Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method
Abstract
:1. Introduction
2. Methods
3. Overview of Major Phytochemicals and Related Health Benefits
3.1. Carotenoids
3.2. Polyphenols
3.3. Isoprenoids
3.4. Phytosterols
3.5. Saponins
3.6. Polysaccharides and Dietary Fibers
4. Phytochemical Extraction Methods
4.1. Maceration
4.2. Percolation
4.3. Decoction
4.4. Reflux Extraction
4.5. Soxhlet Extraction
4.6. Pressurized Liquid Extraction
4.7. Liquid Gas Extraction
4.8. Microwave-Assisted Extraction
4.9. Ultrasound-Assisted Extraction
4.10. Pulsed Electric Field Extraction
4.11. Enzyme Assisted Extraction
4.12. Supercritical Fluid Extraction
4.13. High Hydrostatic Pressure Processing
4.14. Natural Deep Eutectic Solvent Extraction
4.15. Other Extraction Methods
5. Suitability of the Methods for the Extraction of Various Bioactive Compounds
5.1. Carotenoids
5.2. Polyphenols
5.3. Phytosterols
5.4. Saponins
5.5. Isoprenoids
5.6. Polysaccharides and Dietary Fiber
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, B.R.; Kumar, V.; Gat, Y.; Kumar, N.; Parashar, A.; Pinakin, D.J. Microbial maceration: A sustainable approach for phytochemical extraction. 3 Biotech 2018, 8, 401. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, R.; Cuny, E. Terpenoids with special pharmacological significance: A review. Nat. Prod. Commun. 2016, 11, 1934578X1601100946. [Google Scholar] [CrossRef] [Green Version]
- Rowles, J.L., 3rd; Erdman, J.W., Jr. Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta. Mol. Cell Biol. Lipids. 2020, 1865, 158613. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, L.; Taylor, R.N.; Li, C.; Zhou, X. Physiological and pathological implications of retinoid action in the endometrium. J. Endocrinol. 2018, 236, R169–R188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooperstone, J.L.; Schwartz, S.J. Recent insights into health benefits of carotenoids. In Handbook on Natural Pigments in Food and Beverages; Carle, R., Schweigget, R.M., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 473–497. [Google Scholar] [CrossRef]
- Vallverdú-Coll, N.; Ortiz-Santaliestra, M.E.; Mougeot, F.; Vidal, D.; Mateo, R. Sublethal Pb exposure produces season-dependent effects on immune response, oxidative balance and investment in carotenoid-based coloration in red-legged partridges. Environ. Sci. Technol. 2015, 49, 3839–3850. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef]
- Shikov, A.N.; Mikhailovskaya, I.Y.; Narkevich, I.A.; Flisyuk, E.V.; Pozharitskaya, O.N. Methods of extraction of medicinal plants. In Evidence-Based Validation of Herbal Medicine; Elsevier: Amsterdam, The Netherlands, 2022; pp. 771–796. [Google Scholar]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int. J. Environ. Res. Public Health. 2021, 18, 9153. [Google Scholar] [CrossRef]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A Critical Comparison of the Advanced Extraction Techniques Applied to Obtain Health-Promoting Compounds from Seaweeds. Marine Drug. 2022, 20, 677. [Google Scholar] [CrossRef]
- Zeece, M. Food colorants. In Introduction to the Chemistry of Food; Zeece, M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 313–344. [Google Scholar] [CrossRef]
- Nagarajan, J.; Ramanan, R.N.; Raghunandan, M.E.; Galanakis, C.M.; Krishnamurthy, N.P. Carotenoids. In Nutraceutical and Functional Food Components: Effects of Innovative Processing Techniques; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 259–296. [Google Scholar] [CrossRef]
- Bogacz-Radomska, L.; Harasym, J. β-Carotene—Properties and production methods. Food Qual. Safe 2018, 2, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Grune, T.; Lietz, G.; Palou, A.; Ross, A.C.; Stahl, W.; Tang, G.; Thurnham, D.; Yin, S.A.; Biesalski, H.K. Beta-carotene is an important vitamin A source for humans. J. Nutr. 2010, 140, 2268S–2285S. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V. Lutein and zeaxanthin—Food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Przybylska, S. Lycopene—A bioactive carotenoid offering multiple health benefits: A review. Int. J. Food Sci. Tech. 2019, 55, 11–32. [Google Scholar] [CrossRef]
- Aziz, E.; Batool, R.; Akhtar, W.; Rehman, S.; Shahzad, T.; Malik, A.; Shariati, M.A.; Laishevtcev, A.; Plygun, S.; Heydari, M.; et al. Xanthophyll: Health benefits and therapeutic insights. Life Sci. 2020, 240, 117104. [Google Scholar] [CrossRef] [PubMed]
- Sara Sara, G.Y.; Dauda, S.; Emmanuel, A.; Bhutto, Y.Y.; Joseph, I. Phytochemical screening and antimicrobial activity of leaf and stem-bark aqueous extracts of Diospyros mespiliformis. Int. J. Biochem. Res. Rev. 2018, 22, 1–8. [Google Scholar] [CrossRef]
- Jiao, Y.; Reuss, L.; Wang, Y. β-Cryptoxanthin: Chemistry, occurrence, and potential health benefits. Curr. Pharmacol. Rep. 2019, 5, 20–34. [Google Scholar] [CrossRef]
- Furukawa, H. Cultivation technology for vegetable and herb production. In Plant Factory Using Artificial Light: Adapting to Environmental Disruption and Clues to Agricultural Innovation; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 15–23. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Xu, Q.; Shikov, A.N.; Pozharitskaya, O.N.; Flisyuk, E.V.; Liu, M.; Li, H.; Duez, P. Flavonoids and saponins: What have we got or missed? Phytomedicine 2023, 109, 154580. [Google Scholar] [CrossRef]
- Ballard, C.R.; Maróstica, M.R. Health Benefits of Flavonoids. In Bioactive Compounds; Woodhead Publishing: Cambridge, UK, 2019; pp. 185–201. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Ana, C.C.; Jesús, P.V.; Hugo, E.A.; Teresa, A.T.; Ulises, G.C.; Neith, P. Antioxidant capacity and UPLC–PDA ESI–MS polyphenolic profile of Citrus aurantium extracts obtained by ultrasound assisted extraction. J. Food Sci. Tech. 2018, 55, 5106–5114. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.A.; Clifford, M.N. Flavanones, chalcones and dihydrochalcones—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1073–1080. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; de Bruijn, W.J.C.; Vincken, J.P. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. J. Food Compos. Anal. 2020, 86, 103385. [Google Scholar] [CrossRef]
- Bonetti, F.; Brombo, G.; Zuliani, G. Nootropics, functional foods, and dietary patterns for prevention of cognitive decline. In Nutrition and Functional Foods for Healthy Aging; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 211–232. [Google Scholar] [CrossRef]
- Guan, L.; Fan, P.; Li, S.H.; Liang, Z.; Wu, B.H. Inheritance patterns of anthocyanins in berry skin and flesh of the interspecific population derived from teinturier grape. Euphytica 2019, 215, 1–14. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahbazi, Y.; Shavisi, N. Limonene. In A Centum of Valuable Plant Bioactives; Mushtaq, M., Farooq, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 77–91. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Meeran, M.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective potential of limonene and limonene containing natural products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef] [PubMed]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (lemon) phenomenon-a review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, E.I.; Jugran, A.K.; Jayaweera, S.L.P.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α- and β-Pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef]
- Bot, A. Phytosterols. In Encyclopedia of Food Chemistry; Melton, L., Varelis, P., Sahahidi, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 225–228. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 119394, Campestanol. 2022. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Campestanol (accessed on 10 April 2022).
- Ho, X.L.; Loke, W.M. Dietary plant sterols supplementation increases in vivo nitrite and nitrate production in healthy adults: A randomized, controlled study. J. Food Sci. 2017, 82, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Sudeep, H.V.; Thomas, J.V.; Shyamprasad, K. A double blind, placebo-controlled randomized comparative study on the efficacy of phytosterol-enriched and conventional saw palmetto oil in mitigating benign prostate hyperplasia and androgen deficiency. BMC Urol. 2020, 20, 86. [Google Scholar] [CrossRef]
- Tovey, F. Duodenal ulcer and diet in Sub-Saharan Africa. In Digestive Diseases in Sub-Saharan Africa: Changes and Challenges; Segal, I., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 53–65. [Google Scholar] [CrossRef]
- Karim, N.; Khan, I.; Abdelhalim, A.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Stigmasterol can be new steroidal drug for neurological disorders: Evidence of the GABAergic mechanism via receptor modulation. Phytomed. Int. J. Phytother. Phytopharmacol. 2021, 90, 153646. [Google Scholar] [CrossRef] [PubMed]
- Liwa, A.C.; Barton, E.N.; Cole, W.C.; Nwokocha, C.R. Bioactive plant molecules, sources and mechanism of action in the treatment of cardiovascular disease. In Pharmacognosy; Academic Press: Cambridge, MA, USA, 2017; pp. 315–336. [Google Scholar] [CrossRef]
- Akihisa, T.; Zhang, J.; Tokuda, H. Potentially chemopreventive triterpenoids and other secondary metabolites from plants and fungi. Stud. Nat. Prod. Chem. 2016, 51, 1–50. [Google Scholar] [CrossRef]
- Brüll, F.B.; Mensink, R.P.; Steinbusch, M.F.; Husche, C.; Lütjohann, D.; Wesseling, G.J.; Plat, J. Beneficial effects of sitostanol on the attenuated immune function in asthma patients: Results of an in vitro approach. PLoS ONE 2012, 7, e46895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Hu, X.; Wang, H.; Wang, R.; Sun, Z.; Tan, X.; Liu, S.; Wang, H. Effects of a dammarane-type saponin, ginsenoside Rd, in nicotine-induced vascular endothelial injury. Phytomedicine 2020, 79, 153325. [Google Scholar] [CrossRef]
- Lee, S.R.; Choi, E.; Jeon, S.H.; Zhi, X.Y.; Yu, J.S.; Kim, S.H.; Lee, J.; Park, K.M.; Kim, K.H. Tirucallane triterpenoids from the stems and stem bark of Cornus walteri that control adipocyte and osteoblast differentiations. Molecules 2018, 23, 2732. [Google Scholar] [CrossRef] [Green Version]
- Desai, S.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharma. Times 2009, 41, 13–16. [Google Scholar]
- Blanco-Pérez, F.; Steigerwald, H.; Schülke, S.; Vieths, S.; Toda, M.; Scheurer, S. The dietary fiber pectin: Health benefits and potential for the treatment of allergies by modulation of gut microbiota. Curr. Allergy Asthma Rep. 2021, 21, 43. [Google Scholar] [CrossRef]
- Kumar, A.; Kumari, P.; Gupta, K.; Singh, M.; Tomer, V. Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers. Food Rev. Int. 2021, 1, 1–44. [Google Scholar] [CrossRef]
- Sista Kameshwar, A.K.; Qin, W. Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: A review. Bioresour. Bioprocess 2018, 5, 43. [Google Scholar] [CrossRef]
- Baghaei, B.; Skrifvars, M. All-cellulose composites: A review of recent studies on structure, properties and applications. Molecules 2021, 25, 2836. [Google Scholar] [CrossRef]
- Heinze, T.; El Seoud, O.A.; Koschella, A. Production and characteristics of cellulose from different sources. In Cellulose Derivatives; Springer Series on Polymer and Composite Materials; Springer: Cham, Germany, 2018; pp. 1–38. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crops Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Sun, R.C. Lignin Source and Structural Characterization. ChemSusChem 2020, 13, 4385–4393. [Google Scholar] [CrossRef] [PubMed]
- Watkins, D.; Nuruddin, M.; Hosur, M.; Tcherbi-Narteh, A.; Jeelani, S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015, 4, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Vinardell, M.P.; Mitjans, M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef] [Green Version]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2011, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Farhat, W.; Venditti, R.; Quick, A.; Taha, M.; Mignard, N.; Becquart, F.; Ayoub, A. Hemicellulose extraction and characterization for applications in paper coatings and adhesives. Ind. Crops Prod. 2017, 107, 370–377. [Google Scholar] [CrossRef]
- Bonechi, C.; Consumi, M.; Donati, A.; Leone, G.; Magnani, A.; Tamasi, G.; Rossi, C. Biomass: An overview. Bioenergy Syst. Future 2013, 18, 3–42. [Google Scholar] [CrossRef]
- Ma, J.; Huo, X.Q.; Chen, X.; Zhu, W.X.; Yao, M.C.; Qiao, Y.J.; Zhang, Y.L. Study on screening potential traditional Chinese medicines against 2019-nCoV based on Mpro and PLP. Zhongguo Zhong Yao Za Zhi 2020, 45, 1219–1224. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant starch: Promise for improving human health. Adv. Nutri. 2013, 4, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Fadel, A.; Ashworth, J.; Plunkett, A.; Mahmoud, A.M.; Ranneh, Y.; Li, W. Improving the extractability of arabinoxylans and the molecular weight of wheat endosperm using extrusion processing. J. Cereal Sci. 2018, 84, 55–61. [Google Scholar] [CrossRef]
- Kellow, N.J.; Walker, K.Z. Authorised EU health claim for arabinoxylan. In Foods, Nutrients and Food Ingredients with Authorised EU Health Claims; Sadler, M.J., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 201–218. [Google Scholar] [CrossRef]
- Butardo, V.M., Jr.; Sreenivasulu, N. Tailoring grain storage reserves for a healthier rice diet and its comparative status with other cereals. Int. Rev. Cell Mol. Biol. 2016, 323, 31–70. [Google Scholar] [CrossRef] [PubMed]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Ercisli, S.; Gozlekci, S.; Sengul, M.; Hegedus, A.; Tepe, S. Some physicochemical characteristics, bioactive content and antioxidant capacity of loquat (Eriobotrya japonica (Thunb.) Lindl.) fruits from Turkey. Sci. Hortic. 2012, 148, 185–189. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Wijesekara, I. Role of marine nutraceuticals in cardiovascular health. In Sustained Energy for Enhanced Human Functions and Activity; Academic Press: Cambridge, MA, USA, 2017; pp. 273–279. [Google Scholar]
- D’ Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, dietary sources, and bioavailability. Ann. Ist. Super. 2007, 43, 348. [Google Scholar]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Lagana, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFact 2017, 43, 495–506. [Google Scholar] [CrossRef]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From Biosynthesis to Health Benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Kothari, D.; Lee, W.D.; Kim, S.K. Allium flavonols: Health benefits, molecular targets, and bioavailability. Antioxidants 2020, 9, 888. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutri. Research 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Bursal, E.; Gülçin, İ. Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489. [Google Scholar] [CrossRef]
- Gülçin, İ.; Gören, A.C.; Taslimi, P.; Alwasel, S.H.; Kılıc, O.; Bursal, E. Anticholinergic, antidiabetic and antioxidant activities of Anatolian pennyroyal (Mentha pulegium)-analysis of its polyphenol contents by LC-MS/MS. Biocatal. Agric. Biotechnol. 2020, 23, 101441. [Google Scholar] [CrossRef]
- Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa and Hemp. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2016; pp. 735–754. [Google Scholar] [CrossRef]
- Richter, G.; Hazzah, T.; Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa: An overview. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2021; pp. 603–624. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and medicinal uses of terpenes. In Medicinal Plants; Joshee, N., Dhekney, S., Parajuli, P., Eds.; Springer: Cham, Germany, 2019; pp. 333–359. [Google Scholar] [CrossRef]
- Hu, D.; Gao, H.; Yao, X. Biosynthesis of Triterpenoid Natural Products. In Comprehensive Natural Products III.; Liu, H.-W., Begley, T.P., Eds.; Elsevier: New York, NY, USA, 2020; pp. 577–612. [Google Scholar] [CrossRef]
- Morgia, G.; Privitera, S. Phytotherapy in benign prostatic hyperplasia. In Lower Urinary Tract Symptoms and Benign Prostatic Hyperplasia; Moriga, G., Russo, G.I., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 135–175. [Google Scholar] [CrossRef]
- Ashraf, R.; Bhatti, H.N. Stigmasterol. In A Centum of Valuable Plant Bioactives; Mushtaq, M., Anwar, F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 213–232. [Google Scholar] [CrossRef]
- Lafont, R.; Dauphin-Villemant, C.; Warren, J.T.; Rees, H.H. Ecdysteroid chemistry and biochemistry. Ref. Mod. Life Sci. 2005, 3, 125–195. [Google Scholar] [CrossRef]
- González-Romero, J.; Guerra-Hernández, E.J.; Rodríguez-Pérez, C. Bioactive compounds from Moringa oleifera as promising protectors of in vivo inflammation and oxidative stress processes. In Current Advances for Development of Functional Foods Modulating Inflammation and Oxidative Stress; Hernandez-Ledesma, B., Martinez-Villaluenga, C., Eds.; Academic Pres: Cambridge, MA, USA, 2022; pp. 379–399. [Google Scholar] [CrossRef]
- Hamdi, M.; Feki, A.; Bardaa, S.; Li, S.; Nagarajan, S.; Mellouli, M.; Boudawarad, T.; Sahnounb, Z.; Nasri, M.; Nasri, R. A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Mater. Sci. Eng. C 2020, 113, 110978. [Google Scholar] [CrossRef]
- Glencross, B. Understanding the nutritional and biological constraints of ingredients to optimize their application in aquaculture feeds. In Aquafeed Formulation; Academic Pres: Cambridge, MA, USA, 2016; pp. 33–73. [Google Scholar] [CrossRef]
- Akihisa, T.; Zhang, J.; Manosroi, A.; Kikuchi, T.; Manosroi, J.; Abe, M. Limonoids and other secondary metabolites of Azadirachta indica (neem) and Azadirachta indica var. siamensis (Siamese neem), and their bioactivities. Bioact. Nat. Prod. 2021, 68, 29–65. [Google Scholar] [CrossRef]
- Sandeep; Ghosh, S. Triterpenoids: Structural diversity, biosynthetic pathway, and bioactivity. Bioact. Nat. Prod. 2020, 67, 411–461. [Google Scholar] [CrossRef]
- Gidley, M.J.; Yakubov, G.E. Functional categorisation of dietary fibre in foods: Beyond “soluble” vs “insoluble”. Trends Food Sci. Technol. 2019, 86, 563–568. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Erkaya, T.; Dağdemir, E.; Şengül, M. Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res. Int. 2012, 45, 331–335. [Google Scholar] [CrossRef]
- Yalınkılıç, B.; Kaban, G.; Kaya, M. The effects of different levels of orange fiber and fat on microbiological, physical, chemical and sensorial properties of sucuk. Food Microbiol. 2012, 29, 255–259. [Google Scholar] [CrossRef]
- Oz, F.; Kızıl, M.; Zaman, A.; Turhan, S. The effects of direct addition of low and medium molecular weight chitosan on the formation of heterocyclic aromatic amines in beef chop. LWT -Food Sci. Technol. 2016, 65, 861–867. [Google Scholar] [CrossRef]
- Oz, F.; Zaman, A.; Kaya, M. Effect of Chitosan on the Formation of Heterocyclic Aromatic Amines and Some Quality Properties of Meatball. J. Food Process. Preserv. 2017, 41, e13065. [Google Scholar] [CrossRef]
- Bedir, Y.; Karaoğlu, M.M. Textural and rheological properties of mulberry leather (pestil) produced with whole grain flours. Int. J. Gastron. Food Sci. 2022, 30, 100613. [Google Scholar] [CrossRef]
- Merriam-Webster. Definition of Extracting. Available online: https://www.merriam-webster.com/dictionary/extracting (accessed on 21 June 2022).
- Azman, E.M.; Charalampopoulos, D.; Chatzifragkou, A. Acetic acid buffer as extraction medium for free and bound phenolics from dried blackcurrant (Ribes nigrum L.) skins. J. Food Sci. 2020, 85, 3745–3755. [Google Scholar] [CrossRef] [PubMed]
- Gopalasatheeskumar, K.; Parthiban, S.; Manimaran, T.; Boopathi, T. Phytochemical screening on various extracts (benzene, ethanolic and aqueous) of stem parts of Zanthoxylum rhetsa (roxb.) Dc. Inter.J. Uni. Pharm. Bio Sci. 2017, 6, 79–91. [Google Scholar]
- Laboukhi-Khorsi, S.; Daoud, K.; Chemat, S. Efficient solvent selection approach for high solubility of active phytochemicals: Application for the extraction of an antimalarial compound from medicinal plants. ACS Sustain. Chem. Eng. 2017, 5, 4332–4339. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Banu, K.S.; Cathrine, L. General techniques involved in phytochemical analysis. Int. J. Adv. Res. Chem. Sci. 2015, 2, 25–32. [Google Scholar]
- Raaman, N. Phytochemical Techniques; New India Publishing Agency: Delhi, India, 2006. [Google Scholar]
- Cvetanović, A.; Uysal, S.; Pavlić, B.; Sinan, K.I.; Llorent-Martínez, E.J.; Zengin, G. Tamarindus indica L. seed: Optimization of maceration extraction recovery of tannins. Food Anal. Methods 2020, 13, 579–590. [Google Scholar] [CrossRef]
- Okoduwa, S.I.R.; Umar, I.A.; James, D.B.; Inuwa, H.M.; Habila, J.D. Evaluation of extraction protocols for anti-diabetic phytochemical substances from medicinal plants. World J. Diabetes 2016, 7, 605. [Google Scholar] [CrossRef]
- Ćujić, N.; Šavikin, K.; Janković, T.; Pljevljakušić, D.; Zdunić, G.; Ibrić, S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016, 194, 135–142. [Google Scholar] [CrossRef]
- Kannaian, U.P.N.; Edwin, J.B.; Rajagopal, V.; Shankar, S.N.; Srinivasan, B. Phytochemical composition and antioxidant activity of coconut cotyledon. Heliyon 2020, 6, e03411. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Lal, S.; Rashmi. Modified cold percolation method for extracting oil from oil seeds. J. Sci. Ind. Res. 2002, 61, 630–634. [Google Scholar]
- Ennaifer, M.; Bouzaiene, T.; Chouaibi, M.; Hamdi, M. Pelargonium graveolens aqueous decoction: A new water-soluble polysaccharide and antioxidant-rich extract. BioMed. Res. Int. 2018, 2018, e2691513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khajehei, F.; Niakousari, M.; Seidi Damyeh, M.; Merkt, N.; Claupein, W.; Graeff-Hoenninger, S. Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius poepp.) leaves: Comparison with conventional decoction. Molecules. 2017, 22, 2043. [Google Scholar] [CrossRef] [Green Version]
- Shang, Y.F.; Zhang, T.H.; Thakur, K.; Zhang, J.G.; CESPEDES-ACUÑA, C.L.A.; Wei, Z.J. HPLC-MS/MS targeting analysis of phenolics metabolism and antioxidant activity of extractions from Lycium barbarum and its meal using different methods. Food Sci. Technol. 2022, 42, e71022. [Google Scholar] [CrossRef]
- Chua, L.S.; Latiff, N.A.; Mohamad, M. Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract. J. Appl. Res. Med. Aromat. Plants 2016, 3, 64–70. [Google Scholar] [CrossRef]
- Larsen, B.S.; Kaiser, M.A.; Botelho, M.; Wooler, G.R.; Buxton, L.W. Comparison of pressurized solvent and reflux extraction methods for the determination of perfluorooctanoic acid in polytetrafluoroethylene polymers using LC-MS-MS. Analyst 2005, 130, 59–62. [Google Scholar] [CrossRef]
- Sulaiman, M.; Zhigila, D.A.; Mohammed, K.; Umar, D.M.; Aliyu, B.; Manan, F.A. Moringa oleifera seed as alternative natural coagulant for potential application in water treatment: A review. J. Adv. Rev. Sci. Res. 2017, 30, 1–11. [Google Scholar]
- Mohammad Azmin, S.N.H.; Abdul Manan, Z.; Wan Alwi, S.R.; Chua, L.S.; Mustaffa, A.A.; Yunus, N.A. Herbal processing and extraction technologies. Sep. Puri. Rev. 2016, 45, 305–320. [Google Scholar] [CrossRef]
- Duarte, K.; Justino, C.I.L.; Gomes, A.M.; Rocha-Santos, T.; Duarte, A.C. Green analytical methodologies for preparation of extracts and analysis of bioactive compounds. Compr. Anal. Chem. 2014, 65, 59–78. [Google Scholar] [CrossRef]
- Mustafa, A.; Trevino, L.M.; Turner, C. Pressurized hot ethanol extraction of carotenoids from carrot by-products. Molecules 2012, 17, 1809–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilaplana, F.; Karlsson, P.; Ribes-Greus, A.; Ivarsson, P.; Karlsson, S. Analysis of brominated flame retardants in styrenic polymers: Comparison of the extraction efficiency of ultrasonication, microwave-assisted extraction and pressurized liquid extraction. J. Chromatogr. A 2008, 1196, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Suhitha, S.; Devi, S.K.; Gunasekaran, K.; Carehome Pakyntein, H.; Bhattacharjee, A.; Velmurugan, D. Phytochemical analyses and activity of herbal medicinal plants of North-East India for anti-diabetic, anti-cancer and anti-tuberculosis and their docking studies. Curr. Top. Med. Chem. 2015, 15, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, O.; Gaibimei, P.; Singh, A. Ultrasound assisted extraction of oil from soybean. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 843–852. [Google Scholar] [CrossRef]
- Medina-Torres, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Kanwal, R.; Shafique, B.; Arshad, R.N.; Irfan, S.; Kieliszek, M.; Kowalczewski, P.L.; Irfan, M.; Khalid, M.Z.; Roobab, U.; et al. A critical review on pulsed electric field: A novel technology for the extraction of phytoconstituents. Molecules 2021, 26, 4893. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of pulsed electric field polyphenol extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Martínez, J.M.; Schottroff, F.; Haas, K.; Fauster, T.; Sajfrtová, M.; Álvarez, I.; Raso, J.; Jaeger, H. Evaluation of pulsed electric fields technology for the improvement of subsequent carotenoid extraction from dried Rhodotorula glutinis yeast. Food Chem. 2020, 323, 126824. [Google Scholar] [CrossRef]
- Pontillo, A.R.N.; Papakosta-Tsigkri, L.; Lymperopoulou, T.; Mamma, D.; Kekos, D.; Detsi, A. Conventional and enzyme-assisted extraction of rosemary leaves (Rosmarinus officinalis L.): Toward a greener approach to high added-value extracts. Appl. Sci. 2021, 11, 3724. [Google Scholar] [CrossRef]
- Heemann, A.C.W.; Heemann, R.; Kalegari, P.; Spier, M.R.; Santin, E. Enzyme-assisted extraction of polyphenols from green yerba mate. Braz. J. Food Technol. 2019, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ahangari, H.; King, J.W.; Ehsani, A.; Yousefi, M. Supercritical fluid extraction of seed oils—A short review of current trends. Trends Food Sci. Technol. 2021, 111, 249–260. [Google Scholar] [CrossRef]
- Volcho, K.P.; Anikeev, V.I. Environmentally benign transformations of monoterpenes and monoterpenoids in supercritical fluids. In Supercritical Fluid Technology for Energy and Environmental Applications; Anikeev, V.I., Fan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 69–87. [Google Scholar] [CrossRef]
- Jamaludin, R.; Kim, D.S.; Md Salleh, L.; Lim, S.B. Optimization of high hydrostatic pressure extraction of bioactive compounds from noni fruits. J. Food Meas. Charac. 2020, 14, 2810–2818. [Google Scholar] [CrossRef]
- Moreira, S.A.; Silva, S.; Costa, E.; Pinto, S.; Sarmento, B.; Saraiva, J.A. and Pintado, M.; Effect of high hydrostatic pressure extraction on biological activities and phenolics composition of winter savory leaf extracts. Antioxidants 2020, 9, 841. [Google Scholar] [CrossRef] [PubMed]
- Scepankova, H.; Martins, M.; Estevinho, L.; Delgadillo, I.; Saraiva, J.A. Enhancement of bioactivity of natural extracts by non-thermal high hydrostatic pressure extraction. Plant Foods Hum. Nut. 2018, 73, 253–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bier, M.C.J.; Medeiros, A.B.P.; de Oliveira, J.S.; Côcco, L.C.; da Luz Costa, J.; de Carvalho, J.C.; Soccol, C.R. Liquefied gas extraction: A new method for the recovery of terpenoids from agroindustrial and forest wastes. J. Super. Fluids 2016, 110, 97–102. [Google Scholar] [CrossRef]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Mulia, K.; Putri, S.; Krisanti, E.; Nasruddin. Natural deep eutectic solvents (NADES) as green solvents for carbon dioxide capture. AIP Conf. Proc. 2017, 1923, 020022. [Google Scholar] [CrossRef] [Green Version]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents—Solvents for the 21st century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Hidayat, R.; Wulandari, P. Methods of extraction: Maceration, percolation and decoction. Eureka Herba Indones. 2021, 2, 73–79. [Google Scholar] [CrossRef]
- Sasikala, M.; Sundaraganapathy, R. Preliminary phytochemical evaluation of hydroalcoholic extract of Ipomoea aquatica Forssk. from Aliyar Riverinein South India. Int. J. Pharma. Bio Sci. 2017, 8, 356–365. [Google Scholar] [CrossRef]
- Srivastava, P.; Bej, S.; Yordanova, K.; Wolkenhauer, O. Self-attention-based models for the extraction of molecular interactions from biological texts. Biomolecules 2021, 11, 1591. [Google Scholar] [CrossRef]
- Grdiša, M.; Varga, F.; Ninčević, T.; Ptiček, B.; Dabić, D.; Biošić, M. The extraction efficiency of maceration, UAE and MSPD in the extraction of pyrethrins from Dalmatian pyrethrum. Agric. Conspec. Sci. 2020, 85, 257–267. [Google Scholar]
- Abegunde, S.M.; Ayodele-Oduola, R.O. Comparison of Efficiency of Different Solvents used for the Extraction of Phytochemicals from the Leaf, Seed and Stem Bark of Calotropis Procera. Int. J. Sci. Res. 2015, 4, 835–838. [Google Scholar]
- Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Influence of temperature during Pre-fermentative maceration and alcoholic fermentation on the phenolic composition of “Cabernet sauvignon” wines. Foods 2021, 10, 1053. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K. Extraction and other downstream procedures for evaluation of herbal drugs. In Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine; Mukherjee, P.K., Ed.; Elsevier: Delhi, India, 2019; pp. 195–236. [Google Scholar] [CrossRef]
- Chanda, S.V.; Kaneria, M.J. Optimization of conditions for the extraction of antioxidants from leaves of Syzygium cumini L. using different solvents. Food Anal. Methods 2011, 5, 332–338. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldovan, M.L.; Iurian, S.; Puscas, C.; Silaghi-Dumitrescu, R.; Hanganu, D.; Bogdan, C.; Vlase, L.; Oniga, I.; Benedec, D. A design of experiments strategy to enhance the recovery of polyphenolic compounds from Vitis vinifera by-products through heat reflux extraction. Biomolecules 2019, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- López-Bascón, M.A.; Luque de Castro, M.D. Soxhlet extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. [Google Scholar] [CrossRef]
- Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Relationship between anthocyanins and skin color of table grapes treated with abscisic acid at different stages of berry ripening. Sci. Hortic. 2020, 259, 108859. [Google Scholar] [CrossRef]
- George, M.J.; Sichilongo, K.F.; Ramabulana, T.; Madala, N.E.; Dubery, I.A. Comparison of Soxhlet and reflux techniques for extraction and characterisation of potential endocrine-disrupting compounds from solid waste dumpsite soil. Rnviron. Monit. Assess. 2019, 191, 149. [Google Scholar] [CrossRef] [PubMed]
- Gopalasatheeskumar, K. Significant role of Soxhlet extraction process in phytochemical research. Mintage J. Pharm. Med. Sci. 2018, 7, 43–47. [Google Scholar]
- Patel, K.; Panchal, N.; Ingle, P. Review of extraction techniques extraction methods: Microwave, ultrasonic, pressurized fluid, soxhlet extraction etc. Int. J. Adv. Res. Chem. Sci. 2019, 6, 6–21. [Google Scholar]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Mendiola, J.A.; Ibañez, E. Pressurized liquid extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 375–398. [Google Scholar] [CrossRef]
- Johnson, T.A.; Morgan, M.V.; Aratow, N.A.; Estee, S.A.; Sashidhara, K.V.; Loveridge, S.T.; Segraves, N.L.; Crews, P. Assessing pressurized liquid extraction for the high-throughput extraction of marine-sponge-derived natural products. J. Nat. Prod. 2010, 73, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta. 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Irfan, M.; Suprajaa, P.S.; Praveen, R.; Reddy, B.M. Microwave-assisted one-step synthesis of nanohydroxyapetite from fish bones and mussel shells. Mater. Lett. 2021, 282, 128685. [Google Scholar] [CrossRef]
- Llompart, M.; Garcia-Jares, C.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Reedijk, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Curto, S.; Taj-Eldin, M.; Fairchild, D.; Prakash, P. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Med. Phys. 2015, 42, 6152–6161. [Google Scholar] [CrossRef]
- Akhtar, I.; Javad, S.; Yousaf, Z.; Iqbal, S.; Jabeen, K. Review: Microwave assisted extraction of phytochemicals an efficient and modern approach for botanicals and pharmaceuticals. Pakistan J. Pharma. Sci. 2019, 32, 223–230. [Google Scholar]
- Kapoore, R.; Butler, T.; Pandhal, J.; Vaidyanathan, S. Microwave-assisted extraction for microalgae: From biofuels to biorefinery. Biology 2018, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.; Ranveer, R.C.; Debaje, P.P.; Kadam, J.H.; Sahoo, A.K. Ultrasound assisted extraction of curcumin. Asian J. Dairy Food Res. 2018, 37, 250–252. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Kentish, S.; Ashokkumar, M. The physical and chemical effects of ultrasound. In Technologies for Food and Bioprocessing; Feng, H., Barbosa-Canovas, G., Weiss, J., Eds.; Springer: New York, NY, USA, 2010; pp. 1–12. [Google Scholar] [CrossRef]
- Poojary, M.M.; Lund, M.N.; Barba, F.J. Pulsed electric field (PEF) as an efficient technology for food additives and nutraceuticals development. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Barba, F.J., Parniakov, O., Wiktor, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 65–99. [Google Scholar] [CrossRef]
- Shorstkii, I.; Mirshekarloo, M.S.; Koshevoi, E. Application of pulsed electric field for oil extraction from sunflower seeds: Electrical parameter effects on oil yield. J. Food Process Eng. 2015, 40, e12281. [Google Scholar] [CrossRef]
- Gateau, H.; Blanckaert, V.; Veidl, B.; Burlet-Schiltz, O.; Pichereaux, C.; Gargaros, A.; Marchand, J.; Schoefs, B. Application of pulsed electric fields for the biocompatible extraction of proteins from the microalga Haematococcus pluvialis. Bioelectrochemistry 2021, 137, 107588. [Google Scholar] [CrossRef]
- Pataro, G.; Ferrari, G. Limitations of pulsed electric field utilization in food industry. In Pulsed Electric Fields to Obtain Healthier and Sustainable Food for Tomorrow; Barba, F.J., Parniakov, O., Wiktor, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 283–310. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Gligor, O.; Mocan, A.; Moldovan, C.; Locatelli, M.; Crișan, G.; Ferreira, I.C.F.R. Enzyme-assisted extractions of polyphenols—A comprehensive review. Trends Food Sci. Technol. 2019, 88, 302–315. [Google Scholar] [CrossRef]
- Muniglia, L.; Claisse, N.; Baudelet, P.H.; Ricochon, G. Enzymatic aqueous extraction (EAE). In Alternative Solvents for Natural Products Extraction; Chemat, F., Vian, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 67–204. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Tabe, H.; Sukenobe, K.; Kondo, T.; Sakurai, A.; Maruo, M.; Shimauchi, A.; Hirano, M.; Uno, S.; Kamiya, M.; Urano, Y.; et al. Cryogenic fluorescence localization microscopy of spectrally selected individual fret pairs in a water matrix. J. Phys. Chem. B. 2018, 122, 6906–6911. [Google Scholar] [CrossRef]
- Mendiola, J.A.; Herrero, M.; Castro-Puyana, M.; Ibáñez, E. Supercritical fluid extraction. In Natural Product Extraction Principles and Applications; Rostagno, M.A., Prado, J.M., Eds.; RSC Publishing: Cambridge, MA, USA, 2013; pp. 196–230. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xia, Z.; Li, B.; Tian, Y.; Zhang, G.; Li, M.; Dong, J. Advances in supercritical carbon dioxide extraction of bioactive substances from different parts of Ginkgo biloba L. Molecules 2021, 26, 4011. [Google Scholar] [CrossRef]
- Majid, A.; Phull, A.R.; Khaskheli, A.H.; Abbasi, S.; Sirohi, M.H.; Ahmed, I.; Ujjan, S.H.; Jokhio, I.A.; Ahmed, W. Applications and opportunities of supercritical fluid extraction in food processing technologies: A review. Int. J. Adv. Appl. Sci. 2019, 6, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gull, A. Supercritical fluid extraction: A review. J. Biol. Chem. Chron. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Geeta, H.P.; Srinivas, G.; Champawat, P.S. Supercritical Fluid Extraction of Bioactive Compounds from Bioresource: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 559–566. [Google Scholar] [CrossRef]
- Ding, X.; Liu, Q.; Hou, X.; Fang, T. Supercritical fluid extraction of metal chelate: A review. Crit. Rev. Anal. Chem. 2017, 47, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.M.; Farkas, D.; Turek, J.E. Preserving Foods through High-Pressure Processing. Food Technol. Mag. 2008, 62, 32–38. Available online: https://www.ift.org/news-and-publications/food-technology-magazine/issues/2008/november/features/preserving-foods-through-high-pressure-processing (accessed on 1 November 2008).
- Altuner, E.M.; Işlek, C.; Çeter, T.; Alpas, H. High hydrostatic pressure extraction of phenolic compounds from Maclura pomifera fruits. Afr. J. Bio. 2012, 11, 930–937. [Google Scholar] [CrossRef]
- Purnomo, T.A.B.; Kurniawan, Y.S.; Kesuma, R.F.; Yuliati, L. Selection of maceration solvent for natural pigment extraction from red fruit (Pandanus conoideus Lam). Indones. J. Nat. Pigment. 2020, 2, 8. [Google Scholar] [CrossRef]
- Fernández, M.D.L.Á.; Boiteux, J.; Espino, M.; Gomez, F.J.V.; Silva, M.F. Natural deep eutectic solvents-mediated extractions: The way forward for sustainable analytical developments. Anal. Chim. Acta. 2018, 1038, 1–10. [Google Scholar] [CrossRef]
- Costa, F.S.; Moreira, L.S.; Silva, A.M.; Silva, R.J.; dos Santos, M.P.; da Silva, E.G.P.; Grassi, M.T.; Gonzalez, M.H.; Amaral, C.D. Natural deep eutectic solvent-based microwave-assisted extraction in the medicinal herb sample preparation and elemental determination by ICP OES. J. Food Compos. Anal. 2022, 109, 104510. [Google Scholar] [CrossRef]
- Yang, Z. Natural deep eutectic solvents and their applications in biotechnology. In Application of Ionic Liquids in Biotechnology; Advances in Biochemical Engineering/Biotechnology series; Itoh, T., Koo, Y.M., Eds.; Springer: Cham, Germany; New York, NY, USA, 2018; Volume 168. [Google Scholar] [CrossRef]
- Hikmawanti, N.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural deep eutectic solvents (NADES): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Which is the best food emerging solvent: IL, DES or NADES? Trends Food Sci. Technol. 2019, 90, 133–146. [Google Scholar] [CrossRef]
- Erdocia, X.; Hernández-Ramos, F.; Morales, A.; Izaguirre, N.; de Hoyos-Martínez, P.L.; Labidi, J. Lignin extraction and isolation methods. In Lignin-Based Materials for Biomedical Applications; Santos, H., Feigueiredo, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 61–104. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, M.; Aggarwal, P.; Babbar, N. Extraction and screening of kinnow (Citrus reticulata L.) peel phytochemicals, grown in Punjab, India. Biomass Convers. Biorefin. 2022, 1, 1–13. [Google Scholar] [CrossRef]
- Mihalcea, L.; Turturică, M.; Cucolea, E.I.; Dănilă, G.M.; Dumitrașcu, L.; Coman, G.; Constantin, O.E.; Grigore-Gurgu, L.; Stănciuc, N. CO2 supercritical fluid extraction of oleoresins from Sea buckthorn pomace: Evidence of advanced bioactive profile and selected functionality. Antioxidants 2021, 10, 1681. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez-Santos, L.E.; Esparza-Estrada, J.; Vanegas-Mahecha, P. Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products. LWT-Food Sci. Tech. 2021, 139, 110598. [Google Scholar] [CrossRef]
- Li, H.; Zhao, C.; Tian, H.; Yang, Y.; Li, W. Liquid–liquid microextraction based on acid–base-induced deep eutectic solvents for determination of β-carotene and lycopene in fruit juices. Food Anal. Methods 2019, 12, 2777–2784. [Google Scholar] [CrossRef]
- Martínez, J.M.; Delso, C.; Angulo, J.; Álvarez, I.; Raso, J. Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innov. Food Sci. Emerg. Technol. 2018, 47, 421–427. [Google Scholar] [CrossRef]
- Cardenas-Toro, F.P.; Alcázar-Alay, S.C.; Coutinho, J.P.; Godoy, H.T.; Forster-Carneiro, T.; Meireles, M.A.A. Pressurized liquid extraction and low-pressure solvent extraction of carotenoids from pressed palm fiber: Experimental and economical evaluation. Food Bioprod. Process. 2015, 94, 90–100. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharova, L.V.; Daurtseva, A.V.; Flisyuk, E.V.; Shikov, A.N. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Pavlić, B.; Mrkonjić, Ž.; Teslić, N.; Kljakić, A.C.; Pojić, M.; Mandić, A.; Stupar, A.; Santos, S.; Duarte, A.R.C.; Mišan, A. Natural deep eutectic solvent (NADES) extraction improves polyphenol yield and antioxidant activity of wild thyme (Thymus serpyllum L.) extracts. Molecules 2022, 27, 1508. [Google Scholar] [CrossRef]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel extraction of polyphenols from sour cherry pomace using natural deep eutectic solvents—Ultrafast microwave-assisted NADES preparation and extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef]
- Frohlich, P.C.; Santos, K.A.; Hasan, S.D.M.; da Silva, E.A. Evaluation of the ethanolic ultrasound-assisted extraction from clove (Syzygium aromaticum) leaves and chemical characterization of the extracts. Food Chem. 2022, 373, 131351. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Rodríguez, G.; Marina, M.L.; Plaza, M. Enzyme-assisted extraction of bioactive non-extractable polyphenols from sweet cherry (Prunus avium L.) pomace. Food Chem. 2021, 339, 128086. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.J.; Kim, H.J.; Ko, M.J.; Chung, M.S. Recovery of hesperidin and narirutin from waste Citrus unshiu peel using subcritical water extraction aided by pulsed electric field treatment. Food Sci. Biotechnol. 2021, 30, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, P.; Bustos, D.; Montenegro, G.; Giordano, A. Ultrasound-Assisted Extraction of Anthocyanins Using Natural Deep Eutectic Solvents and Their Incorporation in Edible Films. Molecules 2021, 26, 984. [Google Scholar] [CrossRef]
- Sharma, B.R.; Kumar, V.; Kumar, S.; Panesar, P.S. Microwave assisted extraction of phytochemicals from Ficus racemosa. Curr. Res. Green Sustain. Chem. 2020, 3, 100020. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Ultrasound-assisted extraction of polyphenols from crude pollen. Antioxidants 2020, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- de Queiroz, J.E.; dos Santos, D.M.; Vila Verde, G.M.; de Paula, J.R.; de Aquino, G.L.B. Microwave irradiation to the rapid extraction of Stryphnodendron adstringens (Barbatimão) compounds by statistical planning. Nat. Prod. Res. 2019, 35, 354–358. [Google Scholar] [CrossRef]
- Thomas, J.; Barley, A.; Willis, S.; Thomas, J.; Verghese, M.; Boateng, J. Effect of Different Solvents on the Extraction of Phytochemicals in Colored Potatoes. Food Nut. Sci. 2020, 11, 942. [Google Scholar] [CrossRef]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural deep eutectic solvents for the extraction of phenyletanes and phenylpropanoids of Rhodiola rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [Green Version]
- de Mello, B.T.F.; Iwassa, I.J.; Cuco, R.P.; dos Santos Garcia, V.A.; da Silva, C. Methyl acetate as solvent in pressurized liquid extraction of crambe seed oil. J. Super. Fluids. 2019, 145, 66–73. [Google Scholar] [CrossRef]
- Castro-López, C.; Ventura-Sobrevilla, J.M.; González-Hernández, M.D.; Rojas, R.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Martínez-Ávila, G.C.G. Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chem. 2017, 237, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluid. 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as Alternatives for Extracting Phlorotannins from Brown Algae. Pharma. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Sharif, M.F.; Bennett, M.T. The effect of different methods and solvents on the extraction of polyphenols in ginger (Zingiber officinale). J. Teknol. 2016, 78, 49–54. [Google Scholar] [CrossRef] [Green Version]
- de Aquino, D.S.; Roders, C.; Vessoni, A.M.; Stevanato, N.; Da Silva, C. Assessment of obtaining sunflower oil from enzymatic aqueous extraction using protease enzymes. Grasas Aceites 2022, 73, e452. [Google Scholar] [CrossRef]
- Hien, T.T.; Minh, N.T. Enhancing the extraction of pumpkin seed (Cucurbita pepo L) for increasing oil yield and its phytosterol content. Food Sci. Appl. Biotechnol. 2021, 4, 6. [Google Scholar] [CrossRef]
- Jalani, N.F. Extraction and purification of phytosterols mixture from palm fatty acid distillate (PFAD) using multistage extraction processes. J. Oil Palm. Res. 2020, 33, 93–102. [Google Scholar] [CrossRef]
- Jafarian Asl, P.; Niazmand, R.; Yahyavi, F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction. Heliyon 2020, 6, e03592. [Google Scholar] [CrossRef]
- Ibrahim, N.H.; Mahmud, M.S.; Nurdin, S. Microwave-assisted extraction of β-sitosterol from cocoa shell waste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012106. [Google Scholar] [CrossRef]
- Regalado-Rentería, E.; Aguirre-Rivera, J.R.; González-Chávez, M.M.; Sánchez-Sánchez, R.; Martínez-Gutiérrez, F.; Juárez-Flores, B.I. Assessment of extraction methods and biological value of seed oil from eight variants of prickly pear fruit (Opuntia spp.). Waste Biomass Valorization 2018, 11, 1181–1189. [Google Scholar] [CrossRef]
- Li, H.; Zhai, B.; Sun, J.; Fan, Y.; Zou, J.; Cheng, J.; Zhang, X.; Shi, Y.; Guo, D. Ultrasound-assisted extraction of total saponins from Aralia taibaiensis: Process optimization, phytochemical characterization, and mechanism of α-glucosidase inhibition. Drug Des. Devel. Ther. 2022, 16, 83–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chu, X.; Su, J.; Fu, X.; Kan, Q.; Wang, X.; Zhang, X. Enzyme-assisted ultrasonic extraction of total flavonoids from Acanthopanax senticosus and their enrichment and antioxidant properties. Processes 2021, 9, 1708. [Google Scholar] [CrossRef]
- Yang, G.Y.; Song, J.N.; Chang, Y.Q.; Wang, L.; Zheng, Y.G.; Zhang, D.; Guo, L. Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from Dioscoreae nipponicae rhizoma. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef]
- Ramli, N.H.; Yusup, S.; Quitain, A.T.; Johari, K.; Kueh, B.W.B. Optimization of saponin extracts using microwave-assisted extraction as a sustainable biopesticide to reduce Pomacea canaliculata population in paddy cultivation. Sustain. Chem. Pharm. 2019, 11, 23–35. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Li, Z.; Liu, R.; Zhang, A.; Xiao, Z.; Ma, L.; Li, J.; Deng, S. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Process. Technol. 2018, 174, 88–94. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, Y.; Pan, J.; Qu, H. Optimization of the ethanol recycling reflux extraction process for saponins using a design space approach. PLoS ONE. 2014, 9, e114300. [Google Scholar] [CrossRef]
- Lanjekar, K.J.; Rathod, V.K. Green extraction of glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochem. 2021, 102, 22–32. [Google Scholar] [CrossRef]
- Shikov, A.N.; Shikova, V.A.; Whaley, A.O.; Burakova, M.A.; Flisyuk, E.V.; Whaley, A.K.; Terninko, I.I.; Generalova, Y.E.; Gravel, I.V.; Pozharitskaya, O.N. The Ability of Acid-Based Natural Deep Eutectic Solvents to Co-Extract Elements from the Roots of Glycyrrhiza glabra L. and Associated Health Risks. Molecules 2022, 27, 7690. [Google Scholar] [CrossRef]
- Rodrigues, V.H.; de Melo, M.M.R.; Portugal, I.; Silva, C.M. Extraction of added-value triterpenoids from Acacia dealbata leaves using supercritical fluid extraction. Processes 2021, 9, 1159. [Google Scholar] [CrossRef]
- Yingngam, B.; Chiangsom, A.; Brantner, A. Modeling and optimization of microwave-assisted extraction of pentacyclic triterpenes from Centella asiatica leaves using response surface methodology. Ind. Crops. Prod. 2020, 147, 112231. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, W.; Liu, S. Optimization of ultrasonic-assisted extraction of polysaccharides and triterpenoids from the medicinal mushroom Ganoderma lucidum and evaluation of their in vitro antioxidant capacities. PLoS ONE. 2020, 15, e0244749. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Pastor, I.; Fernandez-Hernandez, A.; Perez-Criado, S.; Rivas, F.; Martinez, A.; Garcia-Granados, A.; Parra, A. Microwave-assisted extraction versus Soxhlet extraction to determine triterpene acids in olive skins. J. Sep. Sci. 2017, 40, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, S.; Wang, H.; Zhang, M. Supercritical CO2 fluid extraction, physicochemical properties, antioxidant activities and hypoglycemic activity of polysaccharides derived from fallen Ginkgo leaves. Food Biosci. 2021, 42, 101153. [Google Scholar] [CrossRef]
- García, P.; Fredes, C.; Cea, I.; Lozano-Sánchez, J.; Leyva-Jiménez, F.J.; Robert, P.; Vergara, C.; Jimenez, P. Recovery of Bioactive Compounds from Pomegranate (Punica granatum L.) Peel Using Pressurized Liquid Extraction. Foods 2021, 10, 203. [Google Scholar] [CrossRef]
- Hussain, S.; Sharma, M.; Bhat, R. Valorisation of sea buckthorn pomace by optimization of ultrasonic-assisted extraction of soluble dietary fibre using response surface methodology. Foods 2021, 10, 1330. [Google Scholar] [CrossRef]
- Rivas, M.Á.; Casquete, R.; de Guía Córdoba, M.; Benito, M.J.; Hernández, A.; Ruiz-Moyano, S.; Martín, A. Functional properties of extracts and residual dietary fibre from pomegranate (Punica granatum L.) peel obtained with different supercritical fluid conditions. LWT-Food Sc. Tech. 2021, 145, 111305. [Google Scholar] [CrossRef]
- Douard, L.; Bras, J.; Encinas, T.; Belgacem, M.N. Natural acidic deep eutectic solvent to obtain cellulose nanocrystals using the design of experience approach. Carbohydr. Polym. 2021, 252, 117136. [Google Scholar] [CrossRef]
- Gan, J.; Huang, Z.; Yu, Q.; Peng, G.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Microwave assisted extraction with three modifications on structural and functional properties of soluble dietary fibers from grapefruit peel. Food Hydrocoll. 2020, 101, 105549. [Google Scholar] [CrossRef]
- Cheikh Rouhou, M.; Abdelmoumen, S.; Thomas, S.; Attia, H.; Ghorbel, D. Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): Structural and microstructural studies. Int. J. Biol. Macromol. 2018, 116, 901–910. [Google Scholar] [CrossRef]
- Gómez, A.V.; Tadini, C.C.; Biswas, A.; Buttrum, M.; Kim, S.; Boddu, V.M.; Cheng, H.N. Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT 2019, 107, 79–88. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Liu, W.; Qi, Q.; Hu, X.; Li, S.; Lei, J.; Rong, L. Extraction of polysaccharide from Dendrobium nobile Lindl. by subcritical water extraction. ACS Omega 2019, 4, 20586–20594. [Google Scholar] [CrossRef] [PubMed]
Phytochemical | Sources | Active Site | Health Benefits | References |
---|---|---|---|---|
Carotenoids | ||||
α-carotene | Mango, pear, peach, pumpkin, butternut squash, green bean, okra, avocado, chard, collard greens, tangerine, banana | Pulp of mango, tangerine, avocado, butternut squash, and pumpkin; the green part of okra, chard, collard greens | Regulates gene transcription, protects against lung and prostate cancer, good for eye health | [7,11,12] |
β-carotene | Red pepper, carrot, spinach, peaches, brussel sprout, grapefruit, sour cherries, papaya, mango, romaine lettuce | Green parts of plants, flowers, roots, and stems of plants; pulp of mango, grapefruit, papaya, etc. | Enhancement of gap junction communication, enhances immunity | [6,13,14] |
Lutein | Asparagus, spinach, kale, green beans, orange pepper, lettuce, broccoli, parsley, pistachio nuts | Leaves of spinach, lettuce, parsley; flower part of broccoli; essential oil of pepper; middle lamella of nuts | Improves immunity, good for eye health | [15] |
Lycopene | Tomato, sweet potato, pink grapefruit, pink guava, watermelon, apricot, papaya, rosehip | Skin and pulp of tomato, grapefruit, watermelon, apricot, guava | Improves eyesight, reduces pain, and strengthens bones | [16,17] |
Xanthophylls | Pumpkin, papaya, pepper, mushroom | Young leaves of papaya, pumpkin; essential oil of pepper | Antioxidant properties, boosts eye health and blood flow | [18,19] |
Cryptoxanthin | Apricot, papaya, peach, cashew apples, seabuckthorn, mandarin, tangerine, lemon | Skin and pulp of cashew apple and citrus fruits | Maintains pulmonary health, prevents arthritis and inflammation; improves immune response | [20,21] |
Fucoxanthin | Brown seaweeds, Bacillariophyta, Chromophyta, Macroalgae, Microalgae | Chloroplasts of brown seaweeds | Antioxidant, anti-inflammatory, antihypertensive, anticancerous, antidiabetic, antiobesity and radioprotective properties | [10,22] |
Polyphenols | ||||
Flavones | Parsley, oregano, rosemary, green olive, pumpkin, watermelon, bell pepper, honey, fava beans, chickpea, field pea | Essential oils of spices, pulp of watermelon and pumpkin | Action against free radicals, protective effects against cardiovascular diseases, cancers, and other age-related diseases | [23,24] |
Flavanones | Grapefruit, pumelo, mandarin, lemon | Pulp of citrus fruits | Protective effects against cardiovascular diseases, prevention of inflammation and allergies | [25,26] |
Flavanols | Chocolate, tea, grapes | Green and black tea leaves | Action against free radicals, prevention of inflammation and allergies | [27,28] |
Anthocyanidins and anthocyanins | Blueberry, cranberry, pomegranate, red grapes, black soybean, purple corn, red cabbage, raspberry | Flesh of berries, skin of grapes, corn fiber | Protective effects against cardiovascular diseases, prevention of inflammation and allergies | [26,29] |
Polyphenol amides | Oats, chili, pepper | Capsaicinoids in chili pepper, avenanthramides in oats | Prevention of inflammation and allergies | [23,30] |
Isoprenoids | ||||
Limonene | Lemon, lime, orange | Oil of orange | Anti-inflammatory, antioxidant, and anti-stress properties, as well as a neuroprotective role in Alzheimer’s disease | [31,32,33] |
Myrcene | Mango, guava, thyme, parsley, bay leaves, lemongrass, cardamom, sweet basil, juniper | Essential oil extract of lemongrass, juniper, cardamom | Anxiolytic, antioxidant, anti-aging, anti-inflammatory, and analgesic properties | [34] |
Pinene | Cannabis, turpentine tree, ironwort, sage plant | Oil of cannabis, ironwort, and sage plants | Antibacterial, antitumor, anti-inflammatory, and sedative properties | [35,36] |
Phytosterols | ||||
Campesterol | Banana, pomegranate, pepper, coffee, grapefruit, cucumber, onion, oat, potato, lemongrass | Pulp of bananas, pomegranate, grapefruit; essential oil of pepper, lemongrass, etc. | Used in the treatment of allergy, asthma, psoriasis, rheumatoid arthritis, chronic fatigue syndrome, migraine, and menstrual disorders | [37,38,39] |
Sitosterol | Avocado, hazelnut, walnut, soybean, olive, canola | Oil of hazelnut, walnut, olive, canola, soybean | Used in the treatment of an enlarged bladder; reduces the risk of cardiovascular disease, promotes anti-cancer properties | [28,37,38] |
Stigmasterol | Soybean, calabar bean, and rapeseed | Oil of soybean, calabar bean, and rapeseed | Has a protective effect against gastric and duodenal ulcers, neurological disorders | [37,38,40] |
Campestanol | Soybean, olive, hazelnut, flax, cashew | Oil of soybean, olive, hazelnut, flax, and cashew | Prostate health, hair growth, reduce LDL cholesterol | [37,38,41] |
Sitostanol | Pepper, banana, pomegranate, soybean, olive | Oil of pepper, soybean, and olive; pulps of banana and pomegranate | Reduces chance of heart attack and stroke, improves hair growth | [37,38,42] |
Stigmastanol | Hazelnut, olive, corn | Oil of hazelnut and olive, as well as corn fiber | Reduces chance of heart attack and stroke, antioxidant activity | [37,38,43] |
Saponins | ||||
Dammarane | Black gram, garden pea, pigeon pea | Middle lamella of peas and legumes | Exhibits hypoglycemic, virucidal, and antifungal activity | [44,45] |
Tirucallane | Sunflower, almond, walnut | Oil of almond, sunflower, and walnut | Has an effect on the transverse tubular system and sarcoplasmic reticulum at lower concentration (10µg/mL), has an effect on skin inflammation and diarrhea | [46,47] |
Oleanane | Common bean, black gram, almond | Middle lamella of legumes and oil of almond | Antimicrobial and hypolipidemic activities; aids in the treatment of chronic diseases | [48] |
Dietary fiber | ||||
Pectin | Apples, apricots, cherries, oranges, carrots, citrus fruits, rose hip | Peels of citrus fruits, middle lamella of cell walls of fruits | Lowers LDL cholesterol; cures diarrhea; promotes the generation of peripheral regulatory T cells | [49,50,51] |
Cellulose | Rice, wheat, sisal, jute, hemp, corn, flasks | Rice husk, wheat straw, kernels of corn | Improves insulin sensitivity, gut microbial viability and diversity; reduces the level of bad cholesterol; reduces free radical damage to cells | [52,53,54] |
Lignin | Flaxseeds, parsley, carrots, horseradish), Wheat, tomatoes, berries, broccoli, cabbage, green beans, peaches, peas, Brazil nuts, apples | Seeds of tomatoes and berries, stems of cabbage and broccoli, bran of wheat | Lowers the risk of cancer, reduces hot flashes in postmenopausal women, protects from cardiovascular diseases | [55,56,57] |
Hemicelluloses | Rice, wheat, nuts, legumes, whole grains | Bran of rice and wheat, middle lamella of legumes, nuts | Improves metabolites from gut microflora; reduces cardiovascular risk | [58,59] |
Polysaccharides | ||||
Amylose | Corn, rice, quinoa, potato, oats, arrowroot | Starchy endosperm of corn, rice, potato, and oats; powder of arrowroot | Cures immunodeficiency, cancer, inflammation, hypertension, hyperlipidemia | [60] |
Amylopectin | White potato, rice, oats, corn | Starchy endosperm of rice, white potato, oats, and corn | Improves intestinal health and increases gut microbiota | [61,60] |
Resistant starch | Buckwheat, oats, lentils, peas, beans | Starchy endosperm of oats, buckwheat, and lentils | Cures hypercholesterolemia and obesity; improves gut microbiota | [62] |
Arabinoxylan | Rice, barley, guar gum, wheat, finger millet | Starchy endosperm of rice, barley, wheat, and finger millet | Improves gastrointestinal health; reduces diabetics, cancer, and obesity | [63,64,65] |
Extraction Method | Solvent | Temperature | Pressure | Time Consumed | References |
---|---|---|---|---|---|
Maceration | Water, aqueous and non-aqueous solvent | Room temperature or cold method (4–15 °C) | Atmospheric pressure | 3–7 days or up to months | [103,104,105] |
Percolation | Water, aqueous and non-aqueous solvent | Room temperature or under heat (35–70 °C) | Atmospheric pressure | 2–24 h | [106,107] |
Decoction | Water | Atmospheric pressure | 1–2 h | 65–70 °C | [108,109] |
Reflux extraction | Water, aqueous and non-aqueous solvent | 60–100 °C | Atmospheric pressure | 15 min–2 h | [110,111,112] |
Soxhlet extraction | Organic solvents | 65–100 °C | Atmospheric pressure | 6–24 h | [113,114] |
Pressurized liquid extraction | Water, aqueous and non-aqueous solvent | 50–200 °C | 50–300 psi | 5–20 min | [115,116,117] |
Microwave-assisted extraction | Water, aqueous and non-aqueous solvent | 40–120 °C | Atmospheric pressure | 30 s–20 min | [118] |
Ultrasound-assisted extraction | Water, aqueous and non-aqueous solvent | 20–80 °C | Atmospheric pressure | 10–60 min | [119,120] |
Pulsed electric field extraction | Water, aqueous and non-aqueous solvent | 20–50 °C | 1.32–1.64 bar or atmospheric pressure | 5 min–48 h | [121,122,123] |
Enzyme-assisted extraction | Water, aqueous andnon-aqueous solvent | 33–67 °C | Atmospheric pressure | 20 min–4 h | [124,125] |
Supercritical fluid extraction | Supercritical Fluids such as S-CO2, S-H2O | 40–80 °C | 35–70 MPa | 10–60 min | [126,127] |
High hydrostatic pressure extraction | Water, ethanol, glycerol, silicon oil, or a mixture of solvents | Below 45 °C | 100–1000 MPa | 3–15 min | [128,129,130] |
Liquid gas extraction | Liquified petroleum gas (propane, n-butane), dimethyl ether | 35 °C | Room temperature or low pressure 200–1000 kPa | 20 min | [10,131] |
Natural deep eutectic solvent extraction | Deep eutectic solvents such as reline, ethaline, glycerine, etc. | 25–105 °C | Atmospheric pressure | 30–60 min | [132,133,134] |
Solvent | Polarity Index | Relative Polarity |
---|---|---|
Water | 9 | 1 |
Acetic acid | 6.2 | 0.648 |
Ethanol | 5.2 | 0.654 |
Methanol | 5.1 | 0.762 |
Acetone | 5.1 | 0.355 |
Ethyl acetate | 4.4 | 0.228 |
Methyl acetate | 4.4 | 0.253 |
Chloroform | 4.1 | 0.259 |
Butanol | 4 | 0.586 |
Isopropanol | 3.9 | 0.546 |
Benzene | 2.7 | 0.111 |
Toluene | 2.4 | 0.099 |
Cyclohexane | 0.2 | 0.006 |
Hexane | 0 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; P, N.; Kumar, M.; Jose, A.; Tomer, V.; Oz, E.; Proestos, C.; Zeng, M.; Elobeid, T.; K, S.; et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules 2023, 28, 887. https://doi.org/10.3390/molecules28020887
Kumar A, P N, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, K S, et al. Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules. 2023; 28(2):887. https://doi.org/10.3390/molecules28020887
Chicago/Turabian StyleKumar, Ashwani, Nirmal P, Mukul Kumar, Anina Jose, Vidisha Tomer, Emel Oz, Charalampos Proestos, Maomao Zeng, Tahra Elobeid, Sneha K, and et al. 2023. "Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method" Molecules 28, no. 2: 887. https://doi.org/10.3390/molecules28020887
APA StyleKumar, A., P, N., Kumar, M., Jose, A., Tomer, V., Oz, E., Proestos, C., Zeng, M., Elobeid, T., K, S., & Oz, F. (2023). Major Phytochemicals: Recent Advances in Health Benefits and Extraction Method. Molecules, 28(2), 887. https://doi.org/10.3390/molecules28020887