Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization
Abstract
:1. Introduction
2. Chemical Diversity of Coniferous Needles and Wood Greenery
2.1. Lipid-Soluble Components of Coniferous Needles/Greenery
2.2. Water-Soluble Components of Coniferous Needles/Greenery
3. Biorefinery Approaches for the Extraction of Coniferous Needles and Wood Greenery
3.1. Coniferous Needle Essential Oils
3.2. Preparation and Properties of Aqueous Extracts
3.3. Alcoholic Extraction
3.4. Lipid Extraction and Fractionation
- (1)
- Poor analytical characterization and identification of the obtained products and their individual substances: There is a lack of comprehensive analysis and identification of the specific compounds present in each fraction obtained from the biorefinery process. This limits the knowledge and understanding of the potential application areas and benefits of these products. Currently, only polyprenols have found a place in the market as food supplements with a potential application in the pharmaceutical industry;
- (2)
- Environmental and safety concerns related to the use of hydrocarbons: The extraction process involves the use of large amounts of hydrocarbon solvents at the first and other stages of extraction. This raises concerns regarding the environmental impact and working safety requirements. Furthermore, residues of hydrocarbons may remain in the final products, significantly hampering their application potential.
3.5. Emulsion Extraction
3.6. Extraction with Supercritical Fluids
4. Further Development of Coniferous Needle and Wood Greenery Biorefinery
Author Contributions
Funding
Conflicts of Interest
References
- Paleari, S. The Impact of the European Green Deal on EU Environmental Policy. J. Environ. Dev. 2022, 31, 196–220. [Google Scholar] [CrossRef]
- D’Amato, D.; Droste, N.; Allen, B.; Kettunen, M.; Lähtinen, K.; Korhonen, J.; Leskinen, P.; Matthies, B.D.; Toppinen, A. Green, circular, bio economy: A comparative analysis of sustainability avenues. J. Clean. Prod. 2017, 168, 716–734. [Google Scholar] [CrossRef]
- Stark, S.; Biber-Freudenberger, L.; Dietz, T.; Escobar, N.; Förster, J.J.; Henderson, J.; Laibach, N.; Börner, J. Sustainability implications of transformation pathways for the bioeconomy. Sustain. Prod. Consum. 2022, 29, 215–227. [Google Scholar] [CrossRef]
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe. Brussels. 2012. Available online: https://op.europa.eu/en/publication-detail/-/publication/1f0d8515-8dc0-4435-ba53-9570e47dbd51 (accessed on 3 February 2023).
- Bünger, M. Biofuels: Putting Pressure on Petrol. Renew Energy World. 2010. Available online: http://www.renewableenergyworld.com/ (accessed on 3 February 2023).
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. 2022, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010, 51, 1412–1421. [Google Scholar] [CrossRef]
- IEA Bioenergy. Task 42 on Biorefineries: Co-Production of Fuels, Chemicals, Power, and Materials from Biomass; IEA Bioenergy Task: Paris, France, 2010. [Google Scholar]
- Clauser, N.M.; Felissia, F.E.; Area, M.C.; Vallejos, M.E. A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes. Renew. Sustain. Energy Rev. 2021, 139, 110687. [Google Scholar] [CrossRef]
- Chaturvedi, T.; Torres, A.I.; Stephanopoulos, G.; Thomsen, M.H.; Schmidt, J.E. Developing process designs for biorefineries—Definitions, categories, and unit operations. Energies 2020, 13, 1493. [Google Scholar] [CrossRef]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Carus, M.; Dammer, L. The circular bioeconomy—Concepts, opportunities, and limitations. Ind. Biotechnol. 2018, 14, 83–91. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Farjon, A. A Natural History of Conifers; Timber Press: Portland, OR, USA, 2008. [Google Scholar]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2012, 131, 145–157. [Google Scholar] [CrossRef]
- Eurostat. Wood Products—Production and Trade. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Wood_products_-_production_and_trade#Primary_wood_products (accessed on 3 February 2023).
- Eurostat. Forests, Forestry, and Logging. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Forests,_forestry_and_logging (accessed on 3 February 2023).
- Dietz, T.; Börner, J.; Förster, J.J.; Von Braun, J. Governance of the bioeconomy: A global comparative study of national bioeconomy strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef]
- Gregg, J.S.; Jürgens, J.; Happel, M.K.; Strøm-Andersen, N.; Tanner, A.N.; Bolwig, S.; Klitkou, A. Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. J. Clean. Prod. 2020, 267, 122093. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Silva, A.S.; Atanassova, M.; Sharma, R.; Nepovimova, E.; Musilek, K.; Kuča, K. Conifers phytochemicals: A valuable forest with therapeutic potential. Molecules 2021, 26, 3005. [Google Scholar] [CrossRef]
- Díaz-Sala, C.; Cabezas, J.A.; de Simón, B.F.; Abarca, D.; Guevara M, Á.; de Miguel, M.; Cadahia, E.; Aranda, I.; Cervera, M.T. The uniqueness of conifers. In From Plant Genomics to Plant Biotechnology; Woodhead Publishing: Cambridge, UK, 2013; pp. 67–96. [Google Scholar] [CrossRef]
- Murray, B.G.; Leitch, I.J.; Bennett, M.D. Gymnosperm DNA C-values Database (Release 4.0, Dec. 2010). Available online: https://cvalues.science.kew.org/search/gymnosperm (accessed on 15 January 2023).
- Zulak, K.G.; Bohlmann, J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 2020, 52, 86–97. [Google Scholar] [CrossRef]
- Arrabal, C.; García-Vallejo, M.C.; Cadahia, E.; Cortijo, M.; Fernández de Simon, B. Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles. Plant Syst. Evol. 2012, 298, 511–522. [Google Scholar] [CrossRef]
- Mofikoya, O.O. Chemical Fingerprinting of Conifer needle Extracts by Ultrahigh-Resolution Mass Spectrometry. Ph.D. Thesis, Itä-Suomen Yliopisto, Kuopio, Finland, 2022. [Google Scholar]
- Cannac, M.; Ferrat, L.; Bardoni, T.; Chiaramonti, N.; Morandini, F. Identification of flavonoids in Pinus laricio needles and changes occurring after prescribed burning. Chemoecology 2011, 21, 9–17. [Google Scholar] [CrossRef]
- Stafford, W.; De Lange, W.; Nahman, A.; Chunilall, V.; Lekha, P.; Andrew, J.; Johakimu, J.; Sithole, B.; Trotter, D. Forestry biorefineries. Renew. Energy 2020, 154, 461–475. [Google Scholar] [CrossRef]
- Wetzel, S.; Duchesne, L.C.; Laporte, M.F. Bioproducts from Canada’s Forests: New Partnerships in the Bioeconomy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Davis, C.B.; Aid, G.; Zhu, B. Secondary resources in the bio-based economy: A computer assisted survey of value pathways in academic literature. Waste Biomass Valorization 2017, 8, 2229–2246. [Google Scholar] [CrossRef]
- Butnaru, E.; Pamfil, D.; Stoleru, E.; Brebu, M. Characterization of bark, needles, and cones from silver fir (Abies alba Mill.) towards valorization of biomass forestry residues. Biomass Bioenergy 2022, 159, 106413. [Google Scholar] [CrossRef]
- Trubetskaya, A.; Budarin, V.; Arshadi, M.; Magalhaes, D.; Kazanç, F.; Hunt, A.J. Supercritical extraction of biomass as an effective pretreatment step for the char yield control in pyrolysis. Renew. Energy 2021, 170, 107–117. [Google Scholar] [CrossRef]
- Pandey, D.; Daverey, A.; Dutta, K.; Yata, V.K.; Arunachalam, K. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium, and thermodynamics study. Environ. Technol. Innov. 2022, 25, 102200. [Google Scholar] [CrossRef]
- Mohan, C.; Annachhatre, A. Role of pine needle biochar in operation and stability of anaerobic processes. Biodegradation 2023, 34, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Suri, P.; Dwivedi, D.; Rathour, R.K.; Rana, N.; Sharma, V.; Bhatia, R.K.; Bhatt, A.K. Enhanced C-5 sugar production from pine needle waste biomass using Bacillus sp. XPB-11 mutant and its biotransformation to bioethanol. Biomass Convers. Biorefinery 2022, 12, 3663–3672. [Google Scholar] [CrossRef]
- Patni, N.; Pillai, S.G.; Dwivedi, A.H. Wheat as a promising substitute of corn for bioethanol production. Procedia Eng. 2013, 51, 355–362. [Google Scholar] [CrossRef]
- Kumar, R.; Rakesh, P.K.; Sreehari, D. Investigation of physico-chemical, mechanical, and thermal properties of extracted novel Pinus roxburghii fiber. J. Nat. Fibers 2023, 20, 2157924. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Li, W. Study on compression deformation and damage characteristics of pine needle fiber-reinforced concrete using DIC. Materials 2022, 15, 1654. [Google Scholar] [CrossRef]
- Vassiliev, S.N. Extraction Technology of European Spruce (Picea abies L.) to Obtain Biologically Active Components. Ph.D. Thesis, St-Petersburgh State Forest Technical University, St-Petersburgh, Russia, 2000. [Google Scholar]
- Troshina, A.V.; Roschin, V.I. Group composition and free acids in extracts from Siberian larch greenery. Commun. Univ. For. J. 2014, 4, 125–135. [Google Scholar]
- Johansson, M.-B.; Kögel, I.; Zech, W. Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biol. Biochem. 1986, 18, 611–619. [Google Scholar] [CrossRef]
- Cassim, A.M.; Gouguet, P.; Gronnier, J.; Laurent, N.; Germain, V.; Grison, M.; Mongrand, S. Plant lipids: Key players of plasma membrane organization and function. Prog. Lipid Res. 2019, 73, 1–27. [Google Scholar] [CrossRef]
- Murphy, D.J. The study and utilisation of plant lipids: From margarine to lipid rafts. In Plant Lipids; Blackwell: Kay County, OK, USA, 2020; pp. 1–26. [Google Scholar]
- Horn, P.J.; Chapman, K.D. Lipidomics in situ: Insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog. Lipid Res. 2014, 54, 32–52. [Google Scholar] [CrossRef]
- Rogachev, A.D.; Salakhutdinov, N.F. Chemical composition of Pinus sibirica (Pinaceae). Chem. Biodivers. 2015, 12, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, E.; Koutsaviti, A.; Tzakou, O.; Roussis, V. The genus Pinus: A comparative study on the needle essential oil composition of 46 pine species. Phytochem. Rev. 2014, 13, 741–768. [Google Scholar] [CrossRef]
- Allenspach, M.; Valder, C.; Flamm, D.; Steuer, C. Authenticity control of pine sylvestris essential oil by chiral gas chromatographic analysis of α-pinene. Sci. Rep. 2021, 11, 16923. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, M.; Valder, C.; Flamm, D.; Grisoni, F.; Steuer, C. Verification of chromatographic profile of primary essential oil of Pinus sylvestris L. combined with chemometric analysis. Molecules 2020, 25, 2973. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tang, M.; Gao, J.; Chen, X.; Li, Z. Changes in the composition of volatile monoterpenes and sesquiterpenes of Pinus armandi, P. tabulaeformis, and P. bungeana in Northwest China. Chem. Nat. Compd. 2006, 42, 534–538. [Google Scholar] [CrossRef]
- Kurose, K.; Okamura, D.; Yatagai, M. Composition of the essential oils from the leaves of nine Pinus species and the cones of three of Pinus species. Flavour Fragr. J. 2007, 22, 10–20. [Google Scholar] [CrossRef]
- Schoefs, B.; Franck, F. Chlorophyll synthesis in dark-grown pine primary needles. Plant Physiol. 1998, 118, 1159–1168. [Google Scholar] [CrossRef]
- Skorupinska-Tudek, K.; Wojcik, J.; Swiezewska, E. Polyisoprenoid alcohols—Recent results of structural studies. Chem. Rec. 2008, 8, 33–45. [Google Scholar] [CrossRef]
- Attard, T.M.; Bukhanko, N.; Eriksson, D.; Arshadi, M.; Geladi, P.; Bergsten, U.; Hunt, A.J. Supercritical extraction of waxes and lipids from biomass: A valuable first step towards an integrated biorefinery. J. Clean. Prod. 2018, 177, 684–698. [Google Scholar] [CrossRef]
- Schulten, H.R.; Simmleit, N.; Rump, H.H. Soft ionization mass spectrometry of epicuticular waxes isolated from coniferous needles. Chem. Phys. Lipids 1986, 41, 209–224. [Google Scholar] [CrossRef]
- McElroy, C.R.; Attard, T.M.; Farmer, T.J.; Gaczynski, A.; Thornthwaite, D.; Clark, J.H.; Hunt, A.J. Valorization of spruce needle waste via supercritical extraction of waxes and facile isolation of nonacosan-10-ol. J. Clean. Prod. 2018, 171, 557–566. [Google Scholar] [CrossRef]
- Bukhanko, N.; Attard, T.; Arshadi, M.; Eriksson, D.; Budarin, V.; Hunt, A.J.; Clark, J. Extraction of cones, branches, needles, and bark from Norway spruce (Picea abies) by supercritical carbon dioxide and soxhlet extractions techniques. Ind. Crops Prod. 2020, 145, 112096. [Google Scholar] [CrossRef]
- Nastić, N.; Gavarić, A.; Vladić, J.; Vidović, S.; Aćimović, M.; Puvača, N.; Brkić, I. Spruce (Picea abies (L.). H. Karst): Different Approaches for Extraction of Valuable Chemical Compounds. J. Agron. Technol. Eng. Manag. 2020, 3, 437–447. [Google Scholar]
- Beluns, S.; Platnieks, O.; Sevcenko, J.; Jure, M.; Gaidukova, G.; Grase, L.; Gaidukovs, S. Sustainable wax coatings made from pine needle extraction waste for nanopaper hydrophobization. Membranes 2022, 12, 537. [Google Scholar] [CrossRef]
- Dziedziński, M.; Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Stuper-Szablewska, K.; Baranowska, M. Polyphenols composition, antioxidant, and antimicrobial properties of Pinus sylvestris L. shoots extracts depending on different drying methods. Emir. J. Food Agric. 2020, 32, 229–237. [Google Scholar] [CrossRef]
- Mofikoya, O.O.; Eronen, E.; Mäkinen, M.; Jänis, J. Production and characterization of hydrothermal extracts of the needles from four conifer tree species: Scots pine, Norway spruce, Common juniper, and European larch. ACS Sustain. Chem. Eng. 2023, 11, 1540–1547. [Google Scholar] [CrossRef]
- Rivas-Ubach, A.; Peñuelas, J.; Hódar, J.A.; Oravec, M.; Paša-Tolić, L.; Urban, O.; Sardans, J. We are what we eat: A stoichiometric and ecometabolomic study of caterpillars feeding on two pine subspecies of Pinus sylvestris. Int. J. Mol. Sci. 2018, 20, 59. [Google Scholar] [CrossRef]
- Lučinskaitė, I.; Laužikė, K.; Žiauka, J.; Baliuckas, V.; Čėsna, V.; Sirgedaitė-Šėžienė, V. Assessment of biologically active compounds, organic acids, and antioxidant activity in needle extracts of different Norway spruce (Picea abies (L.) H. Karst) half-sib families. Wood Sci. Technol. 2021, 55, 1221–1235. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Zhang, D.; Qiu, J.; Niu, Q.T.; Liu, T.; Gu, R.; Zhang, X.; Luo, S. Effects of various pine needle extracts on Chinese hamster ovary cell growth and monoclonal antibody quality. Prep. Biochem. Biotechnol. 2023, 53, 1–11. [Google Scholar] [CrossRef]
- Kovalikova, Z.; Lnenicka, J.; Andrys, R. The influence of locality on phenolic profile and antioxidant capacity of bud extracts. Foods 2021, 10, 1608. [Google Scholar] [CrossRef]
- Nurzyńska-Wierdak, R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef]
- Metsämuuronen, S.; Sirén, H. Bioactive phenolic compounds, metabolism, and properties: A review on valuable chemical compounds in Scots pine and Norway spruce. Phytochem. Rev. 2019, 18, 623–664. [Google Scholar] [CrossRef]
- Szwajkowska-Michałek, L.; Przybylska-Balcerek, A.; Rogoziński, T.; Stuper-Szablewska, K. Phenolic compounds in trees and shrubs of central Europe. Appl. Sci. 2020, 10, 6907. [Google Scholar] [CrossRef]
- Salzano de Luna, M.; Vetrone, G.; Viggiano, S.; Panzella, L.; Marotta, A.; Filippone, G.; Ambrogi, V. Pine needles as a biomass resource for phenolic compounds: Trade-off between efficiency and sustainability of the extraction methods by life cycle assessment. ACS Sustain. Chem. Eng. 2023, 11, 4670–4677. [Google Scholar] [CrossRef]
- Assarsson, A.; Theander, O.; Bergson, G.; Grönvall, A.; Zaar, B.; Diczfalusy, E. The constituents of conifer needles. Acta Chem. Scand. 1958, 12, 1319–1332. [Google Scholar] [CrossRef]
- Duquesnoy, E.; Castola, V.; Casanova, J. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy. Carbohydr. Res. 2008, 343, 893–902. [Google Scholar] [CrossRef]
- Mitcham-Butler, E.J.; Hinesley, L.E.; Pharr, D.M. Soluble Carbohydrate Concentration of Fraser Fir Foliage and Its Relationship to Postharvest Needle Retention. J. Am. Soc. Hortic. Sci. 1987, 112, 672–676. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Xue, F.; Ding, X.; Cui, M.; Dong, M.; Kang, M. Effects of environmental factors on the nonstructural carbohydrates in Larix principis-rupprechtii. Forests 2023, 14, 345. [Google Scholar] [CrossRef]
- Ericsson, A.; Hansen, J.; Dalgaard, L. A routine method for quantitative determination of soluble carbohydrates in small samples of plant material with gas-liquid chromatography. Anal. Biochem. 1978, 86, 552–560. [Google Scholar] [CrossRef]
- Stark, S.; Hilli, S.; Willför, S.; Smeds, A.I.; Reunanen, M.; Penttinen, M.; Hautajärvi, R. Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests. Eur. J. Soil Sci. 2012, 63, 65–74. [Google Scholar] [CrossRef]
- Rinne, K.T.; Saurer, M.; Kirdyanov, A.V.; Bryukhanova, M.V.; Prokushkin, A.S.; Churakova, O.V.; Siegwolf, R.T. Examining the response of needle carbohydrates from Siberian larch trees to climate using compound-specific δ13 C and concentration analyses. Plant Cell Environ. 2015, 38, 2340–2352. [Google Scholar] [CrossRef] [PubMed]
- Churakova, O.V.; Lehmann, M.M.; Siegwolf, R.T.; Saurer, M.; Fonti, M.V.; Schmid, L.; Bigler, C. Compound-specific carbon isotope patterns in needles of conifer tree species from the Swiss National Park under recent climate change. Plant Physiol. Biochem. 2019, 139, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, D.V.; Sysolyatin, S.V.; Kalashnikov, A.I.; Surmacheva, I.A. Shikimic acid: Review of its analytical, isolation, and purification techniques from plant and microbial sources. J. Chem. Biol. 2012, 5, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Ozhimkova, E.V.; Korotkova, E.M.; Sulman, M.G.; Sulman, E.M.; Molchanov, V.P. Isolation of shikimic acid from Picea abies needles. The future prospects. IOP Conf. Ser. Earth Environ. Sci. 2019, 316, 012048. [Google Scholar] [CrossRef]
- Sui, R. Separation of shikimic acid from pine needles. Chem. Eng. Technol. 2008, 31, 469–473. [Google Scholar] [CrossRef]
- Zhang, J.M.; Shi, X.F.; Ma, Q.H.; He, F.J.; Fan, B.; Wang, D.D.; Liu, D.Y. Chemical constituents from pine needles of Cedrus deodara. Chem. Nat. Compd. 2011, 47, 272–274. [Google Scholar] [CrossRef]
- Burkova, V.N.; Sergun, V.P.; Ivanov, A.A. Chemical composition and pharmacological activity of aqueous extract of Siberian pine (Abies sibirica L.). Chem. Plant Resour. 2022, 2, 19–34. [Google Scholar] [CrossRef]
- Tawara, J.N.; Blokhin, A.; Foderaro, T.A.; Stermitz, F.R.; Hope, H. Toxic piperidine alkaloids from pine (Pinus) and spruce (Picea) trees. New structures and a biosynthetic hypothesis. J. Org. Chem. 1993, 58, 4813–4818. [Google Scholar] [CrossRef]
- Singh, L.; Upadhyay, A.K.; Dixit, P.; Singh, A.; Yadav, D.; Chhavi, A.; Saxena, G. A review of chemistry and pharmacology of Piperidine alkaloids of Pinus and related genera. Curr. Pharm. Biotechnol. 2022, 23, 1132–1141. [Google Scholar] [CrossRef]
- Mikson, D.S.; Roshchin, V.I. Complex ethers in extracts from Siberian larch Topical problems in Forestry. Russ. J. Bioorganic Chem. 2015, 101–105. [Google Scholar]
- Mikson, D.S.; Roshchin, V.I. The Siberian Larch needle group composition and acids at various vegetation periods. Russ. J. Bioorganic Chem. 2020, 46, 1396–1402. [Google Scholar] [CrossRef]
- Silori, G.K.; Kushwaha, N.; Kumar, V. Essential oils from pines: Chemistry and applications. In Essential Oil Research: Trends in Biosynthesis, Analytics, Industrial Applications, and Biotechnological Production; Springer: Berlin/Heidelberg, Germany, 2019; pp. 275–297. [Google Scholar] [CrossRef]
- Korica, A.; Polis, O.; Spalvis, K.; Bartkevics, V.A.D.I.M.S. Quantitative and qualitative seasonal changes of Scots pine and Norway spruce foliage essential oils in Latvia, and the extraction dynamics thereof. Balt. For. 2015, 21, 51–58. [Google Scholar]
- Sporek, M. Volatile oil content of scots pine needles (Pinus sylvestris L.). Chem. -Didact. -Ecol. -Metrol. 2016, 21, 141–147. [Google Scholar] [CrossRef]
- Kelkar, V.M.; Geils, B.W.; Becker, D.R.; Overby, S.T.; Neary, D.G. How to recover more value from small pine trees: Essential oils and resins. Biomass Bioenergy 2006, 30, 316–320. [Google Scholar] [CrossRef]
- Daugavietis, M.; Spalvis, K. The development of technology for obtaining essential oils from Scots pine tree foliage. Ann. Wars. Univ. Life Sci. -SGGW. For. Wood Technol. 2014, 87, 51–54. [Google Scholar]
- Judžentienė, A.; Šližytė, J.; Stiklienė, A.; Kupčinskienė, E. Characteristics of essential oil composition in the needles of young stand of Scots pine (Pinus sylvestris L.) growing along aerial ammonia gradient. Chemija 2006, 17, 67–73. [Google Scholar]
- Kiliç, Ö.; Koçak, A. Essential oil composition of six Pinus L. taxa (Pinaceae) from Canada and their chemotaxonomy. J. Agric. Sci. Technol. B 2014, 4, 67. [Google Scholar]
- Salem MZ, M.; Zeidler, A.; Böhm, M.; Mohamed, M.E.; Ali, H.M. GC/MS Analysis of Oil Extractives from wood and bark of Pinus sylvestris, Abies alba, Picea abies, and Larix decidua. BioResources 2015, 10, 7725–7737. [Google Scholar] [CrossRef]
- Wajs, A.; Pranovich, A.; Reunanen, M.; Willför, S.; Holmbom, B. Headspace-SPME analysis of the sapwood and heartwood of Picea abies, Pinus sylvestris and Larix decidua. J. Essent. Oil Res. 2007, 19, 125–133. [Google Scholar] [CrossRef]
- Tsitsimpikou, C.; Petrakis, P.V.; Ortiz, A.; Harvala, C.; Roussis, V. Volatile needle terpenoids of six Pinus species. J. Essent. Oil Res. 2001, 13, 174–178. [Google Scholar] [CrossRef]
- Semiz, G.; Heijari, J.; Isik, K.; Holopainen, J.K. Variation in needle terpenoids among Pinus sylvestris L.(Pinaceae) provenances from Turkey. Biochem. Syst. Ecol. 2007, 35, 652–661. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Vyskupaityte, K.; Plausinaitis, R. Composition of essential oils of Pinus sylvestris L. from Different Locations of Lithuania. J. Essent. Oil Res. 2000, 12, 559–565. [Google Scholar] [CrossRef]
- Judzentiene, A.; Kupcinskiene, E. Chemical composition on essential oils from needles of Pinus sylvestris L. grown in Northern Lithuania. J. Essent. Oil Res. 2008, 20, 26–29. [Google Scholar] [CrossRef]
- Pfeifhofer, H.W. Composition of the essential oil of Pinus canariensis Sweet ex Sprengel. Flavour Fragr. J. 2000, 15, 266–270. [Google Scholar] [CrossRef]
- Raal, A.; Nisuma, K.; Meos, A. Pinus sylvestris L. and other conifers as natural sources of ascorbic acid. J. Pharm. Pharmacogn. Res. 2018, 6, 89–95. [Google Scholar]
- Schick, B. A tea prepared from needles of pine trees against scurvy. Science 1943, 98, 241–242. [Google Scholar] [CrossRef]
- Sensuła, B.; Piotrowska, N.; Nowińska, K.; Koruszowic, M.; Lazaj, D.; Osadnik, R.; Strączek, B. Characteristics of pine needles exposed to pollution in Silesia, Poland: Carbon isotopes, iWUE, and trace element concentrations in pine needles. Radiocarbon 2023, 65, 233–246. [Google Scholar] [CrossRef]
- Gallina, L.; Cravotto, C.; Capaldi, G.; Grillo, G.; Cravotto, G. Plant extraction in water: Towards highly efficient industrial applications. Processes 2022, 10, 2233. [Google Scholar] [CrossRef]
- Alaydi, H.; Zhu, X.; Mondala, J.R.M.; Tiwari, B.K.; Kumari, B.; Curtin, J.F.; Downey, P.; McKeon-Bennett, P.; Beletskaya, T. Valorisation of phytochemical from Sitka spruce (Picea sitchensis) needles: Impact of ultrasound/microwave-assisted extraction. Food Bioprod. Process. 2023, 139, 98–108. [Google Scholar] [CrossRef]
- Zeng, W.C.; He, Q.; Sun, Q.; Zhong, K.; Gao, H. Antibacterial activity of water-soluble extract from pine needles of Cedrus deodara. Int. J. Food Microbiol. 2012, 153, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.Y.; Lan, J.F.; Yu, L.; Wu, C.M. Study on extraction of Shikimic acid from pine needles of Pinus elliottii Engelm by means of microwave pretreatment. Adv. Mater. Res. 2012, 455, 752–759. [Google Scholar] [CrossRef]
- Zhang, J.M.; Shi, X.F.; Fu, S.W.; Zhao, J.; Guo, Y.L. Separation of acidic compounds and determination of shikimic acid in water extracts of several conifers by HPLC. Chem. Nat. Compd. 2013, 49, 728–729. [Google Scholar] [CrossRef]
- Albanese, L.; Bonetti, A.; D’Acqui, L.P.; Meneguzzo, F.; Zabini, F. Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies alba Mill.) needles. Foods. 2019, 8, 65. [Google Scholar] [CrossRef]
- Ugolini, F.; Crisci, A.; Albanese, L.; Cencetti, G.; Maienza, A.; Michelozzi, M.; Meneguzzo, F. Effects of Silver Fir (Abies alba Mill.) needle extract produced via hydrodynamic cavitation on seed germination. Plants 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Parenti, O.; Albanese, L.; Guerrini, L.; Zanoni, B.; Zabini, F.; Meneguzzo, F. Whole wheat bread enriched with silver fir (Abies alba Mill.) needles extract: Technological and antioxidant properties. J. Sci. Food Agric. 2022, 102, 3581–3589. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Evaluation of in vitro antioxidant activity of the water extract obtained from dried pine needle (Pinus densiflora). Prev. Nutr. Food Sci. 2018, 23, 134. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, S.Y.; Lee, J.; Chang, M.; Chung, Y.; Lee, T.K. Biochemical compositions and biological activities of extracts from 3 species of Korean pine needles. J. Food Nutr. Res. 2017, 5, 31–36. [Google Scholar]
- Joseph-Leenose-Helen, J.; Noor, N.; Mushtaq, M.; Gani, A. Ultrasonics as a tool for development of pine-needle extract loaded bee wax edible packaging for value addition of Himalayan cheese. Ultrason. Sonochemistry 2022, 82, 105914. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Zeng, W.; Luo, F.; Zhao, J.; Yang, Z.; Sun, Q. Antibacterial activity of organic acids in aqueous extracts from pine needles (Pinus massoniana Lamb.). Food Sci. Biotechnol. 2010, 19, 35–41. [Google Scholar] [CrossRef]
- Isidorov, V.; Rafalowski, K.; Vinogorova, V.; Reduta, L.; Fuksman, I. GC-MS analysis of acidic components in aqueous extracts of coniferous trees’ needles. Chem. Anal. 2006, 51, 79. [Google Scholar]
- Shanina, E.V.; Repyakh, S.M. Water alcoholic extraction of Pinus silvestris greenery. Chem. Nat. Resour. 2003, 61–63. [Google Scholar]
- Alam, T.; Jilani, G.; Chaudhry, A.N.; Ahmad, M.S.; Aziz, R.; Ahmad, R. Terpenes and phenolics in alcoholic extracts of pine needles exhibit biocontrol of weeds (Melilotus albus and Asphodelus tenuifolius) and insect-pest (Plutella xylostella). J. King Saud Univ. -Sci. 2022, 34, 101913. [Google Scholar] [CrossRef]
- Puri, A.; Srivastava, A.K.; Singhal, B.; Mishra, S.K.; Srivastava, S.; Lakshmi, V. Antidyslipidemic and antioxidant activity of Pinus roxburghii needles. Med. Chem. Res. 2011, 20, 1589–1593. [Google Scholar] [CrossRef]
- Naruchganov, A.N.; Efremov, A.A.; Offan, K.B. Extracts from greenery obtained using ethanol and ultrasound. Chem. Nat. Resour. 2010, 105–108. [Google Scholar]
- Choi, J.; Kim, W.; Park, J.; Cheong, H. The beneficial effects of extract of Pinus densiflora needles on skin health. Microbiol. Biotechnol. Lett. 2016, 44, 208–217. [Google Scholar] [CrossRef]
- Kadam, A.A.; Singh, S.; Gaikwad, K.K. Chitosan based antioxidant films incorporated with pine needles (Cedrus deodara) extract for active food packaging applications. Food Control 2021, 124, 107877. [Google Scholar] [CrossRef]
- Lebedeva, O.I.; Repyakh, S.M.; Tikhomirova, G.V. Composition of the resinous substances of conifer needles. I. Group composition of the resinous substances of the needles of the pine Pinus silvestris. Chem. Nat. Compd. 1979, 15, 345–347. [Google Scholar] [CrossRef]
- Anashenkov, S.J.; Roschin, V.I. Development of technology of deep processing of coniferous greenery. Actual Probl. For. 2006, 78–81. [Google Scholar]
- Siksna, S.; Daberte, I.; Barene, I.; Iriste, V. Coniferous greenery–valuable natural raw material of biologically active substances. Med. Teor. Ir Prakt. 2012, 2. [Google Scholar]
- Roschin, V.I.; Sultanov, V.S. Method for Processing Vegetable Raw Materials. U.S. Patent 8,969,517, 27 April 2004. [Google Scholar]
- Nikonova, N.N.; Hurshkainen, T.V.; Shevchenko, O.G.; Kuchin, A.V. “Green technology” processing of pine (Pinus sylvestris L.) and larch (Larix sibirica Ledeb.) wood greenery to produce bioactive extracts. Holzforschung. 2022, 76, 276–284. [Google Scholar] [CrossRef]
- Anashenkov, S.J.; Roschin, V.I.; Chernisheva, O.A.O.A. Aqueous-alkaline extraction of forestry greenery. I. Impact of the construction of rotary-pulsation extractor and hydromodule on yields of extracts. Chem. Plant Resour. 2008, 65–70. [Google Scholar]
- Anashenkov, S.J.; Roschin, V.I. Aqueous-alkaline extraction of forestry greenery. II. Impact of alkali concentration and extraction duration on yields of extracts. Chem. Plant Resour. 2008, 105–108. [Google Scholar]
- Kajan, E.C.; Anashenkov, S.J.; Roschin, V.I. Group composition, acids, and ethers in aqueous-alkaline extracts from pine. Actual Probl. For. 2010, 68–71. [Google Scholar]
- Chernisheva, O.A.; Anashenkov, S.J.; Roschin, V.I. Composition of extracts obtained from coniferous greenery. Actual Probl. For. 2009, 148–149. [Google Scholar]
- Nikonova, N.N.; Hurshkainen, T.B.; Skripova, N.N.; Kuchin, A.V. Technology for processing of plant materials considering sustainability approach. In Utilisation of Production Wastes: Innovation and Technologies; StPetersburg University: St Petersburg, Russia, 2020; pp. 291–295. [Google Scholar]
- Nikonova, N.N.; Hurshkainen, T.B.; Skripova, N.N.; Kuchin, A.V. Mathematical planning of experiments to optimise isolation of extracts from Pinus sylvestris greenery. Izv. St. Peterb. For. Acad. 2021, 3, 221–237. [Google Scholar]
- Kuchin, A.V.; Karmanova, L.P.; Koroleva, A.A. Low molecular components from coniferous greenery Picea, Abies, Pinus and new method of their isolation. Chem. Sustain. Dev. 1997, 1, 7–20. [Google Scholar]
- Ahmad, T.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gull, A. Supercritical fluid extraction: A review. J. Biol. Chem. Chronol. 2019, 5, 114–122. [Google Scholar] [CrossRef]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications–A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of supercritical fluid in the extraction of flavonoids: A comprehensive review. Physiol. Mol. Plant Pathol. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Larkeche, O.; Zermane, A.; Meniai, A.H.; Crampon, C.; Badens, E. Supercritical extraction of essential oil from Juniperus communis L. needles: Application of response surface methodology. J. Supercrit. Fluids 2015, 99, 8–14. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, Z.; Wang, G.; Ruan, X.; Wu, Q.; Luo, C.; Wang, Q. Supercritical extraction and antioxidant activity of major ingredients in Puerariae lobatae root, Pinus massoniana needle, Citrus reticulata peel and their mixture. J. CO2 Util. 2021, 48, 101518. [Google Scholar] [CrossRef]
- Alaydi, H.; Downey, P.; McKeon-Bennett, M.; Beletskaya, T. Supercritical-CO2 extraction, identification, and quantification of polyprenol as a bioactive ingredient from Irish trees species. Sci. Rep. 2021, 11, 7461. [Google Scholar] [CrossRef]
- Jozwiak, A.; Brzozowski, R.; Bujnowski, Z.; Chojnacki, T.; Swiezewska, E. Application of supercritical CO2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J. Lipid Res. 2013, 54, 2023–2028. [Google Scholar] [CrossRef]
- Ushanova, V.M. Use of Siberian larch greenery in alternative technologies. Commun. Krasn. Agrar. Univ. 2010, 2, 182–186. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Funari, C.S.; Rinaldo, D.; Bolzani, V.S.; Verpoorte, R. Reaction of the phytochemistry community to green chemistry: Insights obtained since 1990. J. Nat. Prod. 2023, 24, 440–459. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications, and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Karuppiah, K.; Sankaranarayanan, B.; Ali, S.M.; Jabbour, C.J.C.; Bhalaji, R.K.A. Inhibitors to circular economy practices in the leather industry using an integrated approach: Implications for sustainable development goals in emerging economies. Sustain. Prod. Consum. 2021, 27, 1554–1568. [Google Scholar] [CrossRef]
Components | Pine | Spruce | Siberian Fir | |||
---|---|---|---|---|---|---|
Needles | Greenery | Needles | Greenery | Needles | Greenery | |
Cellulose, % | 28 | 20 | 19 | 25 | 22 | 24 |
Lignin, % | 21 | 32 | 31 | 37 | 32 | 44 |
Protein, % | 7.5 | 3 | 9 | 9 | 7 | 3 |
Mineral substances, % | 2.5 | 2 | 2 | 2 | 4 | 3.5 |
Chlorophyll, mg/kg | 5150 | 600 | 7580 | 1100 | 8978 | 1988 |
Carotenoids, mg/kg | 168 | 16 | 179 | 10 | 236 | 12 |
Substances, extracted with corresponding solvent, % | ||||||
Petrol ether | 15 | 9 | 7.5 | 4 | 10 | 13 |
Chloroform | 9 | 13 | 13 | 5 | 19 | 17 |
Ethanol | 34 | 26 | 37 | 16 | 39 | 23 |
Isopropanol | 31 | 29 | 39 | 14 | 37 | 24 |
Water (hot) | 38 | 26 | - | - | 35 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klavins, L.; Almonaitytė, K.; Šalaševičienė, A.; Zommere, A.; Spalvis, K.; Vincevica-Gaile, Z.; Korpinen, R.; Klavins, M. Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules 2023, 28, 7085. https://doi.org/10.3390/molecules28207085
Klavins L, Almonaitytė K, Šalaševičienė A, Zommere A, Spalvis K, Vincevica-Gaile Z, Korpinen R, Klavins M. Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules. 2023; 28(20):7085. https://doi.org/10.3390/molecules28207085
Chicago/Turabian StyleKlavins, Linards, Karolina Almonaitytė, Alvija Šalaševičienė, Alise Zommere, Kaspars Spalvis, Zane Vincevica-Gaile, Risto Korpinen, and Maris Klavins. 2023. "Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization" Molecules 28, no. 20: 7085. https://doi.org/10.3390/molecules28207085
APA StyleKlavins, L., Almonaitytė, K., Šalaševičienė, A., Zommere, A., Spalvis, K., Vincevica-Gaile, Z., Korpinen, R., & Klavins, M. (2023). Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules, 28(20), 7085. https://doi.org/10.3390/molecules28207085