Synthesis and In Vitro Anticancer Evaluation of Flavone—1,2,3-Triazole Hybrids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Coupling Components
2.2. Chemistry
2.3. Biological Evaluation
3. Materials and Methods
3.1. General Materials and Methods
3.2. Chemistry
3.2.1. 7-(O-Propargyl)chrysin (6)
3.2.2. 5,7-Bis(O-propargyl)chrysin (7)
3.2.3. Click Reaction of 7-(O-Propargyl)chrysin (6) with 4-Fluorobenzyl Azide; Preparation of 8
3.2.4. Click Reaction of 7-(O-Propargyl)chrysin (6) with 4-Nitrobenzyl Azide; Preparation of 9
3.2.5. Click Reaction of 5,7-Bis(O-propargyl)chrysin (7) with 4-Fluorobenzyl Azide; Preparation of 10
3.2.6. Click Reaction of 5,7-Bis(O-propargyl)chrysin (7) with 4-Nitrobenzyl Azide; Preparation of 11
3.2.7. O-Alkylation of Kaempferol (4) with Propargyl Bromide
3.2.8. Click Reaction of 3,7-Bis(O-propargyl)kaempferol (13) with 4-Fluorobenzyl Azide; Preparation of 15
3.3. Biological Evaluation
3.3.1. One-Dose Screen
3.3.2. Five-Dose Screen
3.3.3. Antiproliferative Assay on HeLa and SiHa Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nepali, K.; Sharma, S.; Sharma, M.; Bedi, P.M.S.; Dhar, K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem. 2014, 77, 422–487. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Singh, P.K.; Verma, H.; Singh, H.; Silakari, O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur. J. Med. Chem. 2018, 151, 62–97. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Keglevich, P.; Hazai, L. Vinca Hybrids with Antiproliferative Effect. Med. Res. Arch. 2022, 10, 2–11. [Google Scholar] [CrossRef]
- Keglevich, P.; Hazai, L.; Gorka-Kereskényi, Á.; Péter, L.; Gyenese, J.; Lengyel, Z.; Kalaus, G.; Dubrovay, Z.; Dékány, M.; Orbán, E.; et al. Synthesis and in vitro antitumor effect of new vindoline derivatives coupled with amino acid esters. Heterocycles 2013, 87, 2299–2317. [Google Scholar] [CrossRef] [Green Version]
- Keglevich, A.; Dányi, L.; Rieder, A.; Horváth, D.; Szigetvári, Á.; Dékány, M.; Szántay, C., Jr.; Latif, A.D.; Hunyadi, A.; Zupkó, I.; et al. Synthesis and Cytotoxic Activity of New Vindoline Derivatives Coupled to Natural and Synthetic Pharmacophores. Molecules 2020, 25, 1010. [Google Scholar] [CrossRef] [Green Version]
- Keglevich, A.; Zsiros, V.; Keglevich, P.; Szigetvári, Á.; Dékány, M.; Szántay, C., Jr.; Mernyák, E.; Wölfling, J.; Hazai, L. Synthesis and in vitro Antitumor Effect of New Vindoline-Steroid Hybrids. Curr. Org. Chem. 2019, 23, 958–966. [Google Scholar] [CrossRef]
- Mayer, S.; Nagy, N.; Keglevich, P.; Szigetvári, Á.; Dékány, M.; Szántay, C., Jr.; Hazai, L. Synthesis of Novel Vindoline-Chrysin Hybrids. Chem. Biodivers. 2021, 18, e202100725. [Google Scholar] [CrossRef]
- Keglevich, A.; Szigetvári, Á.; Dékány, M.; Szántay, C., Jr.; Keglevich, P.; Hazai, L. Synthesis and in vitro Antitumor Effect of New Vindoline Derivatives Coupled with Triphenylphosphine. Curr. Org. Chem. 2019, 23, 852–858. [Google Scholar] [CrossRef]
- Mayer, S.; Keglevich, P.; Ábrányi-Balogh, P.; Szigetvári, Á.; Dékány, M.; Szántay, C., Jr.; Hazai, L. Synthesis and In Vitro Anticancer Evaluation of Novel Chrysin and 7-Aminochrysin Derivatives. Molecules 2020, 25, 888. [Google Scholar] [CrossRef] [Green Version]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising Anticancer Agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, S.-J.; Liu, Y. 1,2,3-Triazole containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationship. Eur. J. Med. Chem. 2019, 183, 111700. [Google Scholar] [CrossRef] [PubMed]
- El Azab, I.H.; El-Sheshtawy, H.S.; Bakr, R.B.; Elkanzi, N.A.A. New 1,2,3-Triazole-Containing Hybrids as Antitumor Candidates: Design, Click Reaction Synthesis, DFT Calculations, and Molecular Docking Study. Molecules 2021, 26, 708. [Google Scholar] [CrossRef]
- Liang, T.; Sun, X.; Li, W.; Hou, G.; Gao, F. 1,2,3-Triazole-Containing Compounds as Anti-Lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure-Activity Relationship. Front. Pharmacol. 2021, 12, 661173. [Google Scholar] [CrossRef] [PubMed]
- Çot, A.; Çeşme, M.; Onur, S.; Aksakal, E.; Şahin, İ.; Tümer, F. Rational design of 1,2,3-triazole hybrid structures as novel anticancer agents: Synthesis, biological evaluation and molecular docking studies. J. Biomol. Struct. Dyn. 2022; ahead of print. [Google Scholar] [CrossRef]
- Pereira, D.; Pinto, M.; Correia-da-Silva, M.; Cidadae, H. Recent Advances in Bioactive Flavonoid Hybrids Linked by 1,2,3-Triazole Ring Obtained by Click Chemistry. Molecules 2022, 27, 230. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113, 34–49. [Google Scholar] [CrossRef]
- Rao, Y.J.; Sowjanya, T.; Thirupathi, G.; Murthy, N.Y.S.; Kotapalli, S.S. Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol. Divers. 2018, 22, 803–814. [Google Scholar] [CrossRef]
- Qi, Y.; Ding, Z.; Yao, Y.; Ma, D.; Ren, F.; Yang, H.; Chen, A. Novel triazole analogs of apigenin-7-methyl ether exhibit potent antitumor activity against ovarian carcinoma cells via the induction of mitochondrial-mediated apoptosis. Exp. Ther. Med. 2019, 17, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, Y.; Yang, F.; Meng, Q. Synthesis and molecular docking studies of chrysin derivatives as antibacterial agents. Med. Chem. Res. 2017, 26, 2225–2234. [Google Scholar] [CrossRef]
- Mehdi, S.H.; Nafees, S.; Zafaryab, M.; Khan, M.A.; Rizvi, M.M.A. Chrysin: A Promising Anticancer Agent its Current Trends and Future Perspectives. Eur. J. Exp. Biol. 2018, 8, 3–16. [Google Scholar] [CrossRef]
- Khoo, B.Y.; Chua, S.L.; Balaram, P. Apoptotic Effects of Chrysin in Human Cancer Cell Lines. Int. J. Mol. Sci. 2010, 11, 2188–2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, Q.; Wang, C.; Yuan, W.; Zhang, G. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates. Beilstein J. Org. Chem. 2015, 11, 288–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Alam, M.M. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch. Pharm. 2022, 355, e2100158. [Google Scholar] [CrossRef]
- Tian, L.; Zheshan, Q.; Yingquan, F.; Hongjing, Y. Design, Synthesis and Antiproliferative Activity of Chrysin Derivatives Bearing Triazole Moieties. Chin. J. Org. Chem. 2020, 40, 440–446. [Google Scholar] [CrossRef]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Ruiz-Mendoza, F.J.; Mendoza-Espinoza, D.; Gonzalez-Montiel, S. Synthesis and Catalytic Activity of Coumarin- and Chrysin-Tethered Triazolylidene Gold(I) Complexes. Eur. J. Inorg. Chem. 2018, 42, 4622–4629. [Google Scholar] [CrossRef]
- Rodriguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.A.; Heller, L.; Csuk, R. Novel hederagenin–triazolyl derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 2016, 115, 257–267. [Google Scholar] [CrossRef]
- Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.H.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst. 1991, 83, 757–766. [Google Scholar] [CrossRef]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Alley, M.C.; Scudiero, D.A.; Monks, A.M.; Hursey, L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of Drug Screening with Panels of Human Tumor Cell Lines Using a Microculture Tetrazolium Assay. Cancer Res. 1988, 48, 589–601. [Google Scholar] [PubMed]
- Shoemaker, R.H.; Monks, A.; Alley, M.C.; Scudiero, D.A.; Fine, D.L.; McLemore, T.L.; Abbott, B.J.; Paull, K.D.; Mayo, J.G.; Boyd, M.R. Development of Human Tumor Cell Line Panels for Use in Disease-Oriented Drug Screening. Prog. Clin. Biol. Res. 1988, 276, 265–286. [Google Scholar] [PubMed]
- NCI-60 Screening Methodology. Available online: https://dtp.cancer.gov/discovery_development/nci-60/methodology.htm (accessed on 14 December 2022).
- Latif, A.D.; Gonda, T.; Vágvölgyi, M.; Kúsz, N.; Kulmány, A.; Ocsovszki, I.; Zomborszki, Z.P.; Zupkó, I. Synthesis and In Vitro Antitumor Activity of Naringenin Oxime and Oxime Ether Derivatives. Int. J. Mol. Sci. 2019, 20, 2184. [Google Scholar] [CrossRef] [PubMed]
Type | Growth Percent Rates (GPR) at 10 µM (%), GI50 (µM) | |||||||
---|---|---|---|---|---|---|---|---|
3 | 8 | 9 | 10 | 11 | 15 | |||
GPR | GPR | GI50 | GPR | GPR | GI50 | GPR | GPR | |
Leukemia | ||||||||
CCRF-CEM | 102.24 | 108.83 | >100 | 112.13 | 77.52 | >100 | 104.65 | 60.89 |
HL-60(TB) | 116.20 | 103.89 | >100 | 114.55 | 98.05 | >100 | 111.80 | 105.09 |
K-562 | 96.80 | 109.01 | >100 | 103.64 | 45.49 | >100 | 97.39 | 46.23 |
MOLT-4 | 105.93 | 95.46 | >100 | 105.64 | 83.24 | >100 | 96.99 | 79.61 |
RPMI-8226 | 101.04 | 93.67 | >100 | 99.31 | 45.61 | - | 116.61 | 72.72 |
SR | 77.87 | 96.85 | - | - | 32.75 | - | - | 64.31 |
Non-small cell lung cancer | ||||||||
A549/ATCC | 98.46 | 81.15 | 19.6 | 89.08 | 23.19 | - | 96.90 | 65.31 |
EKVX | 89.35 | 60.13 | 63.8 | 90.34 | 57.19 | - | 102.98 | 87.06 |
HOP-62 | 113.09 | −28.49 | 3.76 | 93.12 | 12.36 | 2.33 | 91.16 | 84.75 |
HOP-92 | 77.93 | −3.35 | 4.43 | 94.82 | −17.95 | 1.89 | 84.25 | 44.25 |
NCI-H226 | 86.84 | 60.93 | 3.51 | 75.07 | - | 2.07 | - | 42.31 |
NCI-H23 | 92.57 | 45.78 | 7.70 | 87.18 | 29.16 | 3.70 | 88.96 | 49.35 |
NCI-H322M | 98.30 | 86.09 | >100 | 93.16 | 43.54 | - | 95.03 | 70.85 |
NCI-H460 | 98.34 | 71.35 | - | 98.72 | 2.98 | - | 104.21 | 49.75 |
NCI-H522 | 88.95 | 15.11 | 6.60 | 87.56 | 17.59 | 3.66 | 73.12 | 48.28 |
Colon cancer | ||||||||
COLO 205 | 104.94 | 102.72 | >100 | 102.46 | 68.37 | - | 118.35 | 108.22 |
HCC-2998 | 102.88 | 100.11 | >100 | 88.27 | 74.13 | >100 | 100.57 | 95.35 |
HCT-116 | 82.69 | 48.53 | 5.91 | 86.67 | 18.21 | 3.52 | 88.21 | 41.04 |
HCT-15 | 90.99 | 94.40 | - | 87.80 | 73.48 | - | 96.46 | 77.80 |
HT29 | 102.89 | 100.18 | >100 | 99.75 | 35.13 | - | 113.48 | 100.61 |
KM12 | 92.93 | 99.40 | >100 | 100.75 | 43.34 | - | 100.81 | 83.69 |
SW-620 | 101.60 | 102.02 | >100 | 99.67 | 60.30 | - | 95.28 | 79.33 |
CNS cancer | ||||||||
SF-268 | 101.55 | 14.38 | 4.32 | 98.12 | 21.78 | 3.52 | 89.15 | 63.29 |
SF-295 | 99.86 | 10.37 | 10.2 | 96.99 | 38.91 | 2.32 | 99.59 | 65.43 |
SF-539 | 92.17 | 1.10 | 5.17 | 84.22 | −10.54 | 2.21 | 88.21 | 38.91 |
SNB-19 | 86.04 | −32.68 | 4.51 | 86.51 | 12.08 | 4.55 | 76.47 | 54.14 |
SNB-75 | 88.98 | −65.88 | 3.74 | 85.58 | 6.29 | 1.69 | 81.23 | 53.82 |
U251 | 80.67 | −16.90 | 13.9 | 93.22 | 10.45 | 2.80 | 106.25 | 71.92 |
Melanoma | ||||||||
LOX IMVI | 85.08 | 78.50 | >100 | 95.50 | 34.84 | - | 99.64 | 58.11 |
MALME-3M | 101.76 | 6.44 | 5.06 | 83.74 | 15.21 | 2.03 | 88.16 | 53.41 |
M14 | 106.78 | 65.94 | >100 | 94.81 | 56.84 | - | 89.13 | 55.83 |
MDA-MB-435 | 99.53 | 98.22 | - | 95.76 | 40.86 | - | 100.25 | 67.94 |
SK-MEL-2 | 109.90 | −39.78 | 6.80 | 99.46 | 48.82 | 4.49 | 85.75 | 83.61 |
SK-ML-28 | 101.70 | 93.61 | - | 92.25 | 29.89 | - | 100.20 | 39.71 |
SK-MEL-5 | 92.85 | 84.47 | >100 | 93.58 | 17.09 | - | 89.29 | 54.58 |
UACC-257 | 118.94 | 86.27 | >100 | 95.41 | 46.37 | - | 94.84 | 83.76 |
UACC-62 | 82.24 | 53.15 | - | 76.28 | 29.96 | - | 88.18 | 42.06 |
Ovarian cancer | ||||||||
IGROV1 | 95.22 | 31.22 | 17.6 | 78.98 | 43.47 | 4.45 | 94.68 | 53.46 |
OVCAR-3 | 97.60 | 61.68 | - | 112.53 | 21.16 | - | 105.28 | 53.34 |
OVCAR-4 | 112.07 | - | - | 97.37 | −9.56 | - | 100.27 | 66.63 |
OVCAR-5 | 99.07 | 83.70 | >100 | 95.94 | 55.10 | - | 93.98 | 81.04 |
OVCAR-8 | 95.19 | 20.41 | 3.76 | 91.53 | 12.68 | - | 91.22 | 56.95 |
NCI/ADR-RES | 92.84 | 43.17 | 5.57 | 78.12 | 70.43 | >100 | 99.23 | 88.99 |
SK-OV-3 | 128.15 | 20.59 | 6.57 | 91.10 | 16.22 | - | 109.51 | 87.44 |
Renal cancer | ||||||||
786-0 | 99.20 | 2.24 | 9.26 | 101.61 | 1.13 | 1.96 | 100.98 | 74.81 |
A498 | 86.62 | 63.12 | 42.0 | 88.60 | 30.81 | - | 95.12 | 71.72 |
ACHN | 85.03 | 5.21 | 6.23 | 89.78 | 7.30 | - | 85.97 | 53.80 |
CAKI-1 | 83.56 | 58.70 | 5.76 | 96.44 | 54.63 | - | 83.45 | 67.48 |
RXF 393 | 91.19 | 9.11 | 3.58 | - | −8.05 | 1.78 | 85.59 | 37.74 |
SN12C | 85.77 | 58.08 | >100 | 98.25 | 38.67 | - | 85.22 | 56.19 |
TK-10 | 107.21 | 0.59 | 10.4 | 102.72 | 37.10 | 3.01 | 106.68 | 90.47 |
UO-31 | 89.42 | 67.00 | - | 74.94 | 3.64 | - | 81.08 | 79.66 |
Prostate cancer | ||||||||
PC-3 | 93.17 | 75.99 | - | 92.51 | 35.99 | - | 107.77 | 77.08 |
DU-145 | 92.00 | 65.83 | >100 | 107.16 | 40.01 | - | 101.38 | 67.54 |
Breast cancer | ||||||||
MCF7 | 103.05 | 65.73 | - | 87.76 | 53.27 | - | 88.82 | 59.60 |
MDA-MB-231/ATCC | 82.64 | 12.02 | 16.6 | 82.84 | 9.10 | 2.34 | 73.21 | 57.07 |
HS 578T | 92.51 | 9.08 | 6.26 | 85.62 | 20.89 | 3.28 | 78.08 | 45.96 |
BT-549 | 91.01 | 16.31 | 7.98 | 83.18 | 18.75 | - | 78.58 | 49.15 |
T-47D | 101.44 | 44.20 | - | 85.48 | 40.62 | - | 96.27 | 52.68 |
MDA-MB-468 | 91.09 | 53.94 | 20.0 | 80.62 | 38.69 | 1.97 | 74.09 | 54.70 |
IC50 [95% Confidence Interval](µM) | ||
---|---|---|
Hybrid/Cell Line | HeLa | SiHa |
8 | 1.909 [1.543–2.361] | >30 |
10 | 0.7331 [0.5771–0.9312] | 1.352 [1.148–1.592] |
Cisplatin | 12.26 [10.36–14.49] | 5.305 [4.650–6.053] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh-Rieder, A.; Keglevich, P.; Hunyadi, A.; Latif, A.D.; Zupkó, I.; Hazai, L. Synthesis and In Vitro Anticancer Evaluation of Flavone—1,2,3-Triazole Hybrids. Molecules 2023, 28, 626. https://doi.org/10.3390/molecules28020626
Németh-Rieder A, Keglevich P, Hunyadi A, Latif AD, Zupkó I, Hazai L. Synthesis and In Vitro Anticancer Evaluation of Flavone—1,2,3-Triazole Hybrids. Molecules. 2023; 28(2):626. https://doi.org/10.3390/molecules28020626
Chicago/Turabian StyleNémeth-Rieder, Alexandra, Péter Keglevich, Attila Hunyadi, Ahmed Dhahir Latif, István Zupkó, and László Hazai. 2023. "Synthesis and In Vitro Anticancer Evaluation of Flavone—1,2,3-Triazole Hybrids" Molecules 28, no. 2: 626. https://doi.org/10.3390/molecules28020626
APA StyleNémeth-Rieder, A., Keglevich, P., Hunyadi, A., Latif, A. D., Zupkó, I., & Hazai, L. (2023). Synthesis and In Vitro Anticancer Evaluation of Flavone—1,2,3-Triazole Hybrids. Molecules, 28(2), 626. https://doi.org/10.3390/molecules28020626