Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Nanostructures
2.2. Characterization of Obtained Nanostructures
2.3. Characterization of New Sun-Protection Products
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis
3.2.1. Synthesis of TiO2 NPs
3.2.2. Synthesis of TiO2/SiO2
3.2.3. Synthesis of TiO2/Ag
3.3. Methods
3.4. Preparation of W/O Emulsion
3.5. Test of Parameters of Control W/O Emulsion
3.6. Test of Sunscreen of Obtained Cosmetic Formulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Vries, E.; Arnold, M.; Altsitsiadis, E.; Trakatelli, M.; Hinrichs, B.; Stockfleth, E.; Coebergh, J.; on behalf of the EPIDERM Group. Potential Impact of Interventions Resulting in Reduced Exposure to Ultraviolet (UV) Radiation (UVA and UVB) on Skin Cancer Incidence in Four European Countries, 2010–2050. Br. J. Dermatol. 2012, 167, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, N.; Rigano, L. The New Sunscreens among Formulation Strategy, Stability Issues, Changing Norms, Safety and Efficacy Evaluations. Cosmetics 2017, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Rundhaug, J.E.; Pavone, A.; Kim, E.; Fischer, S.M. The Effect of Cyclooxygenase-2 Overexpression on Skin Carcinogenesis Is Context Dependent. Mol. Carcinog. 2007, 46, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Fantini, R.; Vezzalini, G.; Zambon, A.; Ferrari, E.; Di Renzo, F.; Fabbiani, M.; Arletti, R. Boosting Sunscreen Stability: New Hybrid Materials from UV Filters Encapsulation. Micropor. Mesopor. Mat. 2021, 328, 111478. [Google Scholar] [CrossRef]
- Wulf, H.C.; Sandby-Møller, J.; Kobayasi, T.; Gniadecki, R. Skin Aging and Natural Photoprotection. Micron 2004, 35, 185–191. [Google Scholar] [CrossRef]
- Martin, C.A.; Rezaeeyazdi, M.; Colombani, T.; Dinneen, S.R.; Kumar, A.; Bencherif, S.A.; Deravi, L.F. A Bioinspired, Photostable UV-Filter That Protects Mammalian Cells against UV-Induced Cellular Damage. Chem. Commun. 2019, 55, 12036–12039. [Google Scholar] [CrossRef]
- Mitchnick, M.A.; Fairhurst, D.; Pinnell, S.R. Microfine Zinc Oxide (Z-Cote) as a Photostable UVA/UVB Sunblock Agent. J. Am. Acad. Dermatol. 1999, 40, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, N.; Tang, Z.-R.; Xu, Y.-J. Synthesis of One-Dimensional CdS@TiO2 Core–Shell Nanocomposites Photocatalyst for Selective Redox: The Dual Role of TiO2 Shell. ACS Appl. Mater. Interfaces 2012, 4, 6378–6385. [Google Scholar] [CrossRef]
- Kalpana, V.N.; Rajeswari, V.D. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorg. Chem. Appl. 2018, 2, 3569758. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A Review of Inorganic UV Filters Zinc Oxide and Titanium Dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y.; Wang, S.Q. The Role of Antioxidants in Photoprotection: A Critical Review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef]
- Geoffrey, K.; Mwangi, A.N.; Maru, S.M. Sunscreen Products: Rationale for Use, Formulation Development and Regulatory Considerations. Saudi Pharm. J. 2019, 27, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Libon, F.; Courtois, J.; Le Goff, C.; Lukas, P.; Fabregat-Cabello, N.; Seidel, L.; Cavalier, E.; Nikkels, A.F. Sunscreens Block Cutaneous Vitamin D Production with Only a Minimal Effect on Circulating 25-Hydroxyvitamin D. Arch. Osteoporos. 2017, 12, 66. [Google Scholar] [CrossRef]
- Hansen, L.; Tjønneland, A.; Køster, B.; Brot, C.; Andersen, R.; Lundqvist, M.; Christensen, J.; Olsen, A. Sun Exposure Guidelines and Serum Vitamin D Status in Denmark: The StatusD Study. Nutrients 2016, 8, 266. [Google Scholar] [CrossRef] [Green Version]
- Slomberg, D.L.; Catalano, R.; Bartolomei, V.; Labille, J. Release and Fate of Nanoparticulate TiO2 UV Filters from Sunscreen: Effects of Particle Coating and Formulation Type. Environ. Pollut. 2021, 271, 116263. [Google Scholar] [CrossRef] [PubMed]
- Montalvo-Quiros, S.; Luque-Garcia, J.L. Combination of Bioanalytical Approaches and Quantitative Proteomics for the Elucidation of the Toxicity Mechanisms Associated to TiO2 Nanoparticles Exposure in Human Keratinocytes. Food Chem. Toxicol. 2019, 127, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Srivastava, S.K.; Arora, S.; Omar, Y.; Ijaz, Z.M.; Al-Ghadhban, A.; Deshmukh, S.K.; Carter, J.E.; Singh, A.P.; Singh, S. Comparative Analysis of the Relative Potential of Silver, Zinc-Oxide and Titanium-Dioxide Nanoparticles against UVB-Induced DNA Damage for the Prevention of Skin Carcinogenesis. Cancer Lett. 2016, 383, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Simaiti, A.; Xu, M.; Lv, S.; Jiang, H.; He, X.; Fan, Y.; Zhu, S.; Du, B.; Yang, W.; et al. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles. Nanomaterials 2022, 12, 2769. [Google Scholar] [CrossRef]
- Nomoev, A.V.; Bardakhanov, S.P.; Schreiber, M.; Bazarova, D.G.; Romanov, N.A.; Baldanov, B.B.; Radnaev, B.R.; Syzrantsev, V.V. Structure and Mechanism of the Formation of Core–Shell Nanoparticles Obtained through a One-Step Gas-Phase Synthesis by Electron Beam Evaporation. Beilstein J. Nanotechnol. 2015, 6, 874–880. [Google Scholar] [CrossRef]
- Seriani, N.; Pinilla, C.; Cereda, S.; De Vita, A.; Scandolo, S. Titania–Silica Interfaces. J. Phys. Chem. C 2012, 116, 11062–11067. [Google Scholar] [CrossRef]
- Liu, R.; Priestley, R.D. Rational Design and Fabrication of Core–Shell Nanoparticles through a One-Step/Pot Strategy. J. Mater. Chem. A 2016, 4, 6680–6692. [Google Scholar] [CrossRef]
- Fratoddi, I. Hydrophobic and Hydrophilic Au and Ag Nanoparticles. Breakthroughs and Perspectives. Nanomaterials 2017, 8, E11. [Google Scholar] [CrossRef] [Green Version]
- Avciata, O.; Benli, Y.; Gorduk, S.; Koyun, O. Ag Doped TiO2 Nanoparticles Prepared by Hydrothermal Method and Coating of the Nanoparticles on the Ceramic Pellets for Photocatalytic Study: Surface Properties and Photoactivity. J. Eng. Technol. Appl. Sci. 2016, 1, 34–50. [Google Scholar] [CrossRef]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Ramana Reddy, M.V.; Sayanna, R. Photoluminescence and Photocatalytic Activity of Spin Coated Ag+ Doped Anatase TiO2 Thin Films. Opt. Mater. 2020, 108, 110401. [Google Scholar] [CrossRef]
- Hong, D.; Lyu, L.-M.; Koga, K.; Shimoyama, Y.; Kon, Y. Plasmonic Ag@TiO2 Core–Shell Nanoparticles for Enhanced CO2 Photoconversion to CH4. ACS Sustain. Chem. Eng. 2019, 7, 18955–18964. [Google Scholar] [CrossRef]
- Prakash, J.; Kaith, B.S.; Sun, S.; Bellucci, S.; Swart, H.C. Recent Progress on Novel Ag–TiO2 Nanocomposites for Antibacterial Applications. In Microbial Nanobionics: Volume 2, Basic Research and Applications; Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 121–143. ISBN 978-3-030-16534-5. [Google Scholar]
- Jankiewicz, B.J.; Jamiola, D.; Choma, J.; Jaroniec, M. Silica–Metal Core–Shell Nanostructures. Adv. Colloid Interface Sci. 2012, 170, 28–47. [Google Scholar] [CrossRef]
- Yuenyongsuwan, J.; Nithiyakorn, N.; Sabkird, P.; O’Rear, E.A.; Pongprayoon, T. Surfactant Effect on Phase-Controlled Synthesis and Photocatalyst Property of TiO2 Nanoparticles. Mater. Chem. Phys. 2018, 214, 330–336. [Google Scholar] [CrossRef]
- Szczepańska, E.; Grobelna, B.; Ryl, J.; Kulpa, A.; Ossowski, T.; Niedziałkowski, P. Efficient Method for the Concentration Determination of Fmoc Groups Incorporated in the Core-Shell Materials by Fmoc–Glycine. Molecules 2020, 25, 3983. [Google Scholar] [CrossRef] [PubMed]
- Nithyadevi, D.; Kumar, P.S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.; Meena, P. Improved Microbial Growth Inhibition Activity of Bio-Surfactant Induced Ag–TiO2 Core Shell Nanoparticles. Appl. Surf. Sci. 2015, 327, 504–516. [Google Scholar] [CrossRef]
- Kang, J.; Li, Y.; Chen, Y.; Wang, A.; Yue, B.; Qu, Y.; Zhao, Y.; Chu, H. Core–Shell Ag@SiO2 Nanoparticles of Different Silica Shell Thicknesses: Preparation and Their Effects on Photoluminescence of Lanthanide Complexes. Mater. Res. Bull. 2015, 71, 116–121. [Google Scholar] [CrossRef]
- Gupta, A.K.; Srivastava, P.; Bahadur, L. Improved Performance of Ag-Doped TiO2 Synthesized by Modified Sol–Gel Method as Photoanode of Dye-Sensitized Solar Cell. Appl. Phys. A 2016, 122, 724. [Google Scholar] [CrossRef]
- Szczepańska, E.; Synak, A.; Bojarski, P.; Niedziałkowski, P.; Wcisło, A.; Ossowski, T.; Grobelna, B. Dansyl-Labelled Ag@SiO2 Core-Shell Nanostructures—Synthesis, Characterization, and Metal-Enhanced Fluorescence. Materials 2020, 13, 5168. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Yang, D.; Zhu, J.; Chen, D.; Jiang, Z. Nitrogen-Doped TiO2 Nanotubes with Enhanced Photocatalytic Activity Synthesized by a Facile Wet Chemistry Method. Mater. Res. Bull. 2009, 44, 146–150. [Google Scholar] [CrossRef]
- Ganapathy, M.; Senthilkumar, N.; Vimalan, M.; Jeysekaran, R.; Potheher, I.V. Studies on Optical and Electrical Properties of Green Synthesized TiO2@Ag Core-Shell Nanocomposite Material. Mater. Res. Express 2018, 5, 1–36. [Google Scholar] [CrossRef]
- Bai, Y.; Li, Z.; Cheng, B.; Zhang, M.; Su, K. Higher UV-Shielding Ability and Lower Photocatalytic Activity of TiO2@SiO2/APTES and Its Excellent Performance in Enhancing the Photostability of Poly(p-Phenylene Sulfide). RSC Adv. 2017, 7, 21758–21767. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Song, X.; Zhang, R.; Zhang, M.; Liu, F. Preparation and Characterization of Ag@TiO2 Core-Shell Nanoparticles in Water-in-Oil Emulsions. Eur. J. Inorg. Chem. 2005, 2005, 1643–1648. [Google Scholar] [CrossRef]
- Caloni, S.; Durazzano, T.; Franci, G.; Marsili, L. Sunscreens’ UV Filters Risk for Coastal Marine Environment Biodiversity: A Review. Diversity 2021, 13, 374. [Google Scholar] [CrossRef]
- Parke, M.A.; Perez-Sanchez, A.; Zamil, D.H.; Katta, R. Diet and Skin Barrier: The Role of Dietary Interventions on Skin Barrier Function. Dermatol. Pract. Concept 2021, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nicoara, A.I.; Ene, V.L.; Voicu, B.B.; Bucur, M.A.; Neacsu, I.A.; Vasile, B.S.; Iordache, F. Biocompatible Ag/Fe-Enhanced TiO2 Nanoparticles as an Effective Compound in Sunscreens. Nanomaterials 2020, 10, 570. [Google Scholar] [CrossRef] [Green Version]
- Slomberg, D.L.; Ollivier, P.; Miche, H.; Angeletti, B.; Bruchet, A.; Philibert, M.; Brant, J.; Labille, J. Nanoparticle Stability in Lake Water Shaped by Natural Organic Matter Properties and Presence of Particulate Matter. Sci. Total Environ. 2019, 656, 338–346. [Google Scholar] [CrossRef]
Hydration Avg | Sebum Values | Avg TEWL Robust [g/m2/h] | Avg RH Skin Robust [%] | |
---|---|---|---|---|
Before | 8.6 | 8.0 | 65.35 | 123.53 |
After | 16.54 | 24.0 | 80.19 | 128.87 |
After 20 min | 13.5 | 29.4 | 64.97 | 120.8 |
After bath | 27.69 | 23.9 | 72.31 | 125.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoszewska, M.; Adamska, E.; Kowalska, A.; Grobelna, B. Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles. Molecules 2023, 28, 645. https://doi.org/10.3390/molecules28020645
Bartoszewska M, Adamska E, Kowalska A, Grobelna B. Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles. Molecules. 2023; 28(2):645. https://doi.org/10.3390/molecules28020645
Chicago/Turabian StyleBartoszewska, Marta, Elżbieta Adamska, Agata Kowalska, and Beata Grobelna. 2023. "Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles" Molecules 28, no. 2: 645. https://doi.org/10.3390/molecules28020645
APA StyleBartoszewska, M., Adamska, E., Kowalska, A., & Grobelna, B. (2023). Novelty Cosmetic Filters Based on Nanomaterials Composed of Titanium Dioxide Nanoparticles. Molecules, 28(2), 645. https://doi.org/10.3390/molecules28020645