 7.04 | 44.84 ± 3.99 |
2.0 | 57.61 ± 8.70 | 50.00 ± 8.16 | 53.81 ± 5.86 |
Diazepam | |||
2.0 | 51.67 ± 2.98 | 48.56 ± 4.01 | 50.11 ± 2.45 |
Totals | 52.41 ± 1.91 | 39.77 ± 2.06 # | |
(B) Grooming (s) | |||
Vehicle | 30.16 ± 5.95 | 11.67 ± 3.52 | 20.92 ± 4.03 |
Chrysin | |||
0.5 | 19.30 ± 2.55 | 10.68 ± 1.52 | 14.99 ± 1.78 |
1.0 | 20.40 ± 1.97 | 18.49 ± 1.54 | 19.44 ± 1.24 |
2.0 | 23.43 ± 3.24 | 20.49 ± 1.71 | 21.96 ± 1.81 |
Allopregnanolone | |||
0.5 | 15.35 ± 5.63 | 21.70 ± 10.52 | 18.53 ± 5.84 |
1.0 | 14.89 ± 5.50 | 26.20 ± 7.54 | 20.54 ± 4.73 |
2.0 | 23.68 ± 9.55 | 32.96 ± 11.59 | 28.32 ± 7.37 |
Diazepam | |||
2.0 | 23.12 ± 2.58 | 27.31 ± 3.05 | 25.21 ± 2.00 |
Totals | 21.29 ± 1.83 | 21.19 ± 2.32 | |
(C) Rearing (s) | |||
Vehicle | 42.28 ± 5.52 | 24.65 ± 3.62 + | 33.46 ± 3.85 |
Chrysin | |||
0.5 | 39.28 ± 2.32 | 21.14 ± 1.65 +* | 30.21 ± 2.60 |
1 | 37.65 ± 1.76 | 36.28 ± 2.53 | 36.96 ± 1.51 |
2 | 37.35 ± 1.59 | 38.26 ± 3.55 | 37.80 ± 1.89 |
Allopregnanolone | |||
0.5 | 48.90 ± 6.21 | 23.21 ± 3.97 + | 36.06 ± 4.74 |
1.0 | 45.50 ± 4.92 | 28.85 ± 4.34 + | 37.17 ± 3.77 |
2.0 | 46.62 ± 6.77 | 40.35 ± 12.18 + | 43.49 ± 6.80 |
Diazepam | |||
2.0 | 35.95 ± 2.46 | 33.25 ± 3.00 | 34.60 ± 1.91 |
Totals | 41.69 ± 1.58 | 30.75 ± 1.96 # |
Groups/mg/kg | Pre-Test | Test | Totals |
---|---|---|---|
Vehicle | 58.92 ± 6.19 | 55.11 ± 16.86 | 57.02 ± 8.72 |
Chrysin | |||
0.5 | 53.34 ± 4.04 | 30.93 ± 3.18 | 42.14 ± 3.69 |
1 | 73.03 ± 4.62 | 21.88 ± 3.80 | 47.45 ± 6.85 |
2 | 130.12 ± 10.05 | 81.57 ± 18.25 | 105.85 ± 11.70 * |
Allopregnanolone | |||
0.5 | 56.36 ± 6.54 | 36.40 ± 7.88 | 46.38 ± 5.52 |
1 | 96.31 ± 7.46 | 55.93 ± 5.01 | 76.12 ± 6.55 |
2 | 128.35 ± 11.52 | 91.38 ± 19.44 | 109.86 ± 11.84 * |
Diazepam | |||
2 | 154.01 ± 12.71 | 93.50 ± 14.13 | 123.76 ± 11.78 * |
Totals | 93.81 ± 5.21 | 58.34 ± 5.29 + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Aguilar, L.Á.; Cueto-Escobedo, J.; Puga-Olguín, A.; Olmos-Vázquez, O.J.; Rosas-Sánchez, G.U.; Bernal-Morales, B.; Rodríguez-Landa, J.F. Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause. Molecules 2023, 28, 587. https://doi.org/10.3390/molecules28020587
Flores-Aguilar LÁ, Cueto-Escobedo J, Puga-Olguín A, Olmos-Vázquez OJ, Rosas-Sánchez GU, Bernal-Morales B, Rodríguez-Landa JF. Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause. Molecules. 2023; 28(2):587. https://doi.org/10.3390/molecules28020587
Chicago/Turabian StyleFlores-Aguilar, Luis Ángel, Jonathan Cueto-Escobedo, Abraham Puga-Olguín, Oscar Jerónimo Olmos-Vázquez, Gilberto Uriel Rosas-Sánchez, Blandina Bernal-Morales, and Juan Francisco Rodríguez-Landa. 2023. "Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause" Molecules 28, no. 2: 587. https://doi.org/10.3390/molecules28020587
APA StyleFlores-Aguilar, L. Á., Cueto-Escobedo, J., Puga-Olguín, A., Olmos-Vázquez, O. J., Rosas-Sánchez, G. U., Bernal-Morales, B., & Rodríguez-Landa, J. F. (2023). Behavioral Despair Is Blocked by the Flavonoid Chrysin (5,7-Dihydroxyflavone) in a Rat Model of Surgical Menopause. Molecules, 28(2), 587. https://doi.org/10.3390/molecules28020587