Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves
Abstract
:1. Introduction
2. Results
2.1. Drying Parameters
2.2. Viable Plate Counts
2.3. Metataxonomic Analysis
2.4. Color
2.5. VOCs
2.6. Sensory Analysis
3. Discussion
4. Materials and Methods
4.1. Supply, Processing, and Moisture Content Determination of Sea Fennel
4.2. Sea Fennel Drying
4.3. Weight Loss Calculation and aw Measurement
4.4. Viable Plate Counting
4.5. Metataxonomic Analysis
4.6. Color Assessment
4.7. Determination of Volatile Compounds via Headspace/Solid Phase Microextraction–Gas Chromatography/Mass Spectrometry (HS/SPME-GC/MS)
4.8. Sensory Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jin, W.; Mujumdar, A.S.; Zhang, M.; Shi, W. Novel Drying Techniques for Spices and Herbs: A Review. Food Eng. Rev. 2018, 10, 34–45. [Google Scholar] [CrossRef]
- Tapia, M.S.; Alzamora, S.M.; Chirife, J. Effects of Water Activity (aw) on Microbial Stability: As a Hurdle in Food Preservation. In Water Activity in Foods: Fundamentals and Applications, 2nd ed.; Barbosa-Cánovas, G.V., Fontana, A.J., Schmidt, S.J., Labuza, T.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 323–355. [Google Scholar] [CrossRef]
- Chua, L.Y.; Chong, C.H.; Chua, B.L.; Figiel, A. Influence of Drying Methods on the Antibacterial, Antioxidant and Essential Oil Volatile Composition of Herbs: A Review. Food Bioproc Tech. 2019, 12, 450–476. [Google Scholar] [CrossRef]
- McMinn, W.A.M.; Magee, T.R.A. Principles, Methods, and Applications of the Convective Drying of Foodstuffs. Food Bioprod. Proc. 1999, 77, 175–193. [Google Scholar] [CrossRef]
- Wray, D.; Ramaswamy, H.S. Novel Concepts in Microwave Drying of Foods. Dry. Technol. 2015, 33, 769–783. [Google Scholar] [CrossRef]
- Kathirvel, K.; Naik, K.R.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave Drying—A promising alternative for the herb processing industry. In ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: Edmonton, AB, Canada, 2006; p. 1. [Google Scholar]
- Heindl, A.G.; Müller, J. Microwave Drying of Medicinal and Aromatic Plants. Stewart Postharvest Rev. 2007, 3, 1–6. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Bower, A.; Marquez, S.; de Mejia, E.G. The Health Benefits of Selected Culinary Herbs and Spices Found in the Traditional Mediterranean Diet. Crit. Rev. Food Sci. Nutr. 2016, 56, 2728–2746. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and Herbs: Natural Sources of Antioxidants—A Mini Review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Sachan, A.; Kumar, S.; Kumari, K.; Singh, D. Medicinal Uses of Spices Used in our Traditional Culture: Worldwide. J. Med. Plan. Res. 2018, 6, 116–122. [Google Scholar]
- Viuda-Martos, M.; Ruiz-Navajas, Y.; Fernández-López, J.; Pérez-Alvarez, J.A. Spices as Functional Foods. Crit. Rev. Food Sci. Nutr. 2011, 51, 13–28. [Google Scholar] [CrossRef]
- Mathot, A.G.; Postollec, F.; Leguerinel, I. Bacterial Spores in Spices and Dried Herbs: The risks for processed food. Compr. Rev. Food Sci. Food Saf. 2021, 20, 840–862. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.G. Nutraceutical Potential of Apiaceae. In Bioactive Molecules in Food; Mérillon, J.M., Ramawat, K.G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, Swizerland, 2019; pp. 1311–1341. [Google Scholar] [CrossRef]
- Kraouia, M.; Nartea, A.; Maoloni, A.; Osimani, A.; Garofalo, C.; Fanesi, B.; Ismaiel, L.; Aquilanti, L.; Pacetti, D. Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023, 28, 4741. [Google Scholar] [CrossRef]
- Maoloni, A.; Pirker, T.; Pferschy-Wenzig, E.M.; Aquilanti, L.; Bauer, R. Characterization of Potentially Health-Promoting Constituents in Sea Fennel (Crithmum maritimum) Cultivated in the Conero Natural Park (Marche Region, Central Italy). Pharm. Biol. 2023, 61, 1030–1040. [Google Scholar] [CrossRef]
- Maoloni, A.; Milanović, V.; Osimani, A.; Cardinali, F.; Garofalo, C.; Belleggia, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cirlini, M.; et al. Exploitation of Sea Fennel (Crithmum Maritimum L.) for Manufacturing of Novel High-Value Fermented Preserves. Food Bioprod. Process 2021, 127, 174–197. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Garofalo, C.; Ferrocino, I.; Corvaglia, M.R.; Cocolin, L.; Aquilanti, L. Microbial Dynamics and Key Sensory Traits of Laboratory-Scale Co-Fermented Green Olives (Olea Europaea L. Cv. Ascolana Tenera) and Sea Fennel (Crithmum Maritimum L.). Food Biosci. 2022, 50, 102077. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Verdenelli, M.C.; Coman, M.M.; Aquilanti, L. Exploratory Study for Probiotic Enrichment of a Sea Fennel (Crithmum maritimum L.) Preserve in Brine. Foods 2022, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, V.; Maoloni, A.; Cardinali, F.; Milanović, V.; Garofalo, C.; Osimani, A.; Clementi, F.; Aquilanti, L. Selection of Starter Cultures for Manufacturing of New Fermented Preserves with Sea Fennel (Crithmum maritimum L.). Industrie alimentari 2020, 59, 3–10. [Google Scholar]
- Rico, D.; Albertos, I.; Martinez-Alvarez, O.; Lopez-Caballero, M.E.; Martin-Diana, A.B. Use of Sea Fennel as a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers. Molecules 2020, 25, 5260. [Google Scholar] [CrossRef]
- Atia, A.; Barhoumi, Z.; Mokded, R.; Abdelly, C.; Smaoui, A. Environmental Eco-Physiology and Economical Potential of the Halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plants Res. 2011, 5, 3564–3571. [Google Scholar]
- Renna, M. Reviewing the Prospects of Sea Fennel (Crithmum maritimum L.) as Emerging Vegetable Crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M. The Use of the Sea Fennel as a New Spice-Colorant in Culinary Preparations. Int. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea Fennel (Crithmum maritimum L.): From Underutilized Crop to New Dried Product for Food Use. Genet. Resour. Crop Evol. 2017, 64, 205–216. [Google Scholar] [CrossRef]
- Giungato, P.; Renna, M.; Rana, R.; Licen, S.; Barbieri, P. Characterization of Dried and Freeze-Dried Sea Fennel (Crithmum maritimum L.) Samples with Headspace Gas-Chromatography/Mass Spectrometry and Evaluation of an Electronic Nose Discrimination Potential. Food Res. Int. 2019, 115, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Alp, D.; Bulantekin, Ö. The Microbiological Quality of Various Foods Dried by Applying Different Drying Methods: A Review. Eur. Food Res. Technol. 2021, 247, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.V., Jr. Quality Control: Water Activity Considerations for Beyond-Use Dates. Int. J. Pharm. Compd. 2018, 22, 288–293. [Google Scholar]
- Duan, X.; Zhang, M.; Mujumdar, A.S. Studies on the Microwave Freeze Drying Technique and Sterilization Characteristics of Cabbage. Dry. Technol. 2007, 25, 1725–1731. [Google Scholar] [CrossRef]
- Cătunescu, G.M.; Muntean, M.; Marian, O.; David, A.P.; Rotar, A.M. Comparative Effect of Gamma Irradiation, Drying and Freezing on Sensory, and Hygienic Quality of Parsley Leaves. LWT 2019, 115, 108448. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Adhikari, B. Dehydrated Foods: Are They Microbiologically Safe? Crit. Rev. Food Sci. Nutr. 2019, 59, 2734–2745. [Google Scholar] [CrossRef]
- Van Uden, N. Temperature Profiles of Yeasts. In Advances in Microbial Physiology; Rose, A.H., Tempest, D.W., Eds.; Academic Press: Cambridge, MA, USA, 1985; Volume 25, pp. 195–251. ISBN 0065-2911. [Google Scholar]
- Trivedi, N.; Patadia, M.; Kothari, V. Biological Applications of Microwaves. Int. J. Life Sci. Technol. 2011, 4, 37. [Google Scholar]
- Celandroni, F.; Longo, I.; Tosoratti, N.; Giannessi, F.; Ghelardi, E.; Salvetti, S.; Baggiani, A.; Senesi, S. Effect of Microwave Radiation on Bacillus subtilis Spores. J. Appl. Microbiol. 2004, 97, 1220–1227. [Google Scholar] [CrossRef]
- Park, D.K.; Bitton, G.; Melker, R. Microbial Inactivation by Microwave Radiation in the Home Environment. J. Environ. Health 2006, 69, 17–24. [Google Scholar]
- Kim, S.Y.; Shin, S.J.; Song, C.H.; Jo, E.K.; Kim, H.J.; Park, J.K. Destruction of Bacillus licheniformis Spores by Microwave Irradiation. J. Appl. Microbiol. 2009, 106, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Najdovski, L.; Dragas, A.Z.; Kotnik, V. The Killing Activity of Microwaves on Some Non-Sporogenic and Sporogenic Medically Important Bacterial Strains. J. Hosp. Infect. 1991, 19, 239–247. [Google Scholar] [CrossRef]
- Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1056–1066. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the Risk Posed by Pathogens in Food of Non-Animal Origin. Part 1 (Outbreak Data Analysis and Risk Ranking of Food/Pathogen Combinations). EFSA J. 2013, 11, 3025. [Google Scholar] [CrossRef]
- Pahariya, P.; Fisher, D.J.; Choudhary, R. Comparative Analyses of Sanitizing Solutions on Microbial Reduction and Quality of Leafy Greens. LWT 2022, 154, 112696. [Google Scholar] [CrossRef]
- Kelly, D.P.; McDonald, I.R.; Wood, A.P. The Family Methylobacteriaceae. In The Prokaryotes: Alphaproteobacteria and Betaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 313–340. ISBN 978-3-642-30197-1. [Google Scholar]
- Friedrich, I.; Klassen, A.; Neubauer, H.; Schneider, D.; Hertel, R.; Daniel, R. Living in a Puddle of Mud: Isolation and Characterization of Two Novel Caulobacteraceae Strains Brevundimonas pondensis sp. nov. and Brevundimonas goettingensis sp. nov. Appl. Microbiol. 2021, 1, 38–59. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, J. Bacteria and Soil Enzymes Supporting the Valorization of Forested Soils. Materials 2022, 15, 3287. [Google Scholar] [CrossRef]
- Pershina, E.V.; Ivanova, E.A.; Korvigo, I.O.; Chirak, E.L.; Sergaliev, N.H.; Abakumov, E.V.; Provorov, N.A.; Andronov, E.E. Investigation of the Core Microbiome in Main Soil Types from the East European Plain. Sci. Total Environ. 2018, 631–632, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Tarlachkov, S.V.; Starodumova, I.P.; Dorofeeva, L.V.; Prisyazhnaya, N.V.; Leyn, S.A.; Zlamal, J.E.; Albu, S.; Nadler, S.A.; Subbotin, S.A.; Evtushenko, L.I. Draft Genome Sequences of 13 Plant-Associated Actinobacteria of the Family Microbacteriaceae. Microbiol. Resour. Announc. 2020, 9, e00795-20. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Altalhi, A.D. Safety Assessment of Spices and Herbs Consumed in Saudi Arabia: Microbiological Quality and Toxin Production. Life Sci. J. 2013, 10, 2819–2827. [Google Scholar]
- Logan, N.A.; Vos, P.D. Bacillus. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–163. [Google Scholar] [CrossRef]
- McLaughlin, J.; Watterson, S.; Layton, A.M.; Bjourson, A.J.; Barnard, E.; McDowell, A. Propionibacterium acnes and Acne Vulgaris: New Insights from the Integration of Population Genetic, Multi-Omic, Biochemical and Host-Microbe Studies. Microorganisms 2019, 7, 128. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Adley, C.C. Sphingomonas paucimobilis: A Persistent Gram-Negative Nosocomial Infectious Organism. J. Hosp. Infect. 2010, 75, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Franzetti, L.; Scarpellini, M. Characterisation of Pseudomonas spp. Isolated from Foods. Ann. Microbiol. 2007, 57, 39–47. [Google Scholar] [CrossRef]
- Garrity, G.M.; Bell, J.A.; Lilburn, T. Methylobacteriaceae fam. nov. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2015; p. 1. [Google Scholar] [CrossRef]
- Green, P.N. Methylobacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Sood, U.; Hira, P.; Singh, P.; Singh, D.N.; Lal, R. Sphingomonas. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 1–84. [Google Scholar] [CrossRef]
- Patrick, S.; McDowell, A. Propionibacterium. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 1–29. [Google Scholar] [CrossRef]
- Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The Genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef]
- Iyer, K.R.; Revie, N.M.; Fu, C.; Robbins, N.; Cowen, L.E. Treatment Strategies for Cryptococcal Infection: Challenges, Advances and Future Outlook. Nat. Rev. Microbiol. 2021, 19, 454–466. [Google Scholar] [CrossRef]
- Kortei, N.K.; Kumah, G.; Tettey, C.O.; Agyemang, A.O.; Annan, T.; Nortey, N.N.D.; Essuman, E.K.; Boakye, A.A. Mycoflora, Aflatoxins, and Antimicrobial Properties of Some Ghanaian Local Spices and Herbs. J. Food Saf. 2022, 42, e12996. [Google Scholar] [CrossRef]
- Mussagy, C.U.; Ribeiro, H.F.; Santos-Ebinuma, V.C.; Schuur, B.; Pereira, J.F.B. Rhodotorula sp.—Based Biorefinery: A Source of Valuable Biomolecules. Appl. Microbiol. Biotechnol. 2022, 106, 7431–7447. [Google Scholar] [CrossRef]
- Wang, L.; Hua, X.; Shi, J.; Jing, N.; Ji, T.; Lv, B.; Liu, L.; Chen, Y. Ochratoxin A: Occurrence and Recent Advances in Detoxification. Toxicon 2022, 210, 11–18. [Google Scholar] [CrossRef]
- Syamilah, N.; Nurul Afifah, S.; Effarizah, M.E.; Norlia, M. Mycotoxins and Mycotoxigenic Fungi in Spices and Mixed Spices: A Review. Food Res. 2022, 6, 30–46. [Google Scholar]
- Haelewaters, D.; Toome-Heller, M.; Albu, S.; Aime, M.C. Red Yeasts from Leaf Surfaces and Other Habitats: Three New Species and a New Combination of Symmetrospora (Pucciniomycotina, Cystobasidiomycetes). Fungal Syst. Evol. 2020, 5, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Gu, K.; Gong, J.; Zhang, K.; Chen, D.; He, X.; Chen, Y.; Gao, K.; Jin, Y.; Huang, K.; et al. The Effect of Flue-Curing Procedure on the Dynamic Change of Microbial Diversity of Tobaccos. Sci. Rep. 2021, 11, 5354. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.M.; Abdullah, A.A.; AL-Abedy, A.N. Growth Conditions Favorability of the Common Air Born Fungus Cladosporium Sphaerospermum. Growth 2019, 4, 1–4. [Google Scholar]
- Hassan, N.; Rafiq, M.; Hayat, M.; Nadeem, S.; Shah, A.A.; Hasan, F. Potential of Psychrotrophic Fungi Isolated from Siachen Glacier, Pakistan, to Produce Antimicrobial Metabolites. Appl. Ecol. Environ. Res. 2017, 15, 1157–1171. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.; Pérez-Coello, M.; Cabezudo, M. Effect of Different Drying Methods on the Volatile Components of Parsley (Petroselinum crispum L.). Eur. Food Res. Technol. 2002, 215, 227–230. [Google Scholar] [CrossRef]
- Pääkkönen, K.K.; Malmsten, T.; Hyvönen, L. Effects of Drying Method, Packaging, and Storage Temperature and Time on the Quality of Dill (Anethum graveolens L.). J. Food Sci. 1989, 54, 1485–1487. [Google Scholar] [CrossRef]
- Baritaux, O.; Richard, H.; Touche, J.; Derbesy, M. Effects of Drying and Storage of Herbs and Spices on the Essential Oil. Part I. Basil, Ocimum basilicum L. Flavour. Fragr. J. 1992, 7, 267–271. [Google Scholar] [CrossRef]
- Bartley, J.P.; Jacobs, A.L. Effects of Drying on Flavour Compounds in Australian-Grown Ginger (Zingiber officinale). J. Sci. Food Agric. 2000, 80, 209–215. [Google Scholar] [CrossRef]
- Xing, Y.; Lei, H.; Wang, J.; Wang, Y.; Wang, J.; Xu, H. Effects of Different Drying Methods on the Total Phenolic, Rosmarinic Acid and Essential Oil of Purple Perilla Leaves. J. Essent. Oil Bear. Plants 2017, 20, 1594–1606. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Lechtenberg, M.; Zumdick, S.; Gerhards, C.; Schmidt, T.J.; Hensel, A. Evaluation of Analytical Markers Characterising Different Drying Methods of Parsley Leaves (Petroselinum crispum L.). Pharmazie 2007, 62, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Soysal, Y. Microwave Drying Characteristics of Parsley. Biosyst. Eng. 2004, 89, 167–173. [Google Scholar] [CrossRef]
- ISO 18787:2017; Foodstuffs—Determination of Water Activity. International Organization Standardization: Geneva, Switzerland, 2017.
- Maoloni, A.; Ferrocino, I.; Milanović, V.; Cocolin, L.; Corvaglia, M.R.; Ottaviani, D.; Bartolini, C.; Talevi, G.; Belleggia, L.; Cardinali, F.; et al. The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods 2020, 9, 1568. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact Sequence Variants Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- Mota-Gutierrez, J.; Ferrocino, I.; Rantsiou, K.; Cocolin, L. Metataxonomic Comparison between Internal Transcribed Spacer and 26S Ribosomal Large Subunit (LSU) RDNA Gene. Int. J. Food Microbiol. 2019, 290, 132–140. [Google Scholar] [CrossRef]
- Mclellan, M.R.; Lind, L.R.; Kime, R.W. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L, A, B Data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Reale, A.; Di Renzo, T.; Zotta, T.; Preziuso, M.; Boscaino, F.; Ianniello, R.; Storti, L.V.; Tremonte, P.; Coppola, R. Effect of Respirative Cultures of Lactobacillus casei on Model Sourdough Fermentation. LWT-Food Sci. Technol. 2016, 73, 622–629. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic Scale Method of Measuring Food Preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Moses, J.A.; Norton, T.; Alagusundaram, K.; Tiwari, B.K. Novel Drying Techniques for the Food Industry. Food Eng. Rev. 2014, 6, 43–55. [Google Scholar] [CrossRef]
Drying Treatment | Duration of the Drying Method | Weight Loss (%) | aw | |||
---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | |
RTD | 16 d | 16 d | 84.68 ± 0.26 b,A | 82.69 ± 0.34 a,B | 0.58 ± 0.09 a,A | 0.49 ± 0.02 a,A |
OD | 4 d | 4 d | 85.73 ± 0.22 a,A | 82.94 ± 0.09 a,B | 0.21 ± 0.06 b,A | 0.28 ± 0.02 b,A |
MD | 15 min | 8 min | 85.67 ± 0.26 a,A | 82.63 ± 0.66 a,B | 0.20 ± 0.03 b,B | 0.40 ± 0.06 a,A |
FD | 24 h | 24 h | 85.34 ± 0.39 ab,A | 83.15 ± 0.50 a,B | 0.26 ± 0.05 b,A | 0.16 ± 0.04 c,B |
Drying Treatment | Mesophilic Aerobic Bacteria | Spore Formers | Enterobacteriaceae | Yeasts | Molds | |||||
---|---|---|---|---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | |
Control | 6.0 ± 0.1 b,A | 4.7 ± 0.2 b,B | 2.3 ± 0.2 c,A | 2.7 ± 0.2 bc,A | 4.6 ± 0.1 ab,A | 3.3 ± 0.4 bc,B | 4.9 ± 0.2 a,A | 3.6 ± 0.4 b,B | 3.8 ± 0.1 b,A | 3.5 ± 0.1 a,B |
RTD | 6.3 ± 0.3 ab,A | 4.7 ± 0.2 b,B | 2.8 ± 0.3 bc,B | 3.4 ± 0.2 b,A | 4.4 ± 0.1 b,A | 2.9 ± 0.1 c,B | 4.6 ± 0.3 ab,A | 3.2 ± 0.4 b,B | 4.0 ± 0.2 ab,A | 4.0 ± 0.4 a,A |
OD | 7.0 ± 0.5 a,A | 4.7 ± 0.6 b,B | 4.7 ± 0.2 a,A | 4.3 ± 0.6 a,A | 5.7 ± 1.0 a,A | 3.5 ± 0.1 b,B | 2.2 ± 0.2 c,A | 2.2 ± 0.2 c,A | 4.3 ± 0.2 a,A | 3.9 ± 0.3 a,A |
MD | 2.9 ± 0.2 c,A | 2.4 ± 0.1 c,B | 2.8 ± 0.2 bc,A | 2.5 ± 0.1 c,A | < 1.0 c,A | <1.0 d,A | <1.0 d,A | <1.0 d,A | <1.0 c,A | <1.0 b,A |
FD | 6.2 ± 0.1 b,A | 5.5 ± 0.1 a,B | 3.2 ± 0.0 b,A | 3.3 ± 0.1 bc,A | 5.6 ± 0.0 a,A | 4.2 ± 0.1 a,B | 4.1 ± 0.2 b,B | 4.4 ± 0.0 a,A | 4.0 ± 0.2 ab,A | 3.9 ± 0.1 a,A |
Drying Treatment | Color Parameter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
L | a* | b* | h° | C | ||||||
Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | |
Control | 38.05 ± 1.45 d,A | 39.19 ± 1.29 c,A | −8.31 ± 1.21 b,B | −7.27 ± 0.57 a,A | 10.08 ± 1.46 d,A | 8.44 ± 0.84 d,B | 129.51 ± 1.28 a,B | 130.77 ± 0.81 a,A | 13.07 ± 1.88 d,A | 11.14 ± 1.00 d,B |
RTD | 55.34 ± 0.57 b,B | 57.17 ± 0.94 a,A | −12.11 ± 0.24 c,A | −14.50 ± 0.19 d,B | 31.84 ± 0.35 b,B | 34.46 ± 0.50 a,A | 110.83 ± 0.23 c,B | 112.82 ± 0.14 c,A | 34.07 ± 0.41 b,B | 37.39 ± 0.52 a,A |
OD | 49.30 ± 2.21 c,A | 50.38 ± 1.75 b,A | −6.88 ± 0.50 a,A | −9.52 ± 0.33 b,B | 26.11 ± 0.68 c,B | 28.44 ± 0.79 c,A | 104.75 ± 0.79 d,B | 108.51 ± 0.32 e,A | 27.00 ± 0.77 c,B | 29.99 ± 0.84 c,A |
MD | 51.13 ± 1.47 c,A | 50.19 ± 0.83 b,A | −13.40 ± 0.70 d,A | −12.68 ± 1.71 c,A | 33.92 ± 0.76 a,A | 33.49 ± 0.49 b,A | 111.54 ± 0.65 c,A | 110.71 ± 2.63 d,A | 36.47 ± 0.95 a,A | 35.84 ± 0.70 b,A |
FD | 60.24 ± 0.59 a,A | 57.99 ± 0.94 a,B | −17.08 ± 0.26 e,A | −17.95 ± 0.43 e,B | 32.57 ± 0.45 b,B | 33.41 ± 0.67 b,A | 117.67 ± 0.08 b,B | 118.24 ± 0.21 b,A | 36.77 ± 0.52 a,B | 37.92 ± 0.78 a,A |
Drying Treatment | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RI | Compounds | C | RTD | OD | FD | MD | |||||
Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | ||
Aldehydes | |||||||||||
727 | acetaldehyde | 19.92 ± 0.02 a,* | 23.68 ± 0.19 B,* | 10.79 ± 0.49 c,* | 17.12 ± 1.17 C,* | 2.27 ± 0.17 d | 2.61 ± 0.09 D | 14.78 ± 0.21 b,* | 29.35 ± 0.72 A,* | nd e | nd E |
927 | 3-methylbutanal | 4.21 ± 0.23 a,* | 6.60 ± 0.43 A,* | nd b | nd C | nd b | nd C | 3.86 ± 0.42 a | 4.40 ± 0.04 B | 4.02 ± 0.06 a | 3.89 ± 0.38 B |
1186 | heptanal | nd d | nd C | nd d | nd C | 3.37 ± 0.26 b,* | 2.08 ± 0.18 B,* | 4.89 ± 0.53 a,* | 3.09 ± 0.20 A,* | 1.97 ± 0.05 c,* | 2.70 ± 0.01 A,* |
1220 | 2-hexenal | nd b | nd B | nd b | nd B | nd b | nd B | 3.64 ± 0.15 a,* | 4.29 ± 0.15 A,* | nd b | nd B |
1316 | octanal | nd c | nd C | nd c | nd C | 7.95 ± 0.34 b,* | 5.27 ± 0.19 B,* | 9.67 ± 0.82 b,* | 1.78 ± 0.14 BC,* | 31.04 ± 1.67 a | 34.40 ± 2.16 A |
1463 | 2-furfural | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B | 37.94 ± 0.45 a | 37.64 ± 2.34 A |
1488 | 2,4-heptadienal | nd b | nd B | 6.92 ± 0.38 a,* | 4.35 ± 0.39 A,* | nd b | nd B | nd b | nd B | nd b | nd B |
1598 | 5-methylfurfural | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B | 14.77 ± 0.66 a | 14.78 ± 0.18 A |
1631 | 2-decenal | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B | 4.36 ± 0.23 a,* | 6.30 ± 0.41 A,* |
sub total | 24.14 ± 0.25 c,* | 30.29 ± 0.62 C,* | 17.71 ± 0.87 d | 21.47 ± 1.56 C | 13.59 ± 0.43 d,* | 9.97 ± 0.46 D,* | 36.84 ± 0.99 b,* | 42.92 ± 0.87 B,* | 94.10 ± 2.57 a | 99.70 ± 5.47 A | |
Alcohols | |||||||||||
955 | ethyl alcohol | 309.20 ± 1.97 d | 352.03 ± 14.75 C | 1365.43 ± 112.06 b | 1230.96 ± 69.99 B | 1831.70 ± 5.97 a | 1825.35 ± 114.70 A | 1152.54 ± 12.38 c | 1148.68 ± 34.91 B | 1038.23 ± 6.35 c | 1038.73 ± 10.23 B |
1634 | 2-furanmethanol | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B | 24.40 ± 0.49 a | 24.40 ± 1.09 A |
1852 | phenethyl alcohol | nd b | nd B | nd b | nd B | 2.37 ± 0.01 a,* | 2.15 ± 0.05 A,* | nd b | nd B | nd b | nd B |
sub total | 309.20 ± 1.97 d | 352.03 ± 14.75 C | 1365.43 ± 112.06 b | 1230.96 ± 69.78 B | 1834.07 ± 5.98 a | 1827.51 ± 114.76 A | 1152.54 ± 12.38 c | 1148.68 ± 34.91 B | 1062.62 ± 6.84 c | 1063.13 ± 11.32 B | |
Esters | |||||||||||
1222 | isobutyl 2-butanoate | nd b | nd B | nd b | nd B | nd b | nd B | 2.40 ± 0.06 a | 2.32 ± 0.06 A | nd b | nd B |
1339 | ethyl heptanoate | nd c | nd C | nd c | nd C | 2.54 ± 0.03 b,* | 1.98 ± 0.08 B,* | 3.47 ± 0.29 a | 3.29 ± 0.03 A | nd c | nd C |
1466 | ethyl octanoate | nd d | nd C | 71.29 ± 4.67 a | 54.61 ± 4.75 A | 55.66 ± 0.81 b | 56.84 ± 1.69 A | 10.29 ± 0.07 c,* | 30.20 ± 0.32 B,* | nd d | nd C |
1530 | ethyl nonanoate | nd b | nd B | 11.47 ± 0.77 a | 11.93 ± 0.30 A | nd b | nd B | nd b | nd B | nd b | nd B |
907 | ethyl acetate | nd d | nd D | 6.82 ± 0.92 b | 6.17 ± 0.68 B | 4.05 ± 0.27 c | 3.68 ± 0.37 C | 10.72 ± 0.30 a,* | 12.04 ± 0.33 A,* | nd d | nd D |
1607 | ethyl decanoate | nd c | nd D | 11.00 ± 1.30 a | 8.86 ± 0.79 A | 5.72 ± 0.37 b,* | 4.29 ± 0.06 B,* | 1.44 ± 0.07 c,* | 2.26 ± 0.01 C,* | nd c | nd D |
sub total | nd d | nd D | 100.58 ± 7.66 a | 81.57 ± 6.53 A | 67.97 ± 0.13 b | 66.79 ± 2.20 B | 28.31 ± 0.23 c,* | 50.10 ± 0.55 C,* | nd d | nd D | |
Acids | |||||||||||
1477 | acetic acid | 1.74 ± 0.06 d | 1.98 ± 0.06 D | 10.03 ± 0.94 c,* | 6.13 ± 0.64 C,* | 18.97 ± 0.35 b | 15.11 ± 1.37 B | nd d | nd D | 24.51 ± 0.08 a | 25.80 ± 1.29 A |
Terpenes hydrocarbons | |||||||||||
1010 | alpha pinene | 236.04 ± 1.59 a,* | 207.42 ± 5.69 A,* | 195.93 ± 21.05 b | 154.28 ± 8.04 B | 28.07 ± 0.68 d,* | 33.55 ± 1.19 E,* | 62.14 ± 6.20 d | 54.57 ± 5.05 D | 110.46 ± 3.35 c | 102.53 ± 0.92 C |
1000 | alpha thujene | 120.29 ± 4.18 a | 112.14 ± 0.61 A | 110.73 ± 12.64 a | 95.97 ± 6.91 B | 18.10 ± 0.99 c,* | 23.49 ± 0.39 D,* | 36.85 ± 0.36 bc | 34.29 ± 4.09 D | 52.45 ± 5.56 b | 53.37 ± 3.94 C |
1111 | camphene | 8.95 ± 0.19 b,* | 6.59 ± 0.19 B,* | 11.80 ± 0.97 a | 8.56 ± 0.55 A | nd d | nd E | 3.90 ± 0.74 c | 2.20 ± 0.14 D | 4.14 ± 0.25 c | 3.85 ± 0.04 C |
1125 | beta pinene | 15.88 ± 0.27 a,* | 11.51 ± 0.14 A,* | 14.31 ± 1.21 a | 11.40 ± 0.83 A | 5.61 ± 0.62 b | 3.68 ± 0.33 C | 6.83 ± 0.35 b | 6.12 ± 0.49 B | 7.44 ± 0.08 b | 6.90 ± 0.57 B |
1145 | sabinene | 2039.22 ± 65.45 a | 1970.01 ± 35.71 A | 1049.55 ± 12.70 b | 1135.26 ± 40.35 B | 120.73 ± 8.51 e,* | 185.07 ± 2.95 D,* | 403.63 ± 40.95 d | 360.31 ± 35.97 CD | 584.29 ± 31.17 c | 457.71 ± 99.12 C |
1163 | delta 3-carene | 10.71 ± 0.54 a | 10.23 ± 0.18 A | 7.45 ± 1.02 b | 6.61 ± 0.51 B | 6.17 ± 0.17 b | 6.20 ± 0.24 B | nd d | nd D | 3.57 ± 0.44 c | 2.21 ± 0.11 C |
1173 | alpha phellandrene | 5.38 ± 0.38 a | 5.87 ± 0.47 A | 5.98 ± 0.20 a | 3.94 ± 1.17 AB | nd c | nd C | nd c | nd C | 2.70 ± 0.00 b,* | 3.17 ± 0.06 B,* |
1176 | beta myrcene | 445.43 ± 22.02 a,* | 313.19 ± 4.80 A,* | 268.49 ± 22.77 b | 251.98 ± 13.58 B | 32.30 ± 3.09 d,* | 79.29 ± 2.90 D,* | 60.83 ± 0.34 d | 62.16 ± 5.12 D | 175.68 ± 12.91 c,* | 116.34 ± 9.70 C,* |
1182 | alpha terpinene | 30.59 ± 0.41 a | 20.64 ± 13.81 A | 19.61 ± 1.61 ab | 20.24 ± 0.38 A | nd b | nd A | 9.24 ± 0.25 ab,* | 10.48 ± 0.00 A,* | 2.83 ± 0.00 b | 2.92 ± 0.04 A |
1189 | limonene | 25,364.65 ± 165.02 a | 26,686.91 ± 630.78 A | 14,507.89 ± 1602.44 b | 14,372.74 ± 753.00 B | 2726.30 ± 79.08 d | 3470.77 ± 320.34 D | 2937.24 ± 196.19 d | 2676.22 ± 130.93 D | 8249.83 ± 594.86 c | 6861.19 ± 683.87 C |
1199 | beta phellandrene | 313.19 ± 4.56 a,* | 242.41 ± 3.48 A,* | 204.79 ± 15.74 b | 222.03 ± 5.80 B | 58.77 ± 3.79 d | 64.17 ± 1.29 D | 33.98 ± 0.64 d,* | 52.54 ± 1.97 D,* | 103.77 ± 0.63 c | 95.32 ± 6.07 C |
1249 | gamma terpinene | 27,282.75 ± 518.82 a,* | 15,454.02 ± 634.48 A,* | 12,991.31 ± 444.36 b | 12,214.91 ± 833.83 B | 1345.17 ± 52.52 d,* | 3434.37 ± 323.16 CD,* | 2277.27 ± 42.75 d | 2267.66 ± 63.71 D | 7042.27 ± 535.88 c | 4691.32 ± 735.31 C |
1263 | trans ocimene | 126.79 ± 0.68 cd,* | 385.84 ± 37.40 B,* | 617.80 ± 38.54 a | 781.77 ± 66.49 A | 54.93 ± 0.13 d,* | 372.28 ± 31.45 BC,* | 171.08 ± 1.72 c,* | 195.96 ± 3.16 C,* | 512.28 ± 38.53 b | 455.68 ± 54.16 B |
1280 | cymene | 10,888.52 ± 342.92 a,* | 15,862.95 ± 785.66 A,* | 2517.19 ± 175.31 b | 2047.97 ± 103.70 B | 636.99 ± 31.81 cd | 669.30 ± 35.31 BC | 566.86 ± 27.48 d | 553.56 ± 12.31 C | 1291.51 ± 112.59 c | 1312.95 ± 39.03 BC |
1408 | 1,3,8-p-menthatriene | nd b | nd B | nd b | nd B | nd b | nd B | 6.10 ± 0.37 a | 5.76 ± 0.49 A | nd b | nd B |
1374 | neo allocimene | 5.71 ± 0.10 b,* | 4.24 ± 0.17 B,* | 6.89 ± 0.34 a | 6.00 ± 0.71 A | 3.33 ± 0.31 c | 3.73 ± 0.20 B | 3.43 ± 0.37 c | 2.82 ± 0.23 B | 6.71 ± 0.19 ab | 6.48 ± 0.48 A |
sub total | 66,894.10 ± 791.43 a | 61,294.00 ± 2152.58 A | 32,519.38 ± 2310.81 b | 31,333.64 ± 1835.86 B | 5036.71 ± 116.24 d,* | 8345.90 ± 646.44 CD,* | 6579.36 ± 316.81 d | 6284.66 ± 259.69 D | 18,149.96 ± 1336.26 c | 14,171.95 ± 1553.42 C | |
Oxygenated terpenes | |||||||||||
1467 | cis limonene oxide | 8.71 ± 0.40 a,* | 13.58 ± 0.34 A,* | 7.47 ± 1.04 ab | 10.09 ± 0.10 B | nd c | nd E | 8.49 ± 0.71 a | 7.42 ± 1.05 C | 5.10 ± 0.35 b | 4.65 ± 0.06 D |
1473 | trans limonene oxide | 56.31 ± 4.04 a,* | 136.87 ± 5.68 A,* | nd b | nd B | nd b | nd B | 4.82 ± 0.43 b | 4.48 ± 0.53 B | 2.30 ± 0.04 b | 1.74 ± 0.67 B |
2163 | thymol | 27.37 ± 0.45 a | 29.81 ± 1.04 A | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B |
2187 | carvacrol | 23.14 ± 0.14 a,* | 10.84 ± 0.38 A,* | nd b | nd B | nd b | nd B | nd b | nd B | nd b | nd B |
1563 | thymyl methyl ether | 77.33 ± 1.36 a | 68.83 ± 3.53 A | 46.30 ± 1.43 b | 41.65 ± 3.79 B | 6.16 ± 0.23 e,* | 9.16 ± 0.73 D,* | 10.25 ± 0.52 d | 9.55 ± 0.64 D | 23.43 ± 0.84 c | 22.01 ± 0.03 C |
1577 | isothymol methyl ether | 10.74 ± 0.58 b,* | 14.15 ± 0.01 A,* | 8.27 ± 0.51 c,* | 12.02 ± 0.18 B,* | 1.47 ± 0.08 e,* | 4.13 ± 0.27 C,* | 3.75 ± 0.51 d | 3.85 ± 0.16 C | 13.79 ± 0.68 a | 12.88 ± 0.96 AB |
1579 | carvacrol methyl ether | 19.90 ± 0.05 a | 19.21 ± 0.48 A | 7.73 ± 0.99 b | 8.19 ± 0.14 B | 1.99 ± 0.08 d,* | 3.17 ± 0.02 CD,* | 2.66 ± 0.03 d | 2.74 ± 0.08 D | 5.31 ± 0.65 c | 4.47 ± 0.67 C |
sub total | 223.50 ± 5.05 a,* | 293.29 ± 11.48 A,* | 69.78 ± 3.97 b | 71.94 ± 4.20 B | 9.62 ± 0.39 e,* | 16.46 ± 0.44 D,* | 29.97 ± 2.19 d | 28.04 ± 2.47 CD | 49.93 ± 2.56 c | 45.74 ± 0.86 C | |
Sesquiterpenes hydrocarbons | |||||||||||
1576 | alpha bergamotene | nd b | nd B | 10.28 ± 1.34 a | 9.66 ± 0.70 A | nd b | nd B | nd b | nd B | nd b | nd B |
1780 | germacrene B | 15.77 ± 0.16 a | 14.88 ± 0.55 A | 10.55 ± 1.26 b | 10.19 ± 0.56 B | 3.80 ± 0.36 c | 4.23 ± 0.29 C | 4.37 ± 0.21 c | 4.60 ± 0.12 C | 9.24 ± 0.26 b | 10.06 ± 0.18 B |
1687 | zingiberene | 3.14 ± 0.08 b,* | 2.74 ± 0.07 B,* | 2.93 ± 0.34 b | 2.05 ± 0.14 C | nd c | nd D | nd c | nd D | 6.28 ± 0.67 a | 6.43 ± 0.28 A |
1648 | gamma elemene | 15.90 ± 0.35 b,* | 17.91 ± 0.15 BC,* | 42.88 ± 1.67 a | 48.31 ± 0.66 A | 15.76 ± 0.94 b | 17.71 ± 0.05 C | 15.35 ± 0.07 b,* | 19.42 ± 0.56 B,* | 11.09 ± 0.40 c | 11.20 ± 0.00 D |
1694 | bicyclogermacrene | 7.19 ± 0.18 a | 6.93 ± 0.29 A | 7.99 ± 1.06 a | 6.87 ± 0.71 A | nd c | nd C | 2.93 ± 0.07 b | 2.83 ± 0.04 B | nd c | nd C |
1473 | copaene | nd b | nd B | 3.58 ± 0.31 a | 5.07 ± 0.49 A | nd b | nd B | nd b | Nd B | nd b | nd B |
1557 | caryophyllene | 12.98 ± 0.16 a,* | 8.28 ± 0.33 A,* | 10.86 ± 0.59 b,* | 8.53 ± 0.15 A,* | 3.06 ± 0.10 d | 4.34 ± 0.55 B | 3.22 ± 0.13 d | 2.84 ± 0.17 C | 5.40 ± 0.31 c | 5.00 ± 0.29 B |
1538 | alpha longipinene | 21.04 ± 0.05 a,* | 19.12 ± 0.13 A,* | 19.68 ± 1.60 a | 17.08 ± 0.56 B | 5.45 ± 0.34 b | 5.69 ± 0.14 C | 4.17 ± 0.03 b,* | 5.34 ± 0.32 C,* | 3.62 ± 0.18 b | 3.91 ± 0.35 D |
1790 | cuparene | 4.41 ± 0.31 a | 4.60 ± 0.25 A | 3.82 ± 0.52 a | 3.41 ± 0.06 B | 1.85 ± 0.05 b,* | 2.23 ± 0.05 C,* | nd c | nd D | 1.49 ± 0.02 b,* | 1.86 ± 0.02 C,* |
2207 | elemicine | nd b | nd B | nd b | nd B | nd b | nd B | 3.56 ± 0.36 a | 3.19 ± 0.17 A | nd b | nd B |
sub total | 80.43 ± 0.51 b,* | 74.46 ± 0.38 B,* | 112.58 ± 8.70 a | 111.18 ± 2.70 A | 29.93 ± 1.79 c | 34.19 ± 0.98 C | 33.60 ± 0.25 c,* | 38.23 ± 0.50 C,* | 37.12 ± 0.33 c | 38.45 ± 1.13 C | |
Phenyl propanoids | |||||||||||
2327 | dillapiole | 25.59 ± 0.32 c | 27.11 ± 0.44 D | 54.20 ± 7.84 b | 51.50 ± 0.22 B | 13.03 ± 0.68 c,* | 15.32 ± 0.32 E,* | 76.18 ± 7.92 a | 71.91 ± 1.22 A | 31.86 ± 2.84 c | 32.49 ± 0.08 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maoloni, A.; Cardinali, F.; Milanović, V.; Reale, A.; Boscaino, F.; Di Renzo, T.; Ferrocino, I.; Rampanti, G.; Garofalo, C.; Osimani, A.; et al. Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves. Molecules 2023, 28, 7207. https://doi.org/10.3390/molecules28207207
Maoloni A, Cardinali F, Milanović V, Reale A, Boscaino F, Di Renzo T, Ferrocino I, Rampanti G, Garofalo C, Osimani A, et al. Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves. Molecules. 2023; 28(20):7207. https://doi.org/10.3390/molecules28207207
Chicago/Turabian StyleMaoloni, Antonietta, Federica Cardinali, Vesna Milanović, Anna Reale, Floriana Boscaino, Tiziana Di Renzo, Ilario Ferrocino, Giorgia Rampanti, Cristiana Garofalo, Andrea Osimani, and et al. 2023. "Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves" Molecules 28, no. 20: 7207. https://doi.org/10.3390/molecules28207207
APA StyleMaoloni, A., Cardinali, F., Milanović, V., Reale, A., Boscaino, F., Di Renzo, T., Ferrocino, I., Rampanti, G., Garofalo, C., Osimani, A., & Aquilanti, L. (2023). Impact of Different Drying Methods on the Microbiota, Volatilome, Color, and Sensory Traits of Sea Fennel (Crithmum maritimum L.) Leaves. Molecules, 28(20), 7207. https://doi.org/10.3390/molecules28207207