Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Compositions
2.2. Antioxidant Assay
2.3. Antiproliferative Activity
2.4. Molecular Docking Study
2.5. In Silico ADME Profile
3. Discussion
3.1. Essential Oil Compositions
3.2. Antioxidant Assay
3.3. Antiproliferative Activity
3.4. Molecular Docking
3.5. In Silico ADME
4. Materials and Methods
4.1. Plant Material
4.2. Extraction of the Volatile Constituents
4.3. Gas Chromatography and Gas Chromatography–Mass Spectrometry (GC-FID and GC-MS)
4.4. Antioxidant Activity
4.4.1. DPPH Radical Scavenging Assay
4.4.2. β-Carotene/Linoleic acid Bleaching Assay
4.4.3. ABTS Free Radical Assay
4.5. Antiproliferative Activity
4.6. Docking Study
4.7. In Silico ADME Properties
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hüsnü Can Bașer, K.; Buchbauer, G. Handbook of essential oils: Science, technology, and applications. In Handbook of Essential Oils Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Chang, K.-M.; Shen, C.-W. Aromatherapy benefits autonomic nervous system regulation for elementary school faculty in taiwan. Evid. Based Complement. Altern. Med. 2011, 2011, 946537. [Google Scholar] [CrossRef] [PubMed]
- Farzan, R.; Firooz, M.; Ghorbani Vajargah, P.; Mollaei, A.; Takasi, P.; Tolouei, M.; Emami Zeydi, A.; Hosseini, S.J.; Karkhah, S. Effects of aromatherapy with Rosa damascene and lavender on pain and anxiety of burn patients: A systematic review and meta-analysis. Int. Wound J. 2023, 20, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.E.N.G.; Al-Rowaily, S.L. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Sabrine, J.; Bahloul, N. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, N.; Farooqi, A.; Shabih, F.; Sangwan, R. Regulation of essential oil production in plants. Plant Growth Regul. 2001, 34, 3–21. [Google Scholar] [CrossRef]
- Adinortey, M.B.; Sarfo, J.K.; Kwarteng, J.; Adinortey, C.A.; Ekloh, W.; Kuatsienu, L.E.; Kwadwo Nyarko, A. The ethnopharmacological and nutraceutical relevance of Launaea taraxacifolia (willd.) amin ex C. Jeffrey. Evid. Based Complement. Altern. Med. 2018, 2018, 7259146. [Google Scholar] [CrossRef]
- Sell, C.S. The Chemistry of Fagrances: From Perfumer to Consumer; Royal Society of Chemistry: London, UK, 2006. [Google Scholar]
- El-Sharkawy, E.R.; Ed-Dra, A.; Abdallah, E.M. Phytochemical, antimicrobial and antioxidant properties of Launaea nudicaulis and Farsetia hamiltonii. J. Biol. Control 2017, 31, 102–109. [Google Scholar] [CrossRef]
- Rawat, P.; Saroj, L.M.; Kumar, A.; Singh, T.D.; Tewari, S.; Pal, M. Phytochemicals and cytotoxicity of Launaea procumbens on human cancer cell lines. Pharmacogn. Mag. 2016, 12, S431. [Google Scholar]
- Hassan, M.M.; Soliman, M.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Taha, E.-K.A.; Sayed, S. The effectiveness of Xanthium strumamrium L. Extract and trichoderma spp. Against pomegranate isolated pathogenic fungi in taif, Saudi Arabia. J. King Saud Univ. Sci. 2022, 34, 102185. [Google Scholar] [CrossRef]
- Baratta, M.T.; Dorman, H.D.; Deans, S.G.; Biondi, D.M.; Ruberto, G. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. J. Essent. Oil Res. 1998, 10, 618–627. [Google Scholar] [CrossRef]
- Piaru, S.P.; Mahmud, R.; Abdul Majid, A.M.S.; Ismail, S.; Man, C.N. Chemical composition, antioxidant and cytotoxicity activities of the essential oils of Myristica fragrans and Morinda citrifolia. J. Sci. Food Agric. 2012, 92, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Cheriti, A.; Belboukhari, M.; Belboukhari, N.; Djeradi, H. Phytochemical and biological studies on launaea cass. Genus (asteraceae) from Algerian sahara. Phytochemistry 2012, 11, 67–80. [Google Scholar]
- Reidel, R.V.B.; Nardoni, S.; Mancianti, F.; Anedda, C.; El Gendy, A.E.-N.G.; Omer, E.A.; Pistelli, L. Chemical composition and antifungal activity of essential oils from four Asteraceae plants grown in Egypt. Z. Für Naturforschung C 2018, 73, 313–318. [Google Scholar] [CrossRef]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevao-Silva, C.F.; Carvalho, M.D.d.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. Essential oil, on the inflammatory response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; El-Amier, Y.A.; Bonanomi, G. Essential oil composition, antioxidant and allelopathic activities of Cleome droserifolia (forssk.) delile. Chem. Biodivers. 2018, 15, e1800392. [Google Scholar] [CrossRef] [PubMed]
- Cheriti, A.; Saad, A.; Belboukhari, N.; Ghezali, S. Chemical composition of the essential oil of Launaea arboresens from Algerian sahara. Chem. Nat. Compd. 2006, 42, 360–361. [Google Scholar] [CrossRef]
- Koukoui, O.; Agbangnan, P.; Boucherie, S.; Yovo, M.; Nusse, O.; Combettes, L.; Sohounhloué, D. Phytochemical study and evaluation of cytotoxicity, antioxidant and hypolipidemic properties of Launaea taraxacifolia leaves extracts on cell lines hepg2 and plb985. Am. J. Plant Sci. 2015, 6, 1768. [Google Scholar] [CrossRef]
- Roskoski Jr, R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016, 103, 26–48. [Google Scholar] [CrossRef]
- Dacrory, S.; Kader, A.H.A.; Hasanin, M.; Kamel, S. Evaluation of biocompatible amino acid-functionalized cellulose composites: Characterizations, molecular modeling, anticoagulant activity, and cytocompatibility. Bioact. Carbohydr. Diet. Fibre 2023, 30, 100372. [Google Scholar] [CrossRef]
- Bitam, F.; Ciavatta, M.L.; Manzo, E.; Dibi, A.; Gavagnin, M. Chemical characterisation of the terpenoid constituents of the Algerian plant Launaea arborescens. Phytochemistry 2008, 69, 2984–2992. [Google Scholar] [CrossRef]
- Zellagui, A.; Gherraf, N.; Ladjel, S.; Hameurlaine, S. Chemical composition and antibacterial activity of the essential oils from Launaea resedifolia L. Org. Med. Chem. Lett. 2012, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Elnabawy, E.-S.M.; Hassan, S.; Taha, E.-K.A. Repellent and toxicant effects of eight essential oils against the red flour beetle, Tribolium castaneum herbst (Coleoptera: Tenebrionidae). Biology 2021, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Zergainoh, N.; Ciavatta, M.L.; Carbone, M.; Bitam, F.; Aberkane, M.C.; Gavagnin, M. Exploring the chemical diversity of Algerian plants: Three new pentacyclic triterpenoids from launaea acanthoclada roots. Molecules 2018, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahrezi, J.A.; Al-Sabahi, J.N.; Akhtar, M.S.; Selim, D.; Weli, A.M. Essential oil composition and antimicrobial screening of Launaea nudicaulis grown in Oman. Int. J. Pharm. Sci. Res. 2011, 2, 3166. [Google Scholar]
- Benmeddour, T.; Laouer, H.; Akkal, S.; Flamini, G. Chemical composition and antibacterial activity of essential oil of Launaea lanifera pau grown in Algerian arid steppes. Asian Pac. J. Trop. Biomed. 2015, 5, 960–964. [Google Scholar] [CrossRef]
- Babushok, V.; Linstrom, P.; Zenkevich, I. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Feizbakhsh, A.; Naeemy, A. Volatile constituents of essential oils of Eleocharis pauciflora (light) link and Eleocharis uniglumis (link) ja schultes growing wild in Iran. Bull. Chem. Soc. Ethiop. 2011, 25, 3. [Google Scholar] [CrossRef]
- Shirtliff, M.E.; Krom, B.P.; Meijering, R.A.; Peters, B.M.; Zhu, J.; Scheper, M.A.; Harris, M.L.; Jabra-Rizk, M.A. Farnesol-induced apoptosis in Candida albicans. Antimicrob. Agents Chemother. 2009, 53, 2392–2401. [Google Scholar] [CrossRef]
- Dertyasasa, E.D.; Tunjung, W.A.S. Volatile organic compounds of Kaffir lime (Citrus hystrix dc.) leaves fractions and their potency as traditional medicine. Biosci. Biotechnol. Res. Asia 2017, 14, 1235–1250. [Google Scholar] [CrossRef]
- Silva, A.P.d.; Martini, M.V.; Oliveira, C.; Cunha, S.d.D.; Carvalho, J.E.d.; Ruiz, A.L.; Silva, C.C.d. Antitumor activity of (-)-alpha-bisabolol-based thiosemicarbazones against human tumor cell lines. Eur. J. Med. Chem. 2010, 45, 2987–2993. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Mostafa, E.M.; Musa, A.; Rateb, E.E.; Al-Sanea, M.M.; Abu-Baih, D.H.; Elrehany, M.A.; Saber, E.A.; Rateb, M.E.; Abdelmohsen, U.R. Wound healing and antioxidant properties of Launaea procumbens supported by metabolomic profiling and molecular docking. Antioxidants 2022, 11, 2258. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, E.M. Exploration of aurora b and cyclin-dependent kinase 4 inhibitors isolated from Scorzonera tortuosissima boiss. And their docking studies. Pharmacogn. Mag. 2020, 16, 258. [Google Scholar]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of dpph, abts, frap, and folin-ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef] [PubMed]
- Rhetso, T.; Shubharani, R.; Roopa, M.; Sivaram, V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future J. Pharm. Sci. 2020, 6, 102. [Google Scholar] [CrossRef]
- Elsharkawy, E.; Alshathely, M.; Jaleel, G.A. Role of catecholamine’s compounds in anti-inflammatory and antioxidant of two plants Santolina chamaecyparissus and Launaea mucronata. Pak. J. Nutr. 2015, 14, 672. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Hwang, S.T.; Sethi, G.; Fan, L.; Arfuso, F.; Ahn, K.S. Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules 2018, 23, 2827. [Google Scholar] [CrossRef]
- Palanisamy, C.P.; Cui, B.; Zhang, H.; Trung, N.; Tran, H.-D.; Khanh, T.D.; Quan, N.; Xuan, T.D. Characterization of (2e, 6e)-3, 7, 11-trimethyldodeca-2, 6, 10-trien-1-ol with antioxidant and antimicrobial potentials from Euclea crispa (thunb.) leaves. Int. Lett. Nat. Sci. 2020, 80, 51–63. [Google Scholar]
- Mostafa, E.M.; Musa, A.; Mohammed, H.A.; Alzarea, A.I.; Abdelgawad, M.A.; Al-Sanea, M.M.; Ismail, A.; Zafar, A.; Elmowafy, M.; Selim, S. Phenanthroindolizidine alkaloids secondary metabolites diversity in medicinally viable plants of the genus tylophora. Plants 2023, 12, 1143. [Google Scholar] [CrossRef]
- Happi, G.M.; Ahmed, S.A.; Kemayou, G.P.M.; Salau, S.; Dzouemo, L.C.; Sikam, K.G.; Yimtchui, M.T.; Wansi, J.D. Bioassay-guided isolation of antiplasmodial compounds from hypericum lanceolatum lam. (hypericaceae) and their cytotoxicity and molecular docking. BioMed Res. Int. 2023, 2023, 4693765. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Bukhari, S.N.A.; Musa, A.; Elmowafy, M.; Nayl, A.A.; El-Ghorab, A.H.; Abdel-Bakky, M.S.; Omar, H.A.; Alotaibi, N.H.; Hassan, H.M. Phthalazone tethered 1, 2, 3-triazole conjugates: In silico molecular docking studies, synthesis, in vitro antiproliferative, and kinase inhibitory activities. Bioorganic Chem. 2023, 133, 106404. [Google Scholar] [CrossRef]
- Hammouda, F.M.; Saleh, M.A.; Abdel-Azim, N.S.; Shams, K.A.; Ismail, S.I.; Shahat, A.A.; Saleh, I.A. Evaluation of the essential oil of Foeniculum vulgare mill (fennel) fruits extracted by three different extraction methods by gc/ms. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; El-Massry, K.F.; El-Ghorab, A.H.; Farouk, A.; Ali, H.M.; Abdelgawad, M.A.; Naguib, I.A.; Mostafa, E.M. Volatile constituents of Cistanche tubulosa and their antioxidant and antimicrobial potentials. Rec. Nat. Prod. 2021, 15, 301–312. [Google Scholar] [CrossRef]
- Gharby, S.; Kartah, B.; El Monfalouti, H.; El-sayed, M.; Abdin, M.; Salama, M.; Charrouf, Z.; Matthäus, B. Lipid profile, volatile compounds and oxidative stability during the storage of Moroccan Opuntia ficus-indica seed oil. Grasas Aceites 2023, 74, e486. [Google Scholar]
- Mostafa, E.M.; Musa, A.; Abdelgawad, M.A.; Ragab, E.A. Cytotoxicity, protein kinase inhibitory activity, and docking studies of secondary metabolites isolated from Brownea grandiceps jacq. Pharmacogn. Mag. 2019, 15, 438. [Google Scholar] [CrossRef]
- Musa, A.; Elmaidomy, A.H.; Sayed, A.M.; Alzarea, S.I.; Al-Sanea, M.M.; Mostafa, E.M.; Hendawy, O.M.; Abdelgawad, M.A.; Youssif, K.A.; Refaat, H. Cytotoxic potential, metabolic profiling, and liposomes of coscinoderma sp. Crude extract supported by in silico analysis. Int. J. Nanomed. 2021, 16, 3861. [Google Scholar] [CrossRef]
- Hasanin, M.; Hashem, A.H.; El-Rashedy, A.A.; Kamel, S. Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: Characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose 2021, 28, 8355–8374. [Google Scholar] [CrossRef]
Peak No. | Rel. Comp. % | Calculated * KI | KI Data | Compound Name | Compounds’ Class | Identification Methods |
---|---|---|---|---|---|---|
1 | 0.02 | 1024 | 1023–1027 | Trimethyl benzene (1,2,4) | M | MS&KI |
2 | 0.02 | 1029 | 1028–1034 | β-Phellandrene | M | MS&KI |
3 | 0.02 | 1035 | 1033–1038 | 2-acetyl-5-methyl-furan | LOC | MS&KI |
4 | 0.06 | 1038 | 1035–1041 | 5-methyl-hexanoic acid | LOC | MS&KI |
5 | 0.15 | 1048 | 1045–1048 | γ-hexalactone | LOC | MS&KI |
6 | 0.02 | 1068 | 1065–1069 | 2-methyl-benzaldehyde | LOC | MS&KI |
7 | 0.04 | 1086 | 1085–1089 | 3-methyl-1,2-cyclohexanedione | LOC | MS&KI |
8 | 0.02 | 1099 | 1095–1099 | 2-nonanol | LOC | MS&KI |
9 | 0.06 | 1107 | 1104–1109 | 2,6-dimethyl phenol | LOC | MS&KI |
10 | 0.05 | 1109 | 1108–1112 | cis-rose oxide | LOC | MS&KI |
11 | 0.02 | 1115 | 1114–1118 | Endo-fenchol | LOC | MS&KI |
12 | 0.1 | 1121 | 1119–1123 | exo-fenchol | LOC | MS&KI |
13 | 0.02 | 1124 | 1122–1125 | Myrcenol | LOC | MS&KI |
14 | 0.51 | 1130 | 1127–1131 | Octyl formate | LOC | MS&KI |
15 | 0.34 | 1132 | 1132–1136 | 1-terpineol | LOC | MS&KI |
16 | 0.14 | 1139 | 1138–1140 | trans-pinocarveol | LOC | MS&KI |
17 | 0.05 | 1144 | 1142–1145 | cis-Pinene hydrate | LOC | MS&KI |
18 | 0.05 | 1147 | 1144–1147 | Camphor | LOC | MS&KI |
19 | 0.02 | 1150 | 1146–1151 | Camphene hydrate | LOC | MS&KI |
20 | 0.07 | 1155 | 1153–1156 | Isobutyl hexanoate | LOC | MS&KI |
21 | 0.05 | 1156 | 1155–1159 | Nerol oxide | LOC | MS&KI |
22 | 0.02 | 1160 | 1160–1163 | cis-dihydro-β-terpineol | LOC | MS&KI |
23 | 0.15 | 1165 | 1164–1168 | 2E-nonenol | LOC | MS&KI |
24 | 0.02 | 1172 | 1170–1174 | Octanoic acid | LOC | MS&KI |
25 | 0.07 | 1176 | 1172–1177 | cis-pyranoid linalool oxide | LOC | MS&KI |
26 | 0.1 | 1184 | 1181–1184 | Thuj-3-en-10-al | LOC | MS&KI |
27 | 0.05 | 1187 | 1185–1188 | neoiso-menthol | LOC | MS&KI |
28 | 0.04 | 1194 | 1193–1197 | cis-piperitol | LOC | MS&KI |
29 | 0.02 | 1200 | 1199–1201 | cis-4-caranone | LOC | MS&KI |
31 | 0.05 | 1212 | 1211–1215 | Iso-dihydro carveol | LOC | MS&KI |
32 | 0.05 | 1223 | 1221–1225 | Methyl-2E-nonenoate | LOC | MS&KI |
33 | 0.71 | 1238 | 1237–1239 | E-ocimenone | LOC | MS&KI |
34 | 0.68 | 1247 | 1246–1251 | Ethyl-oct-2E-enoate | LOC | MS&KI |
35 | 0.05 | 1264 | 1263–1266 | cis-chrysanthenyl acetate | LOC | MS&KI |
36 | 1.61 | 1271 | 1268–1272 | tetrahydro-lavandulol acetate | LOC | MS&KI |
37 | 0.15 | 1276 | 1274–1277 | dihydro-linalool acetate | LOC | MS&KI |
38 | 0.28 | 1281 | 1279–1282 | 3Z-hexenyl valerate | LOC | MS&KI |
39 | 0.02 | 1283 | 1280–1284 | cis-verbenyl acetate | LOC | MS&KI |
40 | 0.15 | 1288 | 1286–1289 | 2-ethyl-endo-fenchol | LOC | MS&KI |
41 | 0.07 | 1301 | 1298–1302 | trans-dihydro-α-terpinyl acetate | LOC | MS&KI |
42 | 0.33 | 1304 | 1303–1307 | Undecanal | LOC | MS&KI |
43 | 0.25 | 1313 | 1312–1317 | Citronellic acid | LOC | MS&KI |
44 | 2.35 | 1321 | 1319–1322 | Dihydro citronellol acetate | LOC | MS&KI |
45 | 0.02 | 1354 | 1351–1355 | Thymol acetate | LOC | MS&KI |
46 | 0.1 | 1360 | 1360–1363 | 2E-Undecenal | LOC | MS&KI |
47 | 0.15 | 1389 | 1388–1391 | 2-dodecanone-methyl decyl ketone | LOC | MS&KI |
48 | 0.12 | 1391 | 1390–1392 | 3-Dodecanone | LOC | MS&KI |
49 | 0.02 | 1394 | 1391–1394 | β-elemene | S | MS&KI |
50 | 0.05 | 1401 | 1398–1402 | β-longipinene | S | MS&KI |
51 | 0.35 | 1408 | 1406–1409 | Dodecanal | S | MS&KI |
52 | 1.05 | 1442 | 1440–1444 | Cedrane | S | MS&KI |
53 | 0.31 | 1446 | 1446–1450 | Bakerol | LOC | MS&KI |
54 | 0.25 | 1455 | 1453–1456 | Geranyl acetone | LOC | MS&KI |
55 | 0.85 | 1491 | 1490–1494 | 10,11-epoxy-calamenene | LOC | MS&KI |
56 | 0.45 | 1506 | 1203–1507 | E,E-α-Farnesene | S | MS&KI |
57 | 0.05 | 1554 | 1553–1557 | Thymohydro quinone | LOC | MS&KI |
58 | 0.22 | 1568 | 1567–1569 | 2E-Tridecen-1-al | LOC | MS&KI |
59 | 1.15 | 1573 | 1570–1573 | n-Tridecanol | LOC | MS&KI |
60 | 1.85 | 1600 | 1558–1601 | n-Hexadecane | S | MS&KI |
61 | 0.05 | 1604 | 1602–1606 | Ledol | LOC | MS&KI |
62 | 0.12 | 1606 | 1605–1609 | Geranyl isovalerate | LOC | MS&KI |
63 | 0.05 | 1611 | 1608–1611 | Dodecyl acetate | LOC | MS&KI |
64 | 0.17 | 1615 | 1613–1616 | cis-isolongifolanone | LOC | MS&KI |
65 | 0.02 | 1617 | 1615–1619 | Davanol D1 | LOC | MS&KI |
66 | 0.36 | 1628 | 1627–1629 | 2-(3-oxobutyl)-isomenthone | LOC | MS&KI |
67 | 0.07 | 1650 | 1648–1651 | β-eudesmol | LOC | MS&KI |
68 | 1.44 | 1653 | 1650–1653 | Cedr-8(15)-en-9-α-ol | LOC | MS&KI |
69 | 0.25 | 1654 | 1652–1655 | α-eudesmol | LOC | MS&KI |
70 | 2.52 | 1655 | 1654–1657 | α-cadinol | LOC | MS&KI |
71 | 0.02 | 1656 | 1655–1659 | Geranyl valerate | LOC | MS&KI |
72 | 0.22 | 1667 | 1666–1669 | 14-hydroxy-(Z)-caryophyllene | LOC | MS&KI |
73 | 0.41 | 1675 | 1674–1678 | Z-nerolidyl acetate | LOC | MS&KI |
74 | 1.47 | 1683 | 1682–1686 | 2Z,6Z-farnesal | LOC | MS&KI |
75 | 0.84 | 1686 | 1685–1689 | α-bisabolol | LOC | MS&KI |
76 | 10.74 | 1713 | 1709–1713 | 2E,6Z-farnesol | LOC | MS&KI |
77 | 0.75 | 1715 | 1712–1716 | 14-hydroxy-α-Humulene | LOC | MS&KI |
78 | 46.35 | 1860 | 1857–1882 | Z,Z-farnesyl acetone | LOC | MS&KI |
79 | 0.12 | 1855 | 1853–1858 | Cyclopentadecanolide | S | MS&KI |
80 | 0.02 | 1862 | 1859–1863 | Eudesm-7(11)-en-4-ol, acetate | LOC | MS&KI |
81 | 0.8 | 1865 | 1864–1867 | Homoisobaeckeol | LOC | MS&KI |
82 | 0.5 | 1870 | 1869–1873 | 2,7(14),10-bisabolatrien-1-ol-4-one | LOC | MS&KI |
83 | 0.02 | 1880 | 1878–1882 | α-chenopodiol | LOC | MS&KI |
84 | 1.12 | 1885 | 1883–1887 | n-hexadecanol | LOC | MS&KI |
85 | 2.22 | 1891 | 1891–1896 | 5E,9Z-farnesyl acetone | LOC | MS&KI |
86 | 0.37 | 1900 | 1898–1902 | Dihydro-columellarin | LOC | MS&KI |
87 | 10.92 | 2001 | 2000–2004 | n-eicosane | S | MS&KI |
Sample Concentration (µg/mL) | % Inhibition by DPPH | % Inhibition by ABTS | % Inhibition by β-Carotene/Linoleic Acid | |||
---|---|---|---|---|---|---|
EO | TBHQ | EO | TBHQ | EO | TBHQ | |
20 | 30.13 ± 1.8 | 42.85 ± 1.9 | 31.75 ± 1.8 | 42.12 ± 1.8 | 30.78 ± 1.9 | 43.35 ± 1.8 |
40 | 42.65 ± 1.9 | 65.02 ± 1.8 | 41.26 ± 1.9 | 64.72 ± 1.9 | 43.32 ± 1.9 | 66.01 ± 2.0 |
60 | 53.71 ± 1.9 | 72.15 ± 2.1 | 51.25 ± 1.9 | 71.84 ± 2.0 | 52.16 ± 2.1 | 71.65 ± 2.1 |
80 | 65.34 ± 2.1 | 78.79 ± 2.0 | 64.78 ± 2.2 | 78.41 ± 2.2 | 63.91 ± 2.1 | 79.11 ± 2.1 |
Compounds | IC50 ± SD (μg/mL) a | ||
---|---|---|---|
MCF-7 | HepG2 | HCT-116 | |
EO | 10.24 ± 2.14 | 6.78 ± 1.82 | 8.45 ± 1.64 |
Doxorubicin | 0.81 ± 0.83 | 0.85 ± 0.48 | 0.78 ± 0.63 |
ADME Properties | Identifier | Farnesol | Farnesyl Acetone | Eicosane |
---|---|---|---|---|
Physicochemical Properties | Molecular weight | 222.37 | 262.43 | 282.55 |
No. rotatable bonds | 7 | 9 | 17 | |
TPSA | 20.23Å | 17.07 Å | 0.00 Å | |
Lipophilicity | iLOGP | 3.71 | 3.67 | 5.64 |
XLOGP3 | 5.42 | 5.56 | 10.45 | |
WLOGP | 4.40 | 5.77 | 8.05 | |
MLOGP | 3.86 | 4.50 | 7.38 | |
SILICOS-IT | 4.21 | 5.69 | 7.98 | |
Water Solubility | ESOL | −4.17 | −4.38 | −7.05 |
Log S | −5.60 | −5.68 | −10.40 | |
SILICOS-IT | −3.15 | −4.47 | −7.94 | |
Pharmacokinetics | GI absorption | High | High | Low |
BBB permeant | Yes | No | No | |
P-gp substrate | No | No | No | |
CYP1A2 inhibitor | Yes | Yes | Yes | |
CYP2C19 inhibitor | No | No | No | |
CYP2C9 inhibitor | Yes | Yes | No | |
CYP2D6 inhibitor | No | No | No | |
CYP3A4 inhibitor | No | No | No | |
Log Kp | −3.81 cm/s | −3.95 cm/s | −0.6 cm/s | |
Drug-likeness | Lipinski | Yes | Yes | Yes |
Ghose | Yes | No | No | |
Veber | Yes | Yes | No | |
Egan | Yes | Yes | No | |
Muegge | No | No | No | |
Bioavailability score | 0.55 | 0.55 | 0.55 | |
Medicinal Chemistry | PAINS | 0 alert | 0 alert | 0 alert |
Brenk | 1 alert | 1 alert | 0 alert |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, E.M.; El-Ghorab, A.H.; Ghoneim, M.M.; Ebrahim, H.A.; Abulfaraj, M.; Abdelgawad, M.A.; Farouk, A.; Musa, A. Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia. Molecules 2023, 28, 7025. https://doi.org/10.3390/molecules28207025
Mostafa EM, El-Ghorab AH, Ghoneim MM, Ebrahim HA, Abulfaraj M, Abdelgawad MA, Farouk A, Musa A. Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia. Molecules. 2023; 28(20):7025. https://doi.org/10.3390/molecules28207025
Chicago/Turabian StyleMostafa, Ehab M., Ahmed H. El-Ghorab, Mohammed M. Ghoneim, Hasnaa Ali Ebrahim, Moaz Abulfaraj, Mohamed A. Abdelgawad, Amr Farouk, and Arafa Musa. 2023. "Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia" Molecules 28, no. 20: 7025. https://doi.org/10.3390/molecules28207025
APA StyleMostafa, E. M., El-Ghorab, A. H., Ghoneim, M. M., Ebrahim, H. A., Abulfaraj, M., Abdelgawad, M. A., Farouk, A., & Musa, A. (2023). Cytotoxic and Antioxidant Potential of Launaea mucronata Forssk Essential Oil Growing in Northern Saudi Arabia. Molecules, 28(20), 7025. https://doi.org/10.3390/molecules28207025