Feature-Based Molecular Networking for the Exploration of the Metabolome Diversity of Common Egyptian Centaurea Species in Relation to Their Cytotoxic Activity
Abstract
:1. Introduction
2. Results
2.1. Comparative Analysis of LC-MS/MS Profiles from Centaurea Species
2.2. MS/MS Molecular-Networking-Based Phytochemical Investigations
2.2.1. Hydroxycinnamic Acid Derivatives
2.2.2. Sesquiterpene Lactones
2.2.3. Flavonoids
2.2.4. Lignans
2.3. Bioactivity-Guided Fractionation of C. lipii
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Chemicals
4.2.1. Chemicals and Reagents
4.2.2. Preparation of the Extracts
4.2.3. LC-MS/MS Data Acquisition
4.2.4. Data Preprocessing, Molecular Networking, and Compound Dereplication
4.2.5. Cell Culture
4.2.6. Resazurin Cytotoxicity Assay
4.2.7. Extraction, Separation, and NMR-Based Structure Elucidation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Jacas, N.; Susanna, A.; Garnatje, T.; Vilatersana, R. Generic delimitation and phylogeny of the subtribe Centaureinae (Asteraceae): A combined nuclear and chloroplast DNA analysis. Ann. Bot. 2001, 87, 503–515. [Google Scholar] [CrossRef]
- Ayad, R.; Akkal, S. Phytochemistry and biological activities of algerian Centaurea and related genera. Stud. Nat. Prod. Chem. 2019, 63, 357–414. [Google Scholar]
- Reyhan, A.; Küpeli, E.; Ergun, F. The biological activity of Centaurea L. species. Gazi Univ. J. Sci. 2004, 17, 149–164. [Google Scholar]
- Fattaheian-Dehkordi, S.; Hojjatifard, R.; Saeedi, M.; Khanavi, M. A review on antidiabetic activity of Centaurea spp.: A new approach for developing herbal remedies. Evid.-Based Complement. Altern. Med. 2021, 2021, 5587938. [Google Scholar] [CrossRef] [PubMed]
- Csupor, D.; Widowitz, U.; Blazsó, G.; Laczkó-Zöld, E.; Tatsimo, J.S.; Balogh, Á.; Boros, K.; Dankó, B.; Bauer, R.; Hohmann, J.J.P.R. Anti-inflammatory Activities of Eleven Centaurea Species Occurring in the Carpathian Basin. Phytother. Res. 2013, 27, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Younis, I.Y.; Ibrahim, R.M.; El-Halawany, A.M.; Hegazy, M.-E.F.; Efferth, T.; Mohsen, E.J.F.C. Chemometric discrimination of Hylocereus undulatus from different geographical origins via their metabolic profiling and antidiabetic activity. Food Chem. 2023, 404, 134650. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Mohamed, T.A.; Ibrahim, M.A.; Atia, M.A.; Yoneyama, T.; Umeyama, A.; Hegazy, M.E.F. Two novel oxetane containing lignans and a new megastigmane from Paronychia arabica and in silico analysis of them as prospective SARS-CoV-2 inhibitors. RSC Adv. 2021, 11, 20151–20163. [Google Scholar] [CrossRef]
- Hegazy, M.-E.F.; Dawood, M.; Mahmoud, N.; Elbadawi, M.; Sugimoto, Y.; Klauck, S.M.; Mohamed, N.; Efferth, T.J.P. 2α-Hydroxyalantolactone from Pulicaria undulata: Activity against multidrug-resistant tumor cells and modes of action. Phytomedicine 2021, 81, 153409. [Google Scholar] [CrossRef]
- Hegazy, M.-E.F.; Abdelfatah, S.; Hamed, A.R.; Mohamed, T.A.; Elshamy, A.A.; Saleh, I.A.; Reda, E.H.; Abdel-Azim, N.S.; Shams, K.A.; Sakr, M.J.P. Cytotoxicity of 40 Egyptian plant extracts targeting mechanisms of drug-resistant cancer cells. Phytomedicine 2019, 59, 152771. [Google Scholar] [CrossRef]
- Ernst, M.; Kang, K.B.; Caraballo-Rodríguez, A.M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M.H.; Dorrestein, P.C. MolNetEnhancer: Enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Erel, S.B.; Karaalp, C.; Bedir, E.; Kaehlig, H.; Glasl, S.; Khan, S.; Krenn, L. Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities. Pharm. Biol. 2011, 49, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Marco, J.A.; Sanz, J.F.; Sancenon, F.; Susanna, A.; Rustaiyan, A.; Saberi, M.J.P. Sesquiterpene lactones and lignans from Centaurea species. Phytochemistry 1992, 31, 3527–3530. [Google Scholar] [CrossRef]
- Sallam, A.A.; Hitotsuyanagi, Y.; Mansour, E.S.S.; Ahmed, A.F.; Gedara, S.; Fukaya, H.; Takeya, K.J.H.C.A. Sesquiterpene Lactones from Daucus Glaber. Helv. Chim. Acta 2010, 93, 48–57. [Google Scholar] [CrossRef]
- Salachna, P.; Pietrak, A.; Łopusiewicz, Ł.J.M. Antioxidant Potential of Flower Extracts from Centaurea spp. Depends on Their Content of Phenolics, Flavonoids and Free Amino Acids. Molecules 2021, 26, 7465. [Google Scholar] [CrossRef] [PubMed]
- Reda, E.H.; Shakour, Z.T.A.; El-Halawany, A.M.; El-Kashoury, E.-S.A.; Shams, K.A.; Mohamed, T.A.; Saleh, I.; Elshamy, A.I.; Atia, M.A.; El-Beih, A.A. Comparative Study on the Essential Oils from Five Wild Egyptian Centaurea Species: Effective Extraction Techniques, Antimicrobial Activity and In-Silico Analyses. Antibiotics 2021, 10, 252. [Google Scholar] [CrossRef]
- Szokol, L.B.; Sedlák, É.; Boldizsár, I.; Paku, S.; Preininger, É.; Gyurján, I.J.P.M. Determination of dibenzylbutyrolactone-type lignans in Centraurea species and analysis of arctigenin’s anticancer effect. Planta Med. 2010, 76, 568. [Google Scholar]
- Bessaire, T.; Ernest, M.; Christinat, N.; Carrères, B.; Panchaud, A.; Badoud, F. High resolution mass spectrometry workflow for the analysis of food contaminants: Application to plant toxins, mycotoxins and phytoestrogens in plant-based ingredients. Food Addit. Contam. 2021, 38, 978–996. [Google Scholar] [CrossRef] [PubMed]
- Sülsen, V.P.; Elso, O.G.; Borgo, J.; Laurella, L.C.; Catalán, C.A. Recent patents on sesquiterpene lactones with therapeutic application. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2021; Volume 69, pp. 129–194. [Google Scholar]
- Kupchan, S.M.; Eakin, M.; Thomas, A. Tumor inhibitors. 69. Structure-cytotoxicity relations among the sesquiterpene lactones. J. Med. Chem. 1971, 14, 1147–1152. [Google Scholar] [CrossRef]
- Schmidt, T.J. Toxic activities of sesquiterpene lactones: Structural and biochemical aspects. Curr. Org. Chem 1999, 3, 577–608. [Google Scholar]
- Akbar, S. Centaurea behen L.(Asteraceae/Compositae). In Handbook of 200 Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2020; pp. 569–571. [Google Scholar]
- Mukhametzhanova, G.; Asanova, G.; Adekenova, G.S.; Medeubayeva, B.; Kishkentayeva, A.; Adekenov, S. Chartolepis intermedia Boiss. and Centaurea ruthenica Lam.–New Medicina Plants Containing Pharmacologically Active Compounds. Open Access Maced. J. Med. Sci. 2022, 10, 56–64. [Google Scholar] [CrossRef]
- Formisano, C.; Sirignano, C.; Rigano, D.; Chianese, G.; Zengin, G.; Seo, E.-J.; Efferth, T.; Taglialatela-Scafati, O. Antiproliferative activity against leukemia cells of sesquiterpene lactones from the Turkish endemic plant Centaurea drabifolia subsp. detonsa. Fitoterapia 2017, 120, 98–102. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, P.; Busà, R.; Ercolano, G.; Formisano, C.; Allegra, M.; Taglialatela-Scafati, O.; Ianaro, A.J.P.R. Inhibitory effects of cynaropicrin on human melanoma progression by targeting MAPK, NF-κB, and Nrf-2 signaling pathways in vitro. Phytother. Res. 2021, 35, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Saeed, M.E.M.; Hegazy, M.-E.F.; Kampf, C.J.; Efferth, T. Chemopreventive property of Sencha tea extracts towards sensitive and multidrug-resistant leukemia and multiple myeloma cells. Biomolecules 2020, 10, 1000. [Google Scholar] [CrossRef] [PubMed]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Böcker, S.; Dührkop, K. Fragmentation trees reloaded. J. Cheminform. 2016, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Kadioglu, O.; Cao, J.; Kosyakova, N.; Mrasek, K.; Liehr, T.; Efferth, T. Genomic and transcriptomic profiling of resistant CEM/ADR-5000 and sensitive CCRF-CEM leukaemia cells for unravelling the full complexity of multi-factorial multidrug resistance. Sci. Rep. 2016, 6, 36754. [Google Scholar] [CrossRef] [Green Version]
- Castro, F.; Dirks, W.G.; Fähnrich, S.; Hotz-Wagenblatt, A.; Pawlita, M.; Schmitt, M. High-throughput SNP-based authentication of human cell lines. Int. J. Cancer 2013, 132, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Kotsos, M.P.; Aligiannis, N.; Myrianthopoulos, V.; Mitaku, S.; Skaltsounis, L. Sesquiterpene lactones from Staehelina fruticosa. J. Nat. Prod. 2008, 71, 847–851. [Google Scholar] [CrossRef]
- Tastan, P.; Hajdú, Z.; Kúsz, N.; Zupkó, I.; Sinka, I.; Kivcak, B.; Hohmann, J. Sesquiterpene lactones and flavonoids from Psephellus pyrrhoblepharus with antiproliferative activity on human gynecological cancer cell lines. Molecules 2019, 24, 3165. [Google Scholar] [CrossRef] [Green Version]
- Ćirić, A.; Karioti, A.; Glamočlija, J.; Soković, M.; Skaltsa, H. Antimicrobial activity of secondary metabolites isolated from Centaurea spruneri Boiss. & Heldr. J. Serb. Chem. Soc. 2011, 76, 27–34. [Google Scholar]
- Saroglou, V.; Karioti, A.; Demetzos, C.; Dimas, K.; Skaltsa, H. Sesquiterpene Lactones from Centaurea spinosa and their antibacterial and cytotoxic activities. J. Nat. Prod. 2005, 68, 1404–1407. [Google Scholar] [CrossRef] [PubMed]
- Djeddi, S.; Karioti, A.; Sokovic, M.; Stojkovic, D.; Seridi, R.; Skaltsa, H. Minor sesquiterpene lactones from Centaurea pullata and their antimicrobial activity. J. Nat. Prod. 2007, 70, 1796–1799. [Google Scholar] [CrossRef]
- Bordoloi, M.; Barua, N.C.; Ghosh, A.C. An artemisinic acid analogue from Tithonia diversifolia. Phytochemistry 1996, 41, 557–559. [Google Scholar] [CrossRef]
- Kokanova-Nedialkova, Z.; Bücherl, D.; Nikolov, S.; Heilmann, J.; Nedialkov, P.T. Flavonol glycosides from Chenopodium foliosum Asch. Phytochem. Lett. 2011, 4, 367–371. [Google Scholar] [CrossRef]
- Skaltsa, H.; Lazari, D.; Panagouleas, C.; Georgiadou, E.; Garcia, B.; Sokovic, M. Sesquiterpene lactones from Centaurea thessala and Centaurea attica. Antifungal activity. Phytochemistry 2000, 55, 903–908. [Google Scholar] [CrossRef]
- Gao, X.; Lin, C.-J.; Jia, Z.-J. Cytotoxic germacranolides and acyclic diterpenoides from the seeds of Carpesium triste. J. Nat. Prod. 2007, 70, 830–834. [Google Scholar] [CrossRef]
- Flamini, G.; Bulleri, C.; Morelli, I. Secondary constituents from Centaurea horrida and their evolutionary meaning. Biochem. Syst. Ecol. 2002, 30, 1051–1054. [Google Scholar] [CrossRef]
- Akkal, S.; Benayache, F.; Medjroubi, K.; Tillequin, F.; Seguin, E. Flavonoids from Centaurea furfuracea (Asteraceae). Biochem. Syst. Ecol. 2003, 31, 641–643. [Google Scholar] [CrossRef]
- Rosselli, S.; Maggio, A.M.; Raccuglia, R.A.; Simmonds, M.S.; Arnold, N.A.; Bruno, M. Guaianolides from the aerial parts of Centaurea hololeuca. Nat. Prod. Commun. 2006, 1, 281–285. [Google Scholar] [CrossRef]
- Sen, A.; Gurbuz, B.; Gurer, U.S.; Bulut, G.; Bitis, L. Flavonoids and biological activities of Centaurea stenolepis. Chem. Nat. Compd. 2014, 50, 128–129. [Google Scholar] [CrossRef]
- Bandyukova, V.A.; Sergeeva, N.V.; Dzhumyrko, S.F. Luteolin glycosides in some plants of the family Compositae. Chem. Nat. Compd. 1970, 6, 483. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.; Kamel, E.M. Cytotoxic activities of flavonoids from Centaurea scoparia. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gökçen, T.A.N.; Erel, Ş.B.; Demir, S.; Akgün, İ.; Bedir, E.; Karaalp, C. Secondary Metabolites of Centaurea Cyanus L. Ank. Üniversitesi Eczacılık Fakültesi Derg. 2007, 37, 285–294. [Google Scholar]
- Wang, S.; Suh, J.H.; Zheng, X.; Wang, Y.; Ho, C.T. Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. J. Agric. Food Chem. 2017, 65, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Hodaj, E.; Tsiftsoglou, O.; Abazi, S.; Hadjipavlou-Litina, D.; Lazari, D. Lignans and indole alkaloids from the seeds of Centaurea vlachorum Hartvig (Asteraceae), growing wild in Albania and their biological activity. Nat. Prod. Res. 2017, 31, 1195–1200. [Google Scholar] [CrossRef]
- Luca, S.V.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Jumabayeva, A.; Sakipova, Z.; Xiao, J.; Skalicka-Woźniak, K. Liquid-Liquid Chromatography Separation of Guaiane-Type Sesquiterpene Lactones from Ferula penninervis Regel & Schmalh. and Evaluation of Their In Vitro Cytotoxic and Melanin Inhibitory Potential. Int. J. Mol. Sci. 2021, 22, 10717. [Google Scholar]
- Öksüz, S.; Serin, S.; Topçu, G. Sesquiterpene lactones from Centaurea hermannii. Phytochemistry 1994, 35, 435–438. [Google Scholar] [CrossRef]
- Labed, F.; Masullo, M.; Mirra, V.; Nazzaro, F.; Benayache, F.; Benayache, S.; Piacente, S. Amino acid-sesquiterpene lactone conjugates from the aerial parts of Centaurea pungens and evaluation of their antimicrobial activity. Fitoterapia 2019, 133, 51–55. [Google Scholar] [CrossRef]
- Kamanzi, K.; Raynaud, J.; Voirin, B. Flavonoid O-heterosides from flowers of Centaurea solstitialis L (Compositae). Plantes Med. Et Phytother. 1983, 17, 57–60. [Google Scholar]
- Shang, S.; Chen, H.; Liang, C.; Gao, Z.; Du, X.; Wang, R.; Shi, Y.; Zheng, Y.; Xiao, W.; Sun, H.D. Phenolic constituents from Parakmeria yunnanensis and their anti-HIV-1 activity. Arch. Pharmacal Res. 2013, 36, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Wang, T.; Matsuda, H.; Morikawa, T.; Yoshikawa, M.; Tani, T. Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem. Pharm. Bull. 2005, 53, 1416–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamini, G.; Pardini, M.; Morelli, I. A flavonoid sulphate and other compounds from the roots of Centaurea bracteata. Phytochemistry 2001, 58, 1229–1233. [Google Scholar] [CrossRef]
- Michalska, K.; Szneler, E.; Kisiel, W.J.P. Sesquiterpene lactones from Lactuca canadensis and their chemotaxonomic significance. Phytochemistry 2013, 90, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Mishio, T.; Honma, T.; Iwashina, T. Yellow flavonoids in Centaurea ruthenica as flower pigments. Biochem. Syst. Ecol. 2006, 2, 180–184. [Google Scholar] [CrossRef]
- Gülcemal, D.; Alankuş-Çalışkan, Ö.; Karaalp, C.; Örs, A.U.; Ballar, P.; Bedir, E. Phenolic glycosides with antiproteasomal activity from Centaurea urvillei DC. subsp. urvillei. Carbohydr. Res. 2010, 345, 2529–2533. [Google Scholar] [CrossRef] [PubMed]
- Baatouche, S.; Cheriet, T.; Sarri, D.; Mekkiou, R.; Boumaza, O.; Benayache, S.; Benayache, F.; Brouard, I.; León, F.; Seghiri, R. Centaurea microcarpa Coss. & Dur.(Asteraceae) extracts: New cyanogenic glucoside and other constituents. Nat. Prod. Res. 2019, 33, 3070–3076. [Google Scholar] [PubMed]
- Zhu, N.; Tang, C.; Xu, C.; Ke, C.; Lin, G.; Jenis, J.; Ye, Y. Cytotoxic germacrane-type sesquiterpene lactones from the whole plant of Carpesium lipskyi. J. Nat. Prod. 2019, 82, 919–927. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, D.; Li, J.; Yu, S.; Li, Y.; Luo, Y. Hepatoprotective Sesquiterpene Glycosides from Sarcandra g labra. J. Nat. Prod. 2006, 69, 616–620. [Google Scholar] [CrossRef]
- Massanet, G.M.; Collado, I.G.; Macías, F.A.; Bohlmann, F.; Jakupovic, J. Structural determination of clementein, a new guaianolide isolated from Centaurea clementei. Tetrahedron Lett. 1983, 24, 1641–1642. [Google Scholar] [CrossRef]
- Mohamed, T.A.; Elshamy, A.I.; Abd-ElGawad, A.M.; Hussien, T.A.; El-Toumy, S.A.; Efferth, T.; Hegazy, M.E.F. Cytotoxic and chemotaxonomic study of isolated metabolites from Centaurea aegyptiaca. J. Chin. Chem. Soc. 2021, 68, 159–168. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Que, S.; Tu, G.; Wan, D.; Cheng, W.; Liang, H.; Ye, J.; Zhang, Q. 3-Hydroxy-3-methylglutaryl flavonol glycosides from Oxytropis falcata. J. Nat. Prod. 2012, 75, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Hammoud, L.; Seghiri, R.; Benayache, S.; Mosset, P.; Lobstein, A.; Chaabi, M.; León, F.; Brouard, I.; Bermejo, J.; Benayache, F. A new flavonoid and other constituents from Centaurea nicaeensis All. var. walliana M. Nat. Prod. Res. 2012, 26, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Al-Easa, H.S.; Kamel, A.; Rizk, A.-F.M. Flavonoids from Centaurea sinaica. Fitoterapia 1992, 63, 468–469. [Google Scholar]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Gornostai, T.Y.G.; Selyutina, I.Y.; Zilfikarov, I.N. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Mol. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.N.; Kashchenko, N.I. New isorhamnetin glycosides and other phenolic compounds from Calendula officinalis. Chem. Nat. Compd. 2013, 49, 833–840. [Google Scholar] [CrossRef]
- Menet, J.-M.; Thiebaut, D. Countercurrent Chromatography; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Demiroz, T.; Nalbantsoy, A.; Kose, F.A.; Baykan, S. Phytochemical composition and antioxidant, cytotoxic and anti-inflammatory properties of Psephellus goeksunensis (Aytaç & H. Duman) Greuter & Raab-Straube. South Afr. J. Bot. 2020, 130, 1–7. [Google Scholar]
- Zaghloul, A.M.; Salama, O.M.; Halim, A.F. Chemical investigation of Centaurea glomerata vahl. Mansoura J. Pharm. Sci. 1990, 6, 61–68. [Google Scholar]
- Seghiri, R.; Boumaza, O.; Mekkiou, R.; Benayache, S.; Mosset, P.; Quintana, J.; Estevez, F.; Leon, F.; Bermejo, J.; Benayache, F. A flavonoid with cytotoxic activity and other constituents from Centaurea africana. Phytochem. Lett. 2009, 2, 114–118. [Google Scholar] [CrossRef]
- Flamini, G.; Antognoli, E.; Morelli, I. Two flavonoids and other compounds from the aerial parts of Centaurea bracteata from Italy. Phytochemistry 2001, 57, 559–564. [Google Scholar] [CrossRef]
- Kitouni, R.; Benayache, F.; Benayache, S. Flavonoids of the exudate of Centaurea calcitrapa. Chem. Nat. Compd. 2015, 51, 762–763. [Google Scholar] [CrossRef]
- Dayrit, F.M.; Lapid, M.R.J.; Cagampang, J.V.; Lagurin, L.G. Phytochemical studies on the leaves of Vitex negundo L. (Lagundi), 1: Investigations of the bronchial relaxing constituents [Philippines]. Philipp. J. Sci. 1987, 116, 403–470. [Google Scholar]
- Radan, M.; Carev, I.; Tešević, V.; Politeo, O.; Čulić, V.Č. Qualitative HPLC-DAD/ESI-TOF-MS Analysis, Cytotoxic, and Apoptotic Effects of Croatian Endemic Centaurea ragusina L. Aqueous Extracts. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Şekerler, T.; Şen, A.; Bitiş, L.; Şener, A. In vitro antihepatocellular carcinoma activity of secondary metabolites of Centaurea kilaea Boiss. J. Res. Pharm. 2020, 24, 479–486. [Google Scholar] [CrossRef]
- Bohlmann, F.; Zdero, C.; King, R.M.; Robinson, H. Eudesmanolides and kaurene derivatives from Wedelia hookeriana. Phytochemistry 1982, 21, 2329–2333. [Google Scholar] [CrossRef]
- S Tuzun, B.; Hajdu, Z.; Orban-Gyapai, O.; P Zomborszki, Z.; Jedlinszki, N.; Forgo, P.; Kıvcak, B.; Hohmann, J. Isolation of chemical constituents of Centaurea virgata lam. and xanthine oxidase inhibitory activity of the plant extract and compounds. Med. Chem. 2017, 13, 498–502. [Google Scholar] [CrossRef]
- Al-Wahaibi, L.H.; Mahmood, A.; Khan, M.; Alkhathlan, H.Z. Phytochemical analysis and bioactivity screening of three medicinal plants of Saudi Arabia. Trop. J. Pharm. Res. 2020, 19, 371–376. [Google Scholar] [CrossRef]
Species | Sample Code | Voucher ID | Collection Site | Latitude (N) | Longitude (E) |
---|---|---|---|---|---|
C. alexandrina | Ce.Alex | M/2282 | Marsa Matrouh | 31°23′37.81″ | 27°01′7.64″ |
C. calcitrapa | Ce.Co | M/2279 | Marsa Matrouh | 31°03′41.10″ | 28°12′31.6″ |
C. eryngioides | CE | M/2284 | Saint Catherine | 28°33′20.83″ | 33°56′9.13″ |
C. glomerata | Ce.G | M/2280 | Rashid | 30°56′52.51″ | 30°58′33.1″ |
C. lipii | CL | M/2281 | Egyptian north coast | 29°38′16.55″ | 32°18′23.72″ |
C. pallescens | Ce.PA | M/2283 | Marsa Matrouh | 31°22′37.01″ | 31°03′41.16″ |
C. pumilio | CP | M/2285 | Egyptian north coast | 30°54′9.06″ | 29°26′8.63″ |
C. scoparia | Ce.Sco | M/2278 | Red Sea Coast | 31°03′41.16″ | 31°03′41.16″ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reda, E.H.; Hegazi, N.M.; Marzouk, M.; Shakour, Z.T.A.; El-Halawany, A.M.; El-Kashoury, E.-S.A.; Mohamed, T.A.; Ibrahim, M.A.A.; Shams, K.A.; Abdel-Azim, N.S.; et al. Feature-Based Molecular Networking for the Exploration of the Metabolome Diversity of Common Egyptian Centaurea Species in Relation to Their Cytotoxic Activity. Molecules 2023, 28, 674. https://doi.org/10.3390/molecules28020674
Reda EH, Hegazi NM, Marzouk M, Shakour ZTA, El-Halawany AM, El-Kashoury E-SA, Mohamed TA, Ibrahim MAA, Shams KA, Abdel-Azim NS, et al. Feature-Based Molecular Networking for the Exploration of the Metabolome Diversity of Common Egyptian Centaurea Species in Relation to Their Cytotoxic Activity. Molecules. 2023; 28(2):674. https://doi.org/10.3390/molecules28020674
Chicago/Turabian StyleReda, Eman H., Nesrine M. Hegazi, Mona Marzouk, Zienab T. Abdel Shakour, Ali M. El-Halawany, El-Sayeda A. El-Kashoury, Tarik A. Mohamed, Mahmoud A. A. Ibrahim, Khaled A. Shams, Nahla S. Abdel-Azim, and et al. 2023. "Feature-Based Molecular Networking for the Exploration of the Metabolome Diversity of Common Egyptian Centaurea Species in Relation to Their Cytotoxic Activity" Molecules 28, no. 2: 674. https://doi.org/10.3390/molecules28020674
APA StyleReda, E. H., Hegazi, N. M., Marzouk, M., Shakour, Z. T. A., El-Halawany, A. M., El-Kashoury, E. -S. A., Mohamed, T. A., Ibrahim, M. A. A., Shams, K. A., Abdel-Azim, N. S., Kampf, C. J., Efferth, T., Paré, P. W., & Hegazy, M. -E. F. (2023). Feature-Based Molecular Networking for the Exploration of the Metabolome Diversity of Common Egyptian Centaurea Species in Relation to Their Cytotoxic Activity. Molecules, 28(2), 674. https://doi.org/10.3390/molecules28020674