The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity
Abstract
:1. Introduction
2. Results
2.1. Isolation of Compounds from the Crude Extract of N. mitis
2.2. Studies on Isolated Rabbit Jejunum
2.3. Inhibition of Castor-Oil (CO)-Induced Diarrhoea in Albino Rats
2.4. Motility Test
3. Discussion
4. Materials and Methods
4.1. Extraction and Isolation of Compounds from N. mitis
4.2. Isolated Rabbit Jejunum Test
4.3. Castor-Oil-Induced Diarrhoea
4.4. Gastrointestinal Transit of Activated Charcoal (Motility Test)
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Levine, G.A.; Walson, J.L.; Atlas, H.E.; Lamberti, L.M.; Patricia, P.B. Defining pediatric diarrhea in low-resource settings. J. Pediatr. Infect. Dis. Soc. 2017, 3, 289–293. [Google Scholar] [CrossRef] [Green Version]
- GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the global burden of Disease study 2015. Lancet Infect. Dis. 2017, 9, 909–948. [Google Scholar]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- United Nations Inter-Agency Group for Child Mortality Estimation (UN IGME). Levels & Trends in Child Mortality: Report 2019, Estimates Developed by the United Nations Inter-Agency Group for Child Mortality Estimation; United Nations Children’s Fund: New York, NY, USA, 2019. [Google Scholar]
- GBD 2016 Diarrhoeal Disease Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: A systematic analysis for the global burden of disease study 2016. Lancet Infect. Dis. 2018, 18, 1211–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndukui, J.; Murithi, B.; Muwonge, H.; Sembajwe, L.; Kateregga, J. Antidiarrheal Activity of Ethanolic Fruit Extract of Psidium Guajava (Guava) in Castor Oil Induced Diarrhea in Albino Rats. Nat. J. Physiol. Pharm. Pharmacol. 2013, 2, 191–197. [Google Scholar]
- Nieto, G.; Ros, G.; Castillo, J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A Review. Medicines 2018, 3, 98. [Google Scholar] [CrossRef] [Green Version]
- Akrimajirachoote, N.; Satitsri, S.; Sommart, U.; Rukachaisirikul, V.; Muanprasat, C. Inhibition of CFTR-mediated intestinal chloride secretion by a fungus-derived arthropsolide A: Mecahnism of action and antidiarrheal efficacy. Eur. J. Pharmacol. 2020, 885, 173393. [Google Scholar] [CrossRef]
- Muangnil, P.; Satitsri, S.; Tadpetch, K.; Saparpakorn, P.; Chatsudthipong, V.; Hannongbua, S.; Rukachaisirikul, V.; Muanprasat, C. A fungal metabolite zearalenone as a CFTR inhibitor and potential and therapy of secretory diarrheas. Biochem. Pharmacol. 2018, 150, 293–304. [Google Scholar] [CrossRef]
- Bezerra, F.F.; Lima, G.C.; Alves de Sousa, N.; Malta de Sousa, W.; Costa, L.E.C.; Soares da Costa, D.; Barros, F.C.N.; Medeiros, J.V.R.; Freitas, A.L.P. Antidiarrheal activity of a novel sulphated polysaccharide from the red seaweed Gracilaria cervicornis. J. Ethnopharmacol. 2018, 224, 27–35. [Google Scholar] [CrossRef]
- Araújo, T.S.L.; de Oliveira, T.M.; de Sousa, N.A.; Souza, L.K.M.; Sousa, F.B.M.; de Oliveira, A.P.; Nicolau, L.A.D.; da Silva, A.A.V.; Araújo, A.R.; Magalhães, P.J.C.; et al. Biopolymer Extracted from Anadenanthera colubrina (Red Angico Gum) exerts therapeutic potential in mice: Antidiarrheal activity and safety assessment. Pharmaceuticals 2020, 1, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, A.; Sahi, P.K. Probiotics for diarrhea in children. J. Med. Res. Innov. 2017, 2, 5–12. [Google Scholar] [CrossRef]
- Fine, K.D.; Schiller, L.R. AGA technical review on the evaluation and management of chronic diarrhea. Gasteroenterology 1999, 6, 1464–1486. [Google Scholar] [CrossRef] [PubMed]
- Offiah, N.V.; Makama, S.; Elisha, I.L.; Makoshi, M.S.; Gotep, J.G.; Dawurung, C.J.; Oladipo, O.O.; Lohlum, A.S.; Shamaki, D. Ethnobotanical survey of medicinal plants used in the treatment of animal diarrhea in Plateau State, Nigeria. BMC Vet. Res. 2011, 7, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Tradtrantip, L.; Namkung, W.; Verkman, A.S. Crofelemer, an antisecretory antidiarrheal proanthocyanidin oligomer extracted from Croton lechleri, targets two distinct intestinal chloride channels. Mol. Pharmacol. 2010, 77, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Dawurung, C.J.; Gotep, J.G.; Usman, J.G.; Elisha, I.L.; Lombin, L.H.; Pyne, S.G. Antidiarrheal activity of some selected Nigerian plants used in traditional medicine. Pharmacogn. Res. 2019, 11, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Dawurung, C.J.; Noitem, R.; Rattanajak, A.; Bunyong, R.; Richardson, C.; Willis, C.A.; Kamchonwongpaisan, S.; Yimnual, C.; Muanprasat, C.; Pyne, S.G. Isolation of CFTR and TMEM16A inhibitors from Neorautanenia mitis (A. Rich) Verdcourt: Potential lead compounds for treatment of secretory diarrhea. Phytochemistry 2020, 179, 112464. [Google Scholar] [CrossRef]
- Jabri, M.A.; Rtibi, K.; Sakly, M.; Marzouki, L.; Sebai, H. Role of gastrointestinal motility inhibition and antioxidant properties of myrtle berries (Myrtus communis L.) juice in diarrhea treatment. Biomed. Pharmacother. 2016, 84, 1937–1944. [Google Scholar] [CrossRef]
- Vongtau, H.O.; Amos, S.; Binda, L.; Kapu, S.D.; Gamaniel, K.S.; Kunle, O.F.; Wambebe, C. Pharmacological effects of the aqueous extract of Neorautanenia mitis in rodents. J. Ethnopharmcol. 2000, 72, 207–214. [Google Scholar] [CrossRef]
- Mascolo, N.; Izzo, A.A.; Barbato, F.; Capasso, F. Inhibitors of nitric oxide synthetase prevent castor-oil-induced diarrhoea in the rat. Br. J. Pharmacol. 1993, 108, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.E. Loperamide: A Pharmacological Review. Rev. Gastroenterol. Disord. 2007, 7, 11–18. [Google Scholar]
- Schiller, L.R.; Ana, C.A.S.; Morawski, S.G.; Fordtran, J.S. Mechanism of the antidiarrheal effect of loperamide. Gastroenterology 1984, 86, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Chda, A.; Kabbaoui, M.; Chokri, A.; Abida, K.; Tazi, A.; Cheikh, R. Spasmolytic action of Centaurium erythraea on rabbit jejunum is through calcium channel blockade and NO release. Eur. J. Med. Plants 2016, 11, 1–13. [Google Scholar] [CrossRef]
- Moghaddam, M.R.H.; Dolati, K.; Rakhshandeh, H. Cholinergic and histaminergic effects of the aqueous fraction of Rosa damascena extract in guinea pig ileum and rabbit jejunum. Asian J. Biol. Sci. 2013, 6, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Peddireddy, M.K.R. In vitro evaluation techniques for gastrointestinal motility. Indian J. Pharm. Educ. Res. 2011, 45, 184–191. [Google Scholar]
- Elisha, I.L.; Makoshi, M.S.; Makama, S.; Dawurung, C.J.; Offiah, N.V.; Gotep, J.G.; Oladipo, O.O.; Shamaki, D. Antidiarrheal evaluation of aqueous and ethanolic stem bark extracts of Khaya senegalensis A. Juss (Meliaceae) in albino rats. Pak. Vet. J. 2013, 33, 32–36. [Google Scholar]
- Brink, A.J.; Rall, G.J.; Engelbrecht, J.P. Structures of some minor pterocarpans of Neorautanenia edulis. Phytochemistry 1974, 13, 1581–1585. [Google Scholar] [CrossRef]
- Fraga, B.M.; González-Coloma, A.; Alegre-Gómez, S.; López-Rodríguez, M.; Amador, L.J.; Díaz, C.E. Bioactive constituents from transformed root cultures of Nepeta teydea. Phytochemistry 2017, 133, 59–68. [Google Scholar] [CrossRef]
- Breytenbach, J.C.; Rall, G.J.H. Structure and synthesis of isoflavonoid analogues from Neorautanenia amboensis Schinz. J. Chem. Soc. Perkin Trans. 1980, 1, 1804–1809. [Google Scholar] [CrossRef]
- Crombie, L.; Whiting, D.A. The extractives of Neorautanenia pseudopachyrrhiza: The isolation and structure of a new rotenoid and two new isoflavanones. J. Chem. Soc. 1963, 2, 1569–1579. [Google Scholar] [CrossRef]
- Mitscher, L.A.; Okwute, S.K.; Gollapudi, S.R.; Drake, S.; Avona, E. Antimicrobial pterocarpans of nigerian Erythrina mildbraedii. Phytochemistry 1988, 27, 3449–3452. [Google Scholar] [CrossRef]
- Rall, G.J.H.; Engelbreght, J.P.; Brink, A.J. The chemistry of Neorautanenia edulis G.A, Sm. The constitution of (−)-2-isopentenyl-3-hydoxy-8-9 methylenedioxypterocarpan, a new pterocarpan from the root bark. J. S. Afr. Chem. Inst. 1971, 26, 56–60. [Google Scholar]
- Rall, G.J.H.; Engelbreght, J.P.; Brink, A.J. The isolation, structure and absolute configuration of (−)-2-hydroxypterocarpin from Neorautenenia edulis. Tetrahedron 1970, 26, 5007–5012. [Google Scholar] [CrossRef]
- Sakurai, Y.; Sakurai, N.; Taniguchi, M.; Nakanishi, Y.; Bastow, K.F.; Wang, X.; Cragg, A.G.M.; Lee, K.-H. Rautandiols A and B, Pterocarpans and Cytotoxic Constituents from Neorautanenia mitis,1. J. Nat. Prod. 2005, 69, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Van Puyvelde, L.; De Kimpe, N.; Mudaheranwa, J.-P.; Gasiga, A.; Schamp, N.; Declercq, J.-P.; Van Meerssche, M. Isolation and Structural Elucidation of Potentially Insecticidal and Acaricidal Isoflavone-Type Compounds from Neorautanenia mitis. J. Nat. Prod. 1987, 50, 349–356. [Google Scholar] [CrossRef]
- Nkengfack, A. Prenylated isoflavanone from Erythrina eriotricha. Phytochemistry 1995, 40, 1803–1808. [Google Scholar] [CrossRef]
- Oberholzer, M.; Rall, G.; Roux, D. The concurrence of 12a-hydroxy- and 12a-O-methylrotenoids. Isolation of the first natural 12a-O-methylrotenoids. Tetrahedron Lett. 1974, 15, 2211–2214. [Google Scholar] [CrossRef]
- Phrutivorapongkul, A.; Lipipun, V.; Ruangrungsi, N.; Watanabe, T.; Ishikawa, T. Studies on the Constituents of seeds of Pachyrrhizus erosus and Their Anti Herpes Simplex Virus (HSV) Activities. Chem. Pharm. Bull. 2002, 50, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedula, V.S.P.; Prakash, I. Isolation of Stigmasterol and ?-Sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J. 2012, 1, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Van Duuren, B.L. Chemistry of Edulin, Neorautone, and Related Compounds from Neorautanenia edulis C.A. Sm. J. Org. Chem. 1961, 26, 5013–5020. [Google Scholar] [CrossRef]
Treatments | Mean Defecation over 6 h | Percentage Inhibition of Defecation |
---|---|---|
Castor oil + Water 10 mL/kg | 6.67 ± 1.67 | - |
Castor oil + 5 mg/kg (2) | 6.00 ± 2.31 | 10.04 |
Castor oil + 10 mg/kg (2) | 4.67 ± 0.33 | 29.99 |
Castor oil + 20 mg/kg (2) | 5.67 ± 1.20 | 14.99 |
Castor oil + Loperamide 10 mg/kg | 1.00 ± 0.58 a | 85.01 |
Castor oil + Water 10 mL/kg | 6.67 ± 1.67 | - |
Castor oil + 5 mg/kg (6) | 1.67 ± 0.88 a | 74.96 |
Castor oil + 10 mg/kg (6) | 4.00 ± 1.53 | 40.03 |
Castor oil + 20 mg/kg (6) | 3.00 ± 0.58 | 55.02 |
Castor oil + Loperamide 10 mg/kg | 1.00 ± 0.58 a | 85.01 |
Castor oil + Water 10 mL/kg | 6.67 ± 1.67 | - |
Castor oil + 5 mg/kg (7) | 4.67 ± 0.88 | 29.99 |
Castor oil + 10 mg/kg (7) | 4.00 ± 1.53 | 40.03 |
Castor oil + 20 mg/kg (7) | 2.33 ± 0.88 | 65.07 |
Castor oil + Loperamide 10 mg/kg | 1.00 ± 0.58 a | 85.01 |
Castor oil + Water 10 mL/kg | 6.67 ± 1.67 | - |
Castor oil + 5 mg/kg (10) | 4.00 ± 0.58 | 40.03 |
Castor oil + 20 mg/kg (10) | 3.33 ± 0.88 | 50.07 |
Castor oil + Loperamide 10 mg/kg | 1.00 ± 0.58 a | 85.01 |
Treatment | % Intestinal Transit |
---|---|
5 mg/kg | 71.88 ± 1.26 |
10 mg/kg | 70.58 ± 4.08 |
20 mg/kg | 73.52 ± 6.24 |
Atropine 5 mg/kg | 44.90 ± 5.38 ** |
Distilled Water | 68.68 ± 9.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawurung, C.J.; Usman, J.G.; Gotep, J.G.; Pyne, S.G. The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity. Molecules 2023, 28, 673. https://doi.org/10.3390/molecules28020673
Dawurung CJ, Usman JG, Gotep JG, Pyne SG. The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity. Molecules. 2023; 28(2):673. https://doi.org/10.3390/molecules28020673
Chicago/Turabian StyleDawurung, Christiana J., Joy G. Usman, Jurbe G. Gotep, and Stephen G. Pyne. 2023. "The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity" Molecules 28, no. 2: 673. https://doi.org/10.3390/molecules28020673
APA StyleDawurung, C. J., Usman, J. G., Gotep, J. G., & Pyne, S. G. (2023). The Roots of Neorautanenia mitis (A. Rich) Verdcourt: Further Evidence of Its Antidiarrhoeal Activity. Molecules, 28(2), 673. https://doi.org/10.3390/molecules28020673