Enzymatic Cocktail Formulation for Xylan Hydrolysis into Xylose and Xylooligosaccharides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hemicellulose Extraction and Determination of Residual Lignin Content
2.2. Xylanase and β-xylosidase from A. versicolor
2.3. Complete Hydrolysis of Xylan
2.4. Xylooligosaccharides Production
3. Methodology
3.1. Hemicellulose Extraction
3.2. Evaluation of Lignin Residual Content
3.3. Purification of Xylanase and β-xylosidase from A. versicolor
3.4. Determination of Enzymatic Activity and Protein Quantification
3.5. Complete Xylan Hydrolysis and Xylooligosaccharides Production
3.6. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Akpinar, O.; Erdogan, K.; Bakir, U.; Yilmaz, L. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharides. LWT Food Sci. Technol. 2010, 43, 119–125. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Y. Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresour. Technol. 2019, 282, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Zhou, J.; Chen, X.; Ji, W.; Zhang, L.; Hu, W.; Lu, Z. Evaluation of an efficient fed-batch enzymatic hydrolysis strategy to improve production of functional xylooligosaccharides from maize straws. Ind. Crops Prod. 2020, 157, 112920. [Google Scholar] [CrossRef]
- Freitas, C.; Terrone, C.C.; Masarin, F.; Carmona, E.C.; Brienzo, M. In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatal. Agric. Biotechnol. 2021, 33, 101973. [Google Scholar] [CrossRef]
- Ando, H.; Ohba, H.; Sasaki, T.; Takamine, K.; Kamino, Y.; Moriwaki, S.; Bakalova, R.; Uemura, Y.; Hatate, Y. Hot-compressed-water decomposed products from bamboo manifest a selective cytotoxicity against acute lymphoblastic leukemia cells. Toxicol. In Vitro 2004, 18, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.; Carmona, E.; Michel, B. TOP Xylooligosaccharides production process from lignocellulosic biomass andbioactive effects. Bioact. Carbohydr. Diet. Fibre 2019, 18, 100184. [Google Scholar] [CrossRef]
- Giese, E.C.; Hirosi, T.; Silva, M.D.L.C.; Silva, R.; Barbosa, A.M. Production, properties and applications of oligosaccharides. Semin. Ciênc. Agrárias 2011, 32, 683–700. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.P.; Benerjee, J.; Arora, A. Prebiotic potential of oligosaccharides: A focus on xylan derived oligosaccharides. Bioact. Carbohydr. Dietery Fibre 2015, 5, 19–30. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Schillinger, U. Introduction to pre-and probiotics. Food Res. Int. 2002, 35, 109–116. [Google Scholar] [CrossRef]
- Shimizu, M.; Hachimura, S. Gut as a target for functional food. Trends Food Sci. Technol. 2011, 22, 646–650. [Google Scholar] [CrossRef]
- He, M.X.; Wang, J.L.; Qin, H.; Shui, Z.X.; Zhu, Q.L.; Wu, B.; Tan, F.; Pan, K.; Hu, Q.; Dai, L.; et al. Bamboo: A new source of carbohydrate for biorefinery. Carbohydr. Polym. 2014, 111, 645–654. [Google Scholar] [CrossRef]
- Carmona, E.; Rochetto-Braga, M.R.; Pizzirani-Kleiner, A.A.; Jorge, J.A. Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor. FEMS Microbiol. Lett. 1998, 166, 311–315. [Google Scholar] [CrossRef]
- Forsan, C.F.; de Freitas, C.; Masarin, F.; Brienzo, M. Xylooligosaccharide production from sugarcane bagasse and leaf using Aspergillus versicolor endoxylanase and diluted acid. Biomass Convers. Biorefinery 2021, 1–16. [Google Scholar] [CrossRef]
- Yi, Z.; Su, X.; Asangba, A.E.; Abdel-Hamid, A.M.; Chakraborty, S.; Dodd, D.; Stroot, P.G.; Mackie, R.I.; Cann, I. Xylan Deconstruction by Thermophilic Thermoanaerobacterium bryantii Hemicellulases Is Stimulated by Two Oxidoreductases. Catalysts 2022, 12, 182. [Google Scholar] [CrossRef]
- Ávila, P.F.; Cairo, J.P.L.F.; Damásio, A.; Forte, M.B.S.; Goldbeck, R. Xylooligosaccharides production from a sugarcane biomass mixture: Effects of commercial enzyme combinations on bagasse/straw hydrolysis pretreated using different strategies. Food Res. Int. 2020, 128. [Google Scholar] [CrossRef] [PubMed]
- Brienzo, M.; Siqueira, A.F.; Milagres, A.M. Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem. Eng. J. 2009, 46, 199–204. [Google Scholar] [CrossRef]
- Carmona, E.C.; Pizzirani-Kleiner, A.A.; RosimMonteiro, R.T.; Jorge, J.A. Xylanase production by Aspergillus versicolor. J. Basic Microbiol. 1998, 37, 387–393. [Google Scholar] [CrossRef]
- Kumar, S.; Ramón, D. Purification and regulation of the synthesis of a β-xylosidase from Aspergillus nidulans. FEMS Microbiol. Lett. 1996, 2–3, 287–293. [Google Scholar] [CrossRef]
- Quintero, L.P.; de Souza, N.P.Q.; Milagres, A.M.F. The Effect of Xylan Removal on the High-Solid Enzymatic Hydrolysis of Sugarcane Bagasse. Bioenergy Res. 2020, 15, 1096–1106. [Google Scholar] [CrossRef]
- Raj, K.; Krishnan, C. Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis. Renew. Energy 2020, 153, 392–403. [Google Scholar] [CrossRef]
- Freitas, C.; Terrone, C.C.; Carmona, E.C.; Brienzo, M. Evaluation of xylooligosaccharides effect on the growth of probiotic microorganisms. Braz. J. Dev. 2020, 6, 73400–73411. [Google Scholar] [CrossRef]
- Reque, P.M.; Pinilla, C.M.B.; Gautério, G.V.; Kalil, S.J.; Brandelli, A. Xylooligosaccharides production from wheat middlings bioprocessed with Bacillus subtilis. Food Res. Int. 2019, 126, 108673. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Qi, X.; Zhen, M.; Qian, H.; Nie, Y.; Bai, C.; Zhang, S.; Bai, X.; Ju, M. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chem. 2021, 23, 119–231. [Google Scholar] [CrossRef]
- Nie, Y.; Hou, Q.; Li, W.; Bai, C.; Bai, X.; Ju, M. Efficient Synthesis of Furfural from Biomass Using SnCl4 as Catalyst in Ionic Liquid. Molecules 2019, 7, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndumbo, M.; de Freitas, C.; de Conti, A.C.; Brienzo, M. Biomass biorefinery for biopolymers isolation, fermentable sugars, and briquettes production. Biomass Conv. Bioref. 2022, 1–11. [Google Scholar] [CrossRef]
- Pereira, B.S.; de Freitas, C.; Contiero, J.; Brienzo, M. Enzymatic Production of Xylooligosaccharides from Xylan Solubilized from Food and Agroindustrial Waste. Bioenerg. Res. 2022, 15, 1195–1203. [Google Scholar] [CrossRef]
- Forsan, C.F.; Schmatz, A.; Masarin, F.; Brienzo, M. Xylooligosaccharide production by optimized sulfuric, acetic acid, and liquid hot water treatment of sugarcane leaves. Biomass Conv. Bioref. 2022, 1–12. [Google Scholar] [CrossRef]
- Freitas, C.; Brienzo, M. Enzymatic Hydrolysis Applied to Banana Pseudostem Biomass Compared to Solubilized Xylan for Xylooligosaccharides Production with High Substrate Concentration. Bioenerg. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Golveia, E.R.; Nascimento, R.T.; Souto-Maior, A.M.; Rocha, G.J.M. Validação de metodologia para a caracterização química de bagaço de cana-de-açúcar. Química Nova 2009, 32. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
Assay | Xylanase (IU/g) | β-xylosidase (IU/g) | Accessory Enzymes (IU/g) * | X2 (%) | X3 (%) | X4 (%) | X5 + X6 (%) | XOS (%) | XOS (g/L) | Xylose (%) | Xylose (g/L) | Total Sugars (%) | Total Sugars (g/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | 5 | 4 | 9.9 | 28.1 | 13.4 | 19.0 | 70.4 | 14.1 | 1.5 | 0.3 | 71.9 | 14.3 |
2 | 200 | 5 | 4 | 5.0 | 22.2 | 11.6 | 11.1 | 49.9 | 10.0 | 1.4 | 0.1 | 51.3 | 10.0 |
3 | 60 | 15 | 4 | 8.0 | 29.0 | 15.5 | 22.0 | 74.5 | 14.9 | 0.2 | 0.0 | 74.7 | 14.9 |
4 | 200 | 15 | 4 | 3.0 | 30.1 | 12.2 | 17.5 | 62.8 | 12.5 | 1.1 | 0.2 | 63.9 | 12.8 |
5 | 60 | 5 | 8 | 14.0 | - | 21.5 | 30.7 | 66.2 | 13.2 | 0.2 | 0.1 | 66.4 | 13.3 |
6 | 200 | 5 | 8 | 1.4 | - | 17.2 | 24.5 | 43.1 | 8.6 | 0.5 | 0.1 | 43.6 | 8.7 |
7 | 60 | 15 | 8 | 14.2 | - | 18.8 | 26.8 | 59.8 | 12.0 | 1.0 | 0.2 | 60.8 | 12.2 |
8 | 200 | 15 | 8 | 39.5 | - | 20.2 | 28.8 | 40.0 | 17.7 | 3.6 | 0.7 | 43.6 | 18.4 |
9 | 12.2 | 10 | 6 | 31.6 | - | 18.5 | 26.5 | 76.6 | 15.3 | 3.7 | 0.7 | 80.3 | 16.0 |
10 | 247.7 | 10 | 6 | 25.6 | 33.5 | 14.0 | 20.0 | 93.1 | 19.6 | 4.0 | 0.8 | 97.1 | 19.7 |
11 | 130 | 1.5 | 6 | 22.1 | 35.8 | 15.2 | 21.7 | 93.0 | 19.0 | 5.4 | 1.0 | 98.4 | 20.0 |
12 | 130 | 18.41 | 6 | 24.2 | 35.2 | 12.6 | 18.0 | 90.0 | 19.3 | 3.3 | 0.6 | 93.3 | 20.0 |
13 | 130 | 10 | 2.6 | 14.0 | 28.8 | 14.9 | 21.2 | 78.9 | 15.7 | 8.9 | 1.7 | 87.8 | 17.5 |
14 | 130 | 10 | 9.3 | 30.0 | - | 16.9 | 24.0 | 70.9 | 14.1 | 4.1 | 0.8 | 75.0 | 15.0 |
15 | 130 | 10 | 6 | 15.0 | 33.2 | 15.9 | 22.6 | 85.0 | 17.3 | 8.0 | 1.6 | 94.3 | 18.9 |
16 | 130 | 10 | 6 | 16.0 | 33.3 | 16.8 | 24.0 | 90.1 | 18.2 | 9.0 | 1.8 | 99.1 | 20.0 |
17 | 130 | 10 | 6 | 14.0 | 32.2 | 15.0 | 21.3 | 83.0 | 16.5 | 7.1 | 1.4 | 89.6 | 17.9 |
Experiment | Xylanase (IU/g) | Accessory Enzymes (IU/g) * | X2 | X3 | X4 | X5 + X6 | Total XOS (%) | Total XOS (g/L) |
---|---|---|---|---|---|---|---|---|
1 | 20 | 2 | 9.9 | 23.1 | 21.0 | 30.0 | 84.0 | 16.8 |
2 | 80 | 2 | 5.5 | 39.6 | 16.0 | 22.8 | 83.9 | 16.8 |
3 | 20 | 10 | 8.8 | 19.6 | 17.8 | 25.4 | 71.6 | 14.3 |
4 | 80 | 10 | 5.5 | 18.6 | 16.0 | 15.3 | 55.4 | 11.1 |
5 | 7.5 | 6 | 5.6 | 23.3 | 21.2 | 30.2 | 80.3 | 16.0 |
6 | 92.4 | 6 | 7.0 | 23.2 | 21.0 | 30.0 | 81.2 | 16.2 |
7 | 50 | 0.3 | 3.1 | 33.1 | 18.3 | 26.1 | 80.6 | 16.1 |
8 | 50 | 11.6 | 6.8 | 19.2 | 17.4 | 24.9 | 68.3 | 13.6 |
9 | 50 | 6 | 6.1 | 18.9 | 17.1 | 24.5 | 66.6 | 13.3 |
10 | 50 | 6 | 3.8 | 42.6 | 14.2 | 13.6 | 74.2 | 14.8 |
11 | 50 | 6 | 3.1 | 39.4 | 17.4 | 16.7 | 76.6 | 15.3 |
Enzyme | Microorganism | Activity (IU/mL) | Specific Activity (IU/mg Protein) | Temperature (°C) | pH |
---|---|---|---|---|---|
acetyl xylan esterase | Orpinomyces sp. | 1000 | 36 | 40 | 6.7 |
α-glucuronidase | Geobacillus stearothermophilus | 100 | 40 | 70 | 7.0 |
α-L arabinofuranosidase | Bacteroides ovatus | 1000 | 575 | 40 | 6.5 |
feruloyl esterase | Rumen microorganisms | 400 | 30 | 40 | 6.5 |
Experiment | Xylanase (IU/g) | β-xylosidase (IU/g) | Auxiliary Enzymes (IU/g) * |
---|---|---|---|
1 | 60 | 5 | 4 |
2 | 200 | 5 | 4 |
3 | 60 | 15 | 4 |
4 | 200 | 15 | 4 |
5 | 60 | 5 | 8 |
6 | 200 | 5 | 8 |
7 | 60 | 15 | 8 |
8 | 200 | 15 | 8 |
9 | 12.27 | 10 | 6 |
10 | 247.73 | 10 | 6 |
11 | 130 | 1.59 | 6 |
12 | 130 | 18.41 | 6 |
13 | 130 | 10 | 2.64 |
14 | 130 | 10 | 9.36 |
15 | 130 | 10 | 6 |
16 | 130 | 10 | 6 |
17 | 130 | 10 | 6 |
Experiment | Xylanase (IU/g) | Auxiliary Enzymes (IU/g) * |
---|---|---|
1 | 20 | 2 |
2 | 80 | 2 |
3 | 20 | 10 |
4 | 80 | 10 |
5 | 7.57 | 6 |
6 | 92.43 | 6 |
7 | 50 | 0.34 |
8 | 50 | 11.66 |
9 | 50 | 6 |
10 | 50 | 6 |
11 | 50 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, D.; de Freitas, C.; Brienzo, M. Enzymatic Cocktail Formulation for Xylan Hydrolysis into Xylose and Xylooligosaccharides. Molecules 2023, 28, 624. https://doi.org/10.3390/molecules28020624
Bueno D, de Freitas C, Brienzo M. Enzymatic Cocktail Formulation for Xylan Hydrolysis into Xylose and Xylooligosaccharides. Molecules. 2023; 28(2):624. https://doi.org/10.3390/molecules28020624
Chicago/Turabian StyleBueno, Danilo, Caroline de Freitas, and Michel Brienzo. 2023. "Enzymatic Cocktail Formulation for Xylan Hydrolysis into Xylose and Xylooligosaccharides" Molecules 28, no. 2: 624. https://doi.org/10.3390/molecules28020624
APA StyleBueno, D., de Freitas, C., & Brienzo, M. (2023). Enzymatic Cocktail Formulation for Xylan Hydrolysis into Xylose and Xylooligosaccharides. Molecules, 28(2), 624. https://doi.org/10.3390/molecules28020624