Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity
Abstract
:1. Introduction
2. Results
2.1. Chemical Profiling
2.2. Antioxidant Activity
2.3. Keratinocyte Cytotoxicity to HaCaT
2.4. Anti-Proliferative Effect on Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Essential Oil Extraction
4.3. GC-MS Analysis
4.4. DPPH Radical Scavenging Assay
4.5. ABTS Radical Scavenging Assay
4.6. FRAP Reduction Capacity Assay
4.7. Cell Culture
4.8. Cytotoxicity Activity
4.9. ROS Scavenging Capacity Assay
4.10. Technology for Order Preference by Similarity to an Ideal Solution (TOPSIS)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Sereiti, M.R.; Abu-Amer, K.M.; Sena, P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Ind. J. Exp. Biol. 1999, 37, 124–130. [Google Scholar]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Gezici, S.; Sekeroglu, N.; Kijjoa, A. In vitro Anticancer Activity and Antioxidant Properties of Essential Oils from Populus alba L. and Rosmarinus officinalis L. from South Eastern Anatolia of Turkey. Indian J. Pharm. Educ. Res. 2017, 51, s498–s503. [Google Scholar] [CrossRef] [Green Version]
- González-Minero, F.J.; Bravo-Díaz, L.; Ayala-Gómez, A. Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. Cosmetics 2020, 7, 77. [Google Scholar] [CrossRef]
- Vasta, V.; Aouadi, D.; Brogna, D.M.; Scerra, M.; Luciano, G.; Priolo, A.; Ben Salem, H. Effect of the dietary supplementation of essential oils from rosemary and artemisia on muscle fatty acids and volatile compound profiles in Barbarine lambs. Meat Sci. 2013, 95, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.; Miri, M.A.; Najafi, M.; Soleimanifard, S.; Aran, M. Encapsulation of rosemary essential oil in zein by electrospinning technique. J. Food Sci. 2021, 86, 4070–4086. [Google Scholar] [CrossRef]
- Kordkolaei, S.K.; Kanani, M.R.; Tabefam, M.; Sarvestani, N.N.; Hamburger, M.; Farimani, M.M. Terpenoids and phenolics of Micromeria persica. Nat. Prod. Res. 2019, 34, 2913–2918. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wester, P.; Moeseler, B.; Knoess, W. Intra-population terpene polymorphism of Thymus pulegioides L.: Evidence for seven chemotypes in a German limestone grassland. Biochem. Syst. Ecol. 2020, 93, 104173. [Google Scholar] [CrossRef]
- Micić, D.; Đurović, S.; Riabov, P.; Tomić, A.; Šovljanski, O.; Filip, S.; Tosti, T.; Dojčinović, B.; Božović, R.; Jovanović, D.; et al. Rosemary Essential Oils as a Promising Source of Bioactive Compounds: Chemical Composition, Thermal Properties, Biological Activity, and Gastronomical Perspectives. Foods 2021, 10, 2734. [Google Scholar] [CrossRef] [PubMed]
- Pintore, G.; Usai, M.; Bradesi, P.; Juliano, C.; Boatto, G.; Tomi, F.; Chessa, M.; Cerri, R.; Casanova, J. Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr. J. 2002, 17, 15–19. [Google Scholar] [CrossRef]
- Lahlou, M.; Berrada, R. Conmposition and niticidal activity of essential oils of three chemotypes of Rosmarinus officinalis L. acclimatized in Morocco. Flavour Fragr. J. 2003, 18, 124–127. [Google Scholar] [CrossRef]
- Celiktas, O.Y.; Kocabas, E.E.H.; Bedir, E.; Sukan, F.V.; Ozek, T.; Baser, K.H.C. Antimicrobial activities of methanol extracts and essential oils of Rosmarinus officinalis, depending on location and seasonal variations. Food Chem. 2007, 100, 553–559. [Google Scholar] [CrossRef]
- Sotomayor, J.A.; Martinez, C.; Monino, M.I.; Lax, V.; Quilez, M.; Jordán, M.J. Effect of Altitude on Rosmarinus officinalis L. Essential Oil in Murcia (Spain). In Proceedings of the 1st International Medicinal and Aromatic Plants Conference on Culinary Herbs, Antalya, Turkey, 30 April 2009. [Google Scholar]
- Paulino, B.N.; da Silva, G.N.S.; Araújo, F.F.; Néri-Numa, I.A.; Pastore, G.M.; Bicas, J.L.; Molina, G. Beyond natural aromas: The bioactive and technological potential of monoterpenes. Trends Food Sci. Technol. 2022, 128, 188–201. [Google Scholar] [CrossRef]
- Setiawati, A.; Candrasari, D.S.; Setyajati, D.E.; Prasetyo, V.K.; Setyaningsih, D.; Hartini, Y.S. Anticancer drug screening of natural products: In vitro cytotoxicity assays, techniques, and challenges. Asian Pac. J. Trop. Biomed. 2022, 12, 279–289. [Google Scholar] [CrossRef]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Matte-Martone, C.; Gonzalez, D.G.; Lathrop, E.A.; May, D.P.; Pineda, C.M.; Moore, J.L.; Boucher, J.D.; Marsh, E.; Schmitter-Sánchez, A.; et al. Skin-resident immune cells actively coordinate their distribution with epidermal cells during homeostasis. Nature 2021, 23, 476–484. [Google Scholar] [CrossRef]
- Sadeh, D.; Nitzan, N.; Chaimovitsh, D.; Shachter, A.; Ghanim, M.; Dudai, N. Interactive effects of genotype, seasonality and extraction method on chemical compositions and yield of essential oil from rosemary (Rosmarinus officinalis L.). Ind. Crop. Prod. 2019, 138, 111419. [Google Scholar] [CrossRef]
- Pistelli, L.; Giovanelli, S.; D’Angiolillo, F.; Karkleva, K.; Leonardi, M.; Ambryszewska, K.; Cervelli, C.; Pistelli, L. Antioxidant Activity of Several Essential Oils from Different Rosmarinus officinalis Cultivars Grown in Sanremo (Italy). Nat. Prod. Commun. 2018, 13, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Carrubba, A.; La Torre, R.; Piccaglia, R.; Grandi, S. Chemical and botanical characterization of a Rosmarinus officinalis biotype from Sicily. In Proceedings of the 1st International Symposium on the Labiatae, Advances in Production, Biotechnology and Utilisation, San Remo, Italy, 22–25 February 2006. [Google Scholar]
- Hassanen, N.H.M.; Fahmi, A.; Shams-Eldin, E.; Abdur-Rahman, M. Protective effect of rosemary (Rosmarinus officinalis) against diethylnitrosamine-induced renal injury in rats. Biomarkers 2020, 25, 281–289. [Google Scholar] [CrossRef]
- Takayama, C.; De-Faria, F.M.; de Almeida, A.C.A.; Dunder, R.J.; Manzo, L.P.; Socca, E.A.R.; Batista, L.M.; Salvador, M.J.; Souza-Brito, A.R.M.; Luiz-Ferreira, A. Chemical composition of Rosmarinus officinalis essential oil and antioxidant action against gastric damage induced by absolute ethanol in the rat. Asian Pac. J. Trop. Biomed. 2016, 6, 677–681. [Google Scholar] [CrossRef]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant activity of rosemary essential oil fractions obtained by molecular distillation and their effect on oxidative stability of sunflower oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Scapagnini, G.; Catalano, C.; Dinotta, F.; Geraci, D.; Morganti, P. Biochemical studies of a natural antioxidant isolated from rosemary and its application in cosmetic dermatology. Int. J. Tissue React. 2000, 22, 5–13. [Google Scholar] [PubMed]
- Liochev, S.I. Reflections on the Theories of Aging, of Oxidative Stress, and of Science in General. Is It Time to Abandon the Free Radical (Oxidative Stress) Theory of Aging? Antioxid. Redox Signal. 2015, 23, 187–207. [Google Scholar] [CrossRef]
- Dawidowicz, A.; Olszowy, M. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components. Nat. Prod. Res. 2014, 28, 1952–1963. [Google Scholar] [CrossRef]
- Prieto, P.; Graepel, R.; Gerloff, K.; Lamon, L.; Sachana, M.; Pistollato, F.; Gribaldo, L.; Bal-Price, A.; Worth, A. Investigating Cell Type Specific Mechanisms Contributing to Acute Oral Toxicity. Altex-Altern. Anim. Exp. 2019, 36, 39–64. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.-S.; Bak, M.-J.; Jun, M.; Lim, H.-J.; Jo, W.-K.; Jeong, W.-S. α-pinene triggers oxidative stress and related signaling pathways in A549 and HepG2 cells. Food Sci. Biotechnol. 2010, 19, 1325–1332. [Google Scholar] [CrossRef]
- Matsuo, A.; Figueiredo, C.; Arruda, D.; Pereira, F.; Scutti, J.B.; Massaoka, M.; Travassos, L.; Sartorelli, P.; Lago, J. alpha-Pinene isolated from Schinus terebintinfolius Raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 2011, 411, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Bero, J.; Kpoviessi, S.; Quetin-Leclercq, J. Anti-Parasitic Activity of Essential Oils and their Active Constituents against Plasmodium, Trypanosoma and Leishmania. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics; Wiley Online Library: Hoboken, NJ, USA, 2014; pp. 455–469. [Google Scholar]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial Activity and Anticancer Activity of Rosmarinus officinalis L. Essential Oil Compared to That of Its Main Components. Molecules 2012, 17, 2704–2713. [Google Scholar] [CrossRef]
- Pereira, P.S.; Maia, A.J.; Tintino, S.R.; Oliveira-Tintino, C.D.D.M.; Raulino, I.S.D.S.; Vega, M.C.; Rolón, M.; Coronel, C.; Barros, L.M.; Duarte, A.E.; et al. Trypanocide, antileishmania and cytotoxic activities of the essential oil from Rosmarinus officinalis L in vitro. Ind. Crop. Prod. 2017, 109, 724–729. [Google Scholar] [CrossRef]
- Roldos, V.; Nakayama, H.; Rolón, M.; Torres, A.M.; Trucco, F.; Torres, S.; Vega, C.; Marrero-Ponce, Y.; Heguaburu, V.; Yaluff, G. Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: In silico, in vitro and in vivo activity studies. Eur. J. Med. Chem. 2008, 43, 1797–1807. [Google Scholar] [CrossRef]
- Gortzi, O.; Rovoli, M.; Katsoulis, K.; Graikou, K.; Karagkini, D.-A.; Stagos, D.; Kouretas, D.; Tsaknis, J.; Chinou, I. Study of Stability, Cytotoxic and Antimicrobial Activity of Chios Mastic Gum Fractions (Neutral, Acidic) after Encapsulation in Liposomes. Foods 2022, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Zielińska-Błajet, M.; Pietrusiak, P.; Feder-Kubis, J. Selected Monocyclic Monoterpenes and Their Derivatives as Effective Anticancer Therapeutic Agents. Int. J. Mol. Sci. 2021, 22, 4763. [Google Scholar] [CrossRef]
- Silva, B.I.M.; Nascimento, E.A.; Silva, C.J.; Silva, T.G.; Aguiar, J.S. Anticancer activity of monoterpenes: A systematic review. Mol. Biol. Rep. 2021, 48, 5775–5785. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, G.; Ismail, Z.; Norhayati, I.; Sadikun, A. The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chem. 2005, 93, 311–317. [Google Scholar] [CrossRef]
- Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and Caffeine Content of Green Tea Dietary Supplements and Correlation with Antioxidant Capacity. J. Agric. Food Chem. 2006, 54, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar]
- Zhu, L.; Kalimuthu, S.; Gangadaran, P.; Oh, J.M.; Lee, H.W.; Baek, S.H.; Jeong, S.Y.; Lee, S.-W.; Lee, J.; Ahn, B.-C. Exosomes derived from natural killer cells exert therapeutic effect in melanoma. Theranostics 2017, 7, 2732–2745. [Google Scholar] [CrossRef]
- Rosenkranz, A.R.; Schmaldienst, S.; Stuhlmeier, K.M.; Chen, W.; Knapp, W.; Zlabinger, G.J. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin-diacetate. J. Immunol. Methods 1992, 156, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.J.; Yoo, E.S.; Koh, Y.S.; Kang, H.K.; Kim, J.; Kim, Y.J.; Kang, H.H.; Hyun, J.W. Antioxidant Effects of the Ethanol Extract from Flower of Camellia japonica via Scavenging of Reactive Oxygen Species and Induction of Antioxidant Enzymes. Int. J. Mol. Sci. 2011, 12, 2618–2630. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Xiao, D.X.; Huang, S.; Li, L.; Wang, K.C.P. A Data-Driven Method for Comprehensive Pavement-Condition Ranking. J. Infrastruct. Syst. 2016, 22, 04015024. [Google Scholar] [CrossRef]
No. | Compound | RI a | RI b | ‘MJU’ | ‘DM’ | ‘AL’ | ‘MP’ | ‘MO’ | ‘BL’ | Identification |
---|---|---|---|---|---|---|---|---|---|---|
1 | α-Thujene a | 926 | 924 | 0.34 ± 0.29 | - | - | - | - | - | MS, RI, |
2 | α-Pinene a | 933 | 932 | 42.81 ± 2.52 | 33.15 ± 1.98 | 7.51 ± 0.11 | 18.07 ± 1.28 | 8.94 ± 0.16 | 9.17 ± 0.79 | MS, RI, AC |
3 | Camphene a | 946 | 946 | 6.99 ± 0.26 | 2.45 ± 0.33 | 1.59 ± 0.18 | 4.56 ± 0.19 | 6.06 ± 0.22 | 2.52 ± 0.26 | MS, RI, AC |
4 | Thuja-2,4(10)-diene a | 952 | 953 | - | 0.37 ± 0.02 | - | - | - | 0.55 ± 0.05 | MS, RI |
5 | β-Pinene a | 974 | 974 | 0.92 ± 0.20 | 0.89 ± 0.05 | 1.19 ± 0.28 | 0.78 ± 0.02 | 1.14 ± 0.11 | 0.29 ± 0.26 | MS, RI, AC |
6 | 3-Octanone g | 987 | 986 | 1.51 ± 0.10 | - | - | - | - | - | MS, RI, |
7 | Myrcene a | 992 | 988 | 3.35 ± 0.46 | 0.82 ± 0.06 | 8.05 ± 0.86 | 0.30 ± 0.01 | 2.58 ± 0.04 | 0.56 ± 0.11 | MS, RI, AC |
8 | 3-Carene a | 1009 | 1008 | - | - | - | - | 0.71 ± 0.08 | - | MS, RI |
9 | α-Terpinene a | 1016 | 1017 | 0.34 ± 0.30 | 0.53 ± 0.04 | - | - | - | - | MS, RI, AC |
10 | p-Cymene a | 1024 | 1025 | 2.61 ± 0.22 | 1.30 ± 0.25 | 10.51 ± 0.70 | 2.78 ± 0.27 | 3.02 ± 0.26 | 2.16 ± 0.02 | MS, RI, AC |
11 | Limonene a | 1028 | 1030 | 3.31 ± 0.31 | 2.61 ± 0.43 | 7.04 ± 0.40 | 3.48 ± 0.34 | 3.12 ± 0.30 | 2.37 ± 0.44 | MS, RI, AC |
12 | 1,8-Cineole d | 1031 | 1032 | 19.95 ± 0.49 | 23.48 ± 0.87 | 21.30 ± 1.07 | 6.01 ± 0.20 | 13.22 ± 0.32 | 4.55 ± 0.66 | MS, RI, AC |
13 | γ-Terpinene a | 1059 | 1060 | 0.61 ± 0.08 | 0.74 ± 0.10 | - | - | 0.24 ± 0.21 | - | MS, RI, AC |
14 | Terpinolene a | 1088 | 1087 | 0.53 ± 0.04 | 0.65 ± 0.06 | - | - | 0.55 ± 0.08 | - | MS, RI, AC |
15 | Linalool b | 1101 | 1099 | - | 1.58 ± 0.09 | 2.46 ± 0.18 | 0.29 ± 0.00 | 0.67 ± 0.07 | 0.96 ± 0.10 | MS, RI, AC |
16 | Camphor c | 1145 | 1143 | 6.72 ± 0.70 | 2.77 ± 0.18 | 26.80 ± 0.51 | 56.04 ± 1.47 | 31.86 ± 0.82 | 14.18 ± 0.70 | MS, RI, AC |
17 | Borneol b | 1166 | 1166 | 2.59 ± 0.12 | 3.67 ± 0.46 | 0.69 ± 0.14 | 0.58 ± 0.10 | 4.03 ± 0.25 | 3.24 ± 0.35 | MS, RI, AC |
18 | δ-Terpineol b | 1167 | 1166 | - | - | 0.45 ± 0.08 | - | - | - | MS, RI |
19 | Isopinocamphone c | 1174 | 1173 | - | 0.53 ± 0.22 | 0.45 ± 0.04 | - | 1.60 ± 0.14 | 0.78 ± 0.04 | MS, RI |
20 | Terpinen-4-ol b | 1177 | 1174 | 1.19 ± 0.12 | 0.66 ± 0.59 | 1.46 ± 0.06 | 0.66 ± 0.07 | 1.04 ± 0.13 | 0.96 ± 0.05 | MS, RI, AC |
21 | p-Cymen-8-ol b | 1187 | 1184 | - | - | 0.42 ± 0.02 | - | - | - | MS, RI |
22 | α-Terpineol b | 1191 | 1189 | 1.71 ± 0.31 | 2.10 ± 0.27 | 6.61 ± 0.33 | 1.33 ± 0.07 | 1.56 ± 0.07 | 1.12 ± 0.10 | MS, RI, AC |
23 | Mrytenol b | 1198 | 1195 | - | 0.40 ± 0.08 | - | - | - | 0.80 ± 0.04 | MS, RI |
24 | trans-Piperitol b | 1205 | 1205 | - | 0.53 ± 0.06 | - | 3.02 ± 0.26 | 0.83 ± 0.07 | 1.08 ± 0.14 | MS, RI |
25 | Verbenone c | 1211 | 1206 | 3.64 ± 0.12 | 14.79 ± 0.57 | 3.46 ± 0.37 | 0.99 ± 0.08 | 4.93 ± 0.28 | 39.14 ± 0.55 | MS, RI, AC |
26 | Carveol b | 1219 | 1219 | - | - | - | 0.45 ± 0.04 | - | - | MS, RI |
27 | Geraniol b | 1256 | 1255 | 0.90 ± 0.13 | 3.59 ± 0.20 | - | - | - | - | MS, RI, AC |
28 | Bornyl acetate e | 1288 | 1284 | - | 1.90 ± 0.10 | - | - | 13.92 ± 0.61 | 15.57 ± 1.61 | MS, RI, AC |
29 | β-Caryophyllene f | 1421 | 1420 | - | 0.51 ± 0.06 | - | - | - | - | MS, RI, AC |
30 | α-Bisabolol f | 1686 | 1684 | - | - | - | 0.65 ± 0.23 | - | - | MS, RI, AC |
Monoterpene hydrocarbons | 61.80 ± 0.89 | 43.51 ± 0.90 | 35.91 ± 1.39 | 29.97 ± 2.05 | 26.35 ± 0.61 | 17.63 ± 1.70 | ||||
Oxygenated Monoterpenes | 36.69 ± 0.79 | 55.98 ± 0.92 | 64.09 ± 1.39 | 70.03 ± 2.05 | 73.65 ± 0.61 | 82.37 ± 1.70 | ||||
Sesquiterpenes | 0.00 | 0.51 ± 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | ||||
Others | 1.51 ± 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
REO | Ranking | |||
---|---|---|---|---|
‘MJU’ | 0.2789 | 0.0661 | 0.1915 | 5 |
‘DM’ | 0.0204 | 0.3286 | 0.9416 | 1 |
‘AL’ | 0.2272 | 0.1492 | 0.3963 | 4 |
‘MP’ | 0.3256 | 0.0256 | 0.0730 | 6 |
‘MO’ | 0.1449 | 0.2099 | 0.5917 | 2 |
‘BL’ | 0.1843 | 0.1826 | 0.4977 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Xu, H.; Ding, M.; Li, J.; Wang, D.; Li, H.; Sun, M.; Xia, F.; Bai, H.; Wang, M.; et al. Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity. Molecules 2023, 28, 586. https://doi.org/10.3390/molecules28020586
Huang Y, Xu H, Ding M, Li J, Wang D, Li H, Sun M, Xia F, Bai H, Wang M, et al. Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity. Molecules. 2023; 28(2):586. https://doi.org/10.3390/molecules28020586
Chicago/Turabian StyleHuang, Yeqin, Heran Xu, Mengting Ding, Jingyi Li, Di Wang, Hui Li, Meiyu Sun, Fei Xia, Hongtong Bai, Min Wang, and et al. 2023. "Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity" Molecules 28, no. 2: 586. https://doi.org/10.3390/molecules28020586
APA StyleHuang, Y., Xu, H., Ding, M., Li, J., Wang, D., Li, H., Sun, M., Xia, F., Bai, H., Wang, M., Mo, M., & Shi, L. (2023). Screening of Rosemary Essential Oils with Different Phytochemicals for Antioxidant Capacity, Keratinocyte Cytotoxicity, and Anti-Proliferative Activity. Molecules, 28(2), 586. https://doi.org/10.3390/molecules28020586