Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management
Abstract
:1. Introduction
2. Results
2.1. Infrared Spectroscopy Characterization
2.2. GC–MS Characterization
2.3. Antifungal Activity
2.3.1. In Vitro Antifungal Activity
2.3.2. Ex Situ Postharvest Protection Tests
3. Discussion
3.1. On the Phytochemical Profile
3.2. Antifungal Activity
3.2.1. Comparison with Other Helichrysum spp. Extracts
3.2.2. Comparison of Efficacy vs. Other Plant Extracts
3.2.3. Conventional Fungicide Comparison
3.2.4. Postharvest Protection Tests
4. Material and Methods
4.1. Reagents and Fungal Isolates
4.2. Plan Material and Extraction Protocol
4.3. Characterization Procedures
4.4. In Vitro Antifungal Activity
4.5. Preparation of Conidial Suspension of C. coccodes
4.6. Ex Situ Protection of Tomato Fruits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Akaberi, M.; Sahebkar, A.; Azizi, N.; Emami, S.A. Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum. Ind. Crops Prod. 2019, 138, 111471. [Google Scholar] [CrossRef]
- Antunes Viegas, D.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, S.; Aksoy, A.; Sagdic, O.; Hamzaoglu, E. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem. 2010, 119, 114–122. [Google Scholar] [CrossRef]
- Kutluk, I.; Aslan, M.; Orhan, I.E.; Özçelik, B. Antibacterial, antifungal and antiviral bioactivities of selected Helichrysum species. S. Afr. J. Bot. 2018, 119, 252–257. [Google Scholar] [CrossRef]
- Carini, M.; Aldini, G.; Furlanetto, S.; Stefani, R.; Facino, R.M. LC coupled to ion-trap MS for the rapid screening and detection of polyphenol antioxidants from Helichrysum stoechas. J. Pharm. Biomed. Anal. 2001, 24, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Lavault, M.; Richomme, P. Constituents of Helichrysum stoechas variety olonnense. Chem. Nat. Compd. 2004, 40, 118–121. [Google Scholar] [CrossRef]
- Barroso, M.R.; Barros, L.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Fernandes, I.P.; Barreiro, M.F.; Ferreira, I.C.F.R. Exploring the antioxidant potential of Helichrysum stoechas (L.) Moench phenolic compounds for cosmetic applications: Chemical characterization, microencapsulation and incorporation into a moisturizer. Ind. Crops Prod. 2014, 53, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Les, F.; Venditti, A.; Cásedas, G.; Frezza, C.; Guiso, M.; Sciubba, F.; Serafini, M.; Bianco, A.; Valero, M.S.; López, V. Everlasting flower (Helichrysum stoechas Moench) as a potential source of bioactive molecules with antiproliferative, antioxidant, antidiabetic and neuroprotective properties. Ind. Crops Prod. 2017, 108, 295–302. [Google Scholar] [CrossRef]
- Sobhy, E.A.; El-Feky, S.S. Chemical constituents and antimicrobial activity of Helichrysum stoechas. Asian J. Plant Sci. 2007, 6, 692–695. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.L.; Recio, M.C.; Villar, A. Isolation and identification of the antibacterial compounds from Helichrysum stoechas. J. Ethnopharmacol. 1991, 33, 51–55. [Google Scholar] [CrossRef]
- Roussis, V.; Tsoukatou, M.; Chinou, I.B.; Harvala, C. Composition and antibacterial activity of the essential oils of two Helichrysum stoechas varieties growing in the Island of Crete. J. Essent. Oil Res. 2002, 14, 459–461. [Google Scholar] [CrossRef]
- Aslam, M.; Habib, A.; Sahi, S.T.; Khan, R.R. Effect of bion and salicylic acid on peroxidase activity and total phenolics in tomato against Alternaria solani. Pak. J. Agric. Sci. 2020, 57, 53–62. [Google Scholar]
- He, M.-H.; Wang, Y.-P.; Wu, E.J.; Shen, L.-L.; Yang, L.-N.; Wang, T.; Shang, L.-P.; Zhu, W.; Zhan, J. Constraining evolution of Alternaria alternata resistance to a demethylation inhibitor (DMI) fungicide difenoconazole. Front. Microbiol. 2019, 10, 1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Singh, A.; Jaiswal, J.; Singh, T.D.; Singh, V.P.; Pandey, V.B.; Tiwari, A.; Singh, U.P. Antifungal activity of the mixture of quaternary alkaloids isolated from Argemone mexicana against some phytopathogenic fungi. Arch. Phytopathol. Plant Prot. 2010, 43, 769–774. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, S.; Bhadauria, R. Phytotoxicity of Momordica charantia extracts against Alternaria alternata. J. Pharm. Sci. Res. 2017, 9, 28. [Google Scholar]
- Pane, C.; Fratianni, F.; Raimo, F.; Nazzaro, F.; Zaccardelli, M. Efficacy of phenolic-rich extracts from leaves of pepper landraces against Alternaria leaf blight of tomato. J. Plant Pathol. 2017, 99, 239–244. [Google Scholar]
- El-Nagar, A.; Elzaawely, A.A.; Taha, N.A.; Nehela, Y. The antifungal activity of gallic acid and its derivatives against Alternaria solani, the causal agent of tomato early blight. Agronomy 2020, 10, 1402. [Google Scholar] [CrossRef]
- Gondal, A.S.; Rauf, A.; Naz, F. Anastomosis groups of Rhizoctonia solani associated with tomato foot rot in Pothohar Region of Pakistan. Sci. Rep. 2019, 9, 3910. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, P. Sclerotinia stem rot in tomato: A review on biology, pathogenicity, disease management and future research priorities. J. Plant Dis. Prot. 2021, 128, 1403–1431. [Google Scholar] [CrossRef]
- Acharya, B.; Ingram, T.W.; Oh, Y.; Adhikari, T.B.; Dean, R.A.; Louws, F.J. Opportunities and challenges in studies of host-pathogen interactions and management of Verticillium dahliae in tomatoes. Plants 2020, 9, 1622. [Google Scholar] [CrossRef]
- López-Zapata, S.P.; García-Jaramillo, D.J.; López, W.R.; Ceballos-Aguirre, N. Tomato (Solanum lycopersicum L.) and Fusarium oxysporum f. sp. lycopersici interaction. A review. Rev. U.D.C.A Actual. Divulg. Cient. 2021, 24, e1713. [Google Scholar] [CrossRef]
- Johnson, D.A.; Geary, B.; Tsror, L. Potato black dot—The elusive pathogen, disease development and management. Am. J. Potato Res. 2018, 95, 340–350. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Martín-Ramos, P.; Navas Gracia, L.M.; Martín-Gil, J.; Garcés-Claver, A.; Flores-León, A.; González-García, V. Armeria maritima (Mill.) Willd. flower hydromethanolic extract for cucurbitaceae fungal diseases control. Molecules 2023, 28, 3730. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Martín-Ramos, P.; Martín-Gil, J.; Santiago-Aliste, A.; Hernández-Navarro, S.; Oliveira, R.; González-García, V. Bark extract of Uncaria tomentosa L. for the control of strawberry phytopathogens. Horticulturae 2022, 8, 672. [Google Scholar] [CrossRef]
- Lin, D.L.; Wang, S.M.; Wu, C.H.; Chen, B.G.; Liu, R.H. Chemical derivatization for the analysis of drugs by GC-MS—A conceptual review. J. Food Drug Anal. 2020, 16, 1. [Google Scholar] [CrossRef]
- Dai, G.H.; Andary, C.; Mondolot-Cosson, L.; Boubals, D. Histochemical studies on the interaction between three species of grapevine, Vitis vinifera, V. rupestris and V. rotundifolia and the downy mildew fungus, Plasmopara viticola. Physiol. Mol. Plant Pathol. 1995, 46, 177–188. [Google Scholar] [CrossRef]
- Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P. Production of the phytoalexin resveratrol by grapes as a response to Botrytis attack under natural conditions. J. Phytopathol. 1995, 143, 135–139. [Google Scholar] [CrossRef]
- Salah, A.I.; Ali, H.A.M.; Imad, H.H. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. Afr. J. Biotechnol. 2015, 14, 3131–3158. [Google Scholar] [CrossRef] [Green Version]
- Proksch, P.; Rodriguez, E. Chromenes and benzofurans of the asteraceae, their chemistry and biological significance. Phytochemistry 1983, 22, 2335–2348. [Google Scholar] [CrossRef]
- Stedman, T.L. Stedman’s Medical Dictionary, 28th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; 2100p. [Google Scholar]
- Sánchez-Hernández, E.; González-García, V.; Palacio-Bielsa, A.; Casanova-Gascón, J.; Navas-Gracia, L.M.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical constituents and antimicrobial activity of Euphorbia serrata L. extracts for Borago officinalis L. crop protection. Horticulturae 2023, 9, 652. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; Sánchez-Hernández, E.; González-García, V. Assessment of conjugate complexes of chitosan and Urtica dioica or Equisetum arvense extracts for the control of grapevine trunk pathogens. Agronomy 2021, 11, 976. [Google Scholar] [CrossRef]
- Sánchez-Hernández, E.; Balduque-Gil, J.; González-García, V.; Barriuso-Vargas, J.J.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profiling of Sambucus nigra L. flower and leaf extracts and their antimicrobial potential against almond tree pathogens. Int. J. Mol. Sci. 2023, 24, 1154. [Google Scholar] [CrossRef]
- Kavipriya, K.; Chandra, M. FTIR and GC-MS analysis of bioactive phytocompounds in methonalic leaf extract of Cassia alata. Biomed. Pharmacol. J. 2018, 11, 141–147. [Google Scholar] [CrossRef]
- Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem. 2019, 162, 266–276. [Google Scholar] [CrossRef]
- Baptista, J.; Simões, M.; Borges, A. Effect of plant-based catecholic molecules on the prevention and eradication of Escherichia coli biofilms: A structure activity relationship study. Int. Biodeterior. Biodegrad. 2019, 141, 101–113. [Google Scholar] [CrossRef]
- Kocaçalışkan, I.; Talan, I.; Terzi, I. Antimicrobial activity of catechol and pyrogallol as allelochemicals. Z. Naturforsch. C 2006, 61, 639–642. [Google Scholar] [CrossRef]
- Antika, L.D.; Tasfiyati, A.N.; Hikmat, H.; Septama, A.W. Scopoletin: A review of its source, biosynthesis, methods of extraction, and pharmacological activities. Z. Naturforsch. C 2022, 77, 303–316. [Google Scholar] [CrossRef]
- Buathong, R.; Chamchumroon, V.; Schinnerl, J.; Bacher, M.; Santimaleeworagun, W.; Kraichak, E.; Vajrodaya, S. Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). PeerJ 2019, 7, e6893. [Google Scholar] [CrossRef] [Green Version]
- Ziklo, N.; Bibi, M.; Salama, P. The antimicrobial mode of action of maltol and its synergistic efficacy with selected cationic surfactants. Cosmetics 2021, 8, 86. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, Y.; Yi, G.; Li, M.; Liao, L.; Yang, C.; Cho, C.; Zhang, B.; Zhu, J.; Zou, K.; et al. Quinic acid: A potential antibiofilm agent against clinical resistant Pseudomonas aeruginosa. Chin. Med. 2021, 16, 72. [Google Scholar] [CrossRef]
- Asch, D.K.; Ziegler, J.; Min, X. Molecular evolution of genes involved in quinic acid utilization in fungi. Comput. Mol. Biol. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Ma, J.-N.; Ma, C.-M. Antifungal inhibitory activities of caffeic and quinic acid derivatives. In Coffee in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: London, UK, 2015; pp. 635–641. [Google Scholar] [CrossRef]
- Bai, J.; Wu, Y.; Wang, X.; Liu, X.; Zhong, K.; Huang, Y.; Chen, Y.; Gao, H. In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus. J. Food Saf. 2017, 38, e12416. [Google Scholar] [CrossRef]
- Matrose, N.A.; Belay, Z.A.; Obikeze, K.; Mokwena, L.; Caleb, O.J. Bioprospecting of Helichrysum species: Chemical profile, phytochemical properties, and antifungal efficacy against Botrytis cinerea. Plants 2022, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Djihane, B.; Wafa, N.; Elkhamssa, S.; Pedro, D.H.J.; Maria, A.E.; Mohamed Mihoub, Z. Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm. J. 2017, 25, 780–787. [Google Scholar] [CrossRef]
- Bigovic, D.; Stevic, T.; Jankovic, T.; Noveski, N.; Radanovic, D.; Pljevljakusic, D.; Djuric, Z. Antimicrobial activity of Helichrysum plicatum DC. Hem. Ind. 2017, 71, 337–342. [Google Scholar] [CrossRef]
- Abd-El-Khair, H.; El-Gamal Nadia, G. Effects of aqueous extracts of some plant species against Fusarium solani and Rhizoctonia solani in Phaseolus vulgaris plants. Arch. Phytopathol. Plant Prot. 2011, 44, 1–16. [Google Scholar]
- Abdelgaleil, S.; Saad, M.; Ariefta, N.; Shiono, Y. Antimicrobial and phytotoxic activities of secondary metabolites from Haplophyllum tuberculatum and Chrysanthemum coronarium. S. Afr. J. Bot. 2020, 128, 35–41. [Google Scholar] [CrossRef]
- Al-Askar, A.A.; Rashad, Y.M. Efficacy of some plant extracts against Rhizoctonia solani on pea. J. Plant Prot. Res. 2010, 50, 239–243. [Google Scholar] [CrossRef]
- Al-Reza, S.M.; Rahman, A.; Ahmed, Y.; Kang, S.C. Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pestic. Biochem. Physiol. 2010, 96, 86–92. [Google Scholar] [CrossRef]
- Amadioha, A. Fungicidal activity of some plant extracts against Rhizoctonia. Arch. Phytopathol. Plant Prot. 2001, 33, 509–517. [Google Scholar] [CrossRef]
- Bashar, M.; Chakma, M. In vitro control of Fusarium solani and F. oxysporum the causative agent of brinjal wilt. Dhaka Univ. J. Biol. Sci. 2014, 23, 53–60. [Google Scholar]
- Bokhari, N.A.; Perveen, K. In vitro inhibition potential of Phoenix dactylifera L. extracts on the growth of pathogenic fungi. J. Med. Plants Res. 2012, 6, 1083–1088. [Google Scholar]
- Carmello, C.R.; Magri, M.M.R.; Cardoso, J.C. Cinnamon extract and sodium hypochlorite in the in vitro control of Fusarium oxysporum f. sp. lycopersici and Alternaria alternata from tomato. J. Phytopathol. 2022, 170, 802–810. [Google Scholar]
- Carvalho, D.D.C.; Alves, E.; Camargos, R.B.; Oliveira, D.F.; Scolforo, J.R.S.; de Carvalho, D.A.; Batista, T.R.S. Plant extracts to control Alternaria alternata in Murcott tangor fruits. Rev. Iberoam. Micol. 2011, 28, 173–178. [Google Scholar] [CrossRef]
- Castillo, F.; Hernández, D.; Gallegos, G.; Mendez, M.; Rodríguez, R.; Reyes, A.; Aguilar, C.N. In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Ind. Crops Prod. 2010, 32, 324–328. [Google Scholar] [CrossRef]
- Chakrapani, K.; Sinha, B.; Chanu, W.T.; Chakma, T.; Siram, T. Assessing in vitro antifungal activity of plant extracts against Rhizoctonia solani causing sheath blight of rice (Oryza sativa L). J. Pharmacogn. Phytochem. 2020, 9, 1497–1501. [Google Scholar]
- Chaudhary, S.; Singh, H. In-vitro evaluation of different botanicals against Alternaria alternata causing Alternaria leaf spot of ber (Zizyphus mauritiana Lamk.). Int. J. Econ. Plants 2021, 8, 40–44. [Google Scholar]
- Cherkupally, R.; Kota, S.R.; Amballa, H.; Reddy, B.N. In vitro antifungal potential of plant extracts against Fusarium oxysporum, Rhizoctonia solani and Macrophomina phaseolina. Ann. Plant Sci. 2017, 6, 1676. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, D.; Anand, Y.R.; Kundu, S.; Nath, R.; Kole, R.K.; Saha, J. Effect of plant extracts against sheath blight of rice caused by Rhizoctonia solani. J. Pharmacogn. Phytochem. 2017, 6, 399–404. [Google Scholar]
- De Rodriguez, D.J.; Hernández-Castillo, D.; Angulo-Sánchez, J.; Rodríguez-García, R.; Quintanilla, J.V.; Lira-Saldivar, R. Antifungal activity in vitro of Flourensia spp. extracts on Alternaria sp., Rhizoctonia solani, and Fusarium oxysporum. Ind. Crops Prod. 2007, 25, 111–116. [Google Scholar]
- Deressa, T.; Lemessa, F.; Wakjira, M. Antifungal activity of some invasive alien plant leaf extracts against mango (Mangifera indica) anthracnose caused by Colletotrichum gloeosporioides. Int. J. Pest Manag. 2015, 61, 99–105. [Google Scholar] [CrossRef]
- El-Mohamedy, R.S.; Abdalla, A.M. Evaluation of antifungal activity of Moringa oleifera extracts as natural fungicide against some plant pathogenic fungi in vitro. J. Agric. Technol. 2014, 10, 963–982. [Google Scholar]
- Erdoğan, O.; Celik, A.; Zeybek, A. In vitro antifungal activity of mint, thyme, lavender extracts and essential oils on Verticillium dahliae Kleb. Fresenius Environ. Bull. 2016, 25, 4856–4862. [Google Scholar]
- Goussous, S.; Mas’ad, I.; Abu El-Samen, F.; Tahhan, R. In vitro inhibitory effects of rosemary and sage extracts on mycelial growth and sclerotial formation and germination of Sclerotinia sclerotiorum. Arch. Phytopathol. Plant Prot. 2013, 46, 890–902. [Google Scholar] [CrossRef]
- Gwa, V.; Nwankiti, A. Efficacy of some plant extracts in in vitro control of Colletotrichum species, causal agent of yam (Dioscorea rotundata Poir) tuber rot. Asian J. Plant Sci. Res. 2017, 7, 8–16. [Google Scholar]
- Hernández-Ceja, A.; Loeza-Lara, P.; Espinosa-García, F.; García-Rodríguez, Y.; Medina-Medrano, J.; Gutiérrez-Hernández, G.; Ceja-Torres, L. In vitro antifungal activity of plant extracts on pathogenic fungi of blueberry. Plants 2021, 10, 852. [Google Scholar] [CrossRef]
- Jantasorn, A.; Moungsrimuangdee, B.; Dethoup, T. In vitro antifungal activity evaluation of five plant extracts against five plant pathogenic fungi causing rice and economic crop diseases. J. Biopestic. 2016, 9, 1. [Google Scholar]
- Kantwa, S.; Tetarwal, J.; Shekhawat, K. In vitro effect of fungicides and phyto-extracts against Alternaria alternata causing leaf blight of groundnut. IOSR J. Agric. Vet. Sci. 2014, 7, 28–31. [Google Scholar]
- Kharbadkar, V.P.; Kadam, J.; Dalvi, N.; Phondekar, U.; Chaure, N.; Gaonkar, R.; Joshi, M. In vitro exploration of botanicals and fungicides against Alternaria alternata inciting leaf blight disease of chrysanthemum. Pharma Innov. J. 2022, 11, 68–71. [Google Scholar]
- López-Velázquez, J.G.; Delgado-Vargas, F.; Ayón-Reyna, L.E.; López-Angulo, G.; Bautista-Baños, S.; Uriarte-Gastelum, Y.G.; López-López, M.E.; Vega-García, M.O. Postharvest application of partitioned plant extracts from Sinaloa, Mexico for controlling papaya pathogenic fungus Colletotrichum gloeosporioides. J. Plant Pathol. 2021, 103, 831–842. [Google Scholar]
- Masangwa, J.; Aveling, T.; Kritzinger, Q. Screening of plant extracts for antifungal activities against Colletotrichum species of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata (L.) Walp). J. Agric. Sci. 2013, 151, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Khandker, S.; Islam, M.; Shahid, S.B. Efficacy of some plant extracts on the mycelial growth of Colletotrichum gloeosporioides. J. Bangladesh Agric. Univ. 2011, 9, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Nagaraju, K.; Mishra, J.P.; Prasad, R.; Sekhar, J.C.; Reddy, V.P.; Kumar, S. Isolation and in vitro evaluation of different botanicals on mycelia growth of Alternaria alternata (Fr.) Keissler causing leaf spot of brinjal. J. Pharmacogn. Phytochem. 2020, 9, 889–891. [Google Scholar]
- Naji, E.T. Study of alkaloids, phenols and terpenes of Mentha spicata as a fungicide against Rhizoctonia solani, Sclerotinia sclerotiorum and Fusarium oxysporum. Int. J. Adv. Biol. Res. 2017, 7, 345–354. [Google Scholar]
- Necha, L.L.B.; Luna, L.B.; Torres, K.B.; Baños, S.B. Antifungal activity of leaf and stem extracts from various plant species on the incidence of Colletotrichum gloeosporioides of papaya and mango fruit after storage. Rev. Mex. Fitopatol. 2002, 20, 8–12. [Google Scholar]
- Nelson, D.; Beattie, K.; McCollum, G.; Martin, T.; Sharma, S.; Rao, J.R. Performance of natural antagonists and commercial microbiocides towards in vitro suppression of flower bed soil-borne Fusarium oxysporum. Adv. Microbiol. 2014, 4, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Ogbebor, N.; Adekunle, A.; Enobakhare, D. Inhibition of Colletotrichum gloeosporioides (Penz) Sac. causal organism of rubber (Hevea brasiliensis Muell. Arg.) leaf spot using plant extracts. Afr. J. Biotechnol. 2007, 6, 213–218. [Google Scholar]
- Onaran, A.; Yılar, M. Antifungal and herbicidal activity of Trachystemon orientalis (L.) G. Don against some plant pathogenic fungi and Cuscuta campestris Yunck. Iğdır Univ. J. Inst. Sci. Technol. 2018, 8, 37–43. [Google Scholar]
- Peraza-Sánchez, S.R.; Chan-Che, E.O.; Ruiz-Sánchez, E. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a new pimarene from Acacia pennatula. J. Agric. Food. Chem. 2005, 53, 2429–2432. [Google Scholar] [CrossRef]
- Persaud, R.; Khan, A.; Isaac, W.-A.; Ganpat, W.; Saravanakumar, D. Plant extracts, bioagents and new generation fungicides in the control of rice sheath blight in Guyana. Crop Prot. 2019, 119, 30–37. [Google Scholar] [CrossRef]
- Rizwana, H.; Bokahri, N.A.; Alsahli, S.A.; Al Showiman, A.S.; Alzahrani, R.M.; Aldehaish, H.A. Postharvest disease management of Alternaria spots on tomato fruit by Annona muricata fruit extracts. Saudi J. Biol. Sci. 2021, 28, 2236–2244. [Google Scholar] [CrossRef]
- Rodino, S.; Buţu, M.; Petrache, P.; Butu, A.; Cornea, C.P. Antifungal activity of four plants against Alternaria alternata. Sci. Bull. Ser. F Biotechnol. 2014, 18, 60–65. [Google Scholar]
- Rongai, D.; Pulcini, P.; Pesce, B.; Milano, F. Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. Eur. J. Plant Pathol. 2017, 147, 229–238. [Google Scholar] [CrossRef]
- Salamone, A.; Zizzo, G.; Scarito, G. The antimicrobial activity of water extracts from Labiatae. Acta Hort. 2006, 723, 465–470. [Google Scholar] [CrossRef]
- San Aye, S.; Matsumoto, M. Effect of some plant extracts on Rhizoctonia spp. and Sclerotium hydrophilum. J. Med. Plants Res. 2011, 5, 3751–3757. [Google Scholar]
- Satish, S.; Raghavendra, M.; Raveesha, K. Antifungal potentiality of some plant extracts against Fusarium sp. Arch. Phytopathol. Plant Prot. 2009, 42, 618–625. [Google Scholar] [CrossRef]
- Seema, M.; Sreenivas, S.; Rekha, N.; Devaki, N. In vitro studies of some plant extracts against Rhizoctonia solani Kuhn infecting FCV tobacco in Karnataka Light Soil, Karnataka, India. J. Agric. Technol. 2011, 7, 1321–1329. [Google Scholar]
- Sharma, R.L.; Ahir, R.; Yadav, S.L.; Sharma, P.; Ghasolia, R. Effect of nutrients and plant extracts on Alternaria blight of tomato caused by Alternaria alternata. J. Plant Dis. Prot. 2021, 128, 951–960. [Google Scholar] [CrossRef]
- Shingne, A.W.; Giri, G.; Bagade, A.R. In vitro evaluation of fungicides, botanicals and bio-agents against Alternaria alternata causing leaf spot disease of niger. Int. J. Chem. Stud. 2020, 8, 3360–3364. [Google Scholar] [CrossRef]
- Shovan, L.; Bhuiyan, M.; Begum, J.; Pervez, Z. In vitro control of Colletotrichum dematium causing anthracnose of soybean by fungicides, plant extracts and Trichoderma harzianum. Int. J. Sustain. Crop Prod. 2008, 3, 10–17. [Google Scholar]
- Silva, A.V.; Yerena, L.R.; Necha, L.L.B. Chemical profile and antifungal activity of plant extracts on Colletotrichum spp. isolated from fruits of Pimenta dioica (L.) Merr. Pestic. Biochem. Physiol. 2021, 179, 104949. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, D. Biofungicidal or biocontrol activity of Lantana camara against phytopathogenic Alternaria alternata. Int. J. Pharm. Sci. Res. 2012, 3, 4818–4821. [Google Scholar] [CrossRef]
- Singh, U.; Pathak, K.; Khare, M.; Singh, R. Effect of leaf extract of garlic on Fusarium oxysporum f. sp. ciceri, Sclerotinia sclerotiorum and on gram seeds. Mycologia 1979, 71, 556–564. [Google Scholar] [PubMed]
- Tapwal, A.; Garg, S.; Gautam, N.; Kumar, R. In vitro antifungal potency of plant extracts against five phytopathogens. Braz. Arch. Biol. Technol. 2011, 54, 1093–1098. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Sánchez-Hernández, E.; Noversa, J.; Cunha, A.; Cortez, I.; Marques, G.; Martín-Ramos, P.; Oliveira, R. Antifungal activity of plant waste extracts against phytopathogenic fungi: Allium sativum peels extract as a promising product targeting the fungal plasma membrane and cell wall. Horticulturae 2023, 9, 136. [Google Scholar] [CrossRef]
- Varo, A.; Mulero-Aparicio, A.; Adem, M.; Roca, L.; Raya-Ortega, M.; López-Escudero, F.; Trapero, A. Screening water extracts and essential oils from Mediterranean plants against Verticillium dahliae in olive. Crop Prot. 2017, 92, 168–175. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chen, Q.; Zhou, J.; Xu, J.; Zhao, T.; Huang, B.; Miao, Y.; Liu, D. The role of antifungal activity of ethyl acetate extract from Artemisia argyi on Verticillium dahliae. J. Appl. Microbiol. 2022, 132, 1343–1356. [Google Scholar] [CrossRef]
- Rashid, T.S.; Awla, H.K.; Sijam, K. Antifungal effects of Rhus coriaria L. fruit extracts against tomato anthracnose caused by Colletotrichum acutatum. Ind. Crops Prod. 2018, 113, 391–397. [Google Scholar] [CrossRef]
- Mangoba, M.A.A.; Alvindia, D.d.G. Fungicidal activities of Cymbopogon winterianus against anthracnose of banana caused by Colletotrichum musae. Sci. Rep. 2023, 13, 6629. [Google Scholar] [CrossRef]
- Hong, J.K.; Yang, H.J.; Jung, H.; Yoon, D.J.; Sang, M.K.; Jeun, Y.-C. Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathol. J. 2015, 31, 269. [Google Scholar] [CrossRef] [Green Version]
- Danh, L.T.; Giao, B.T.; Duong, C.T.; Nga, N.T.T.; Tien, D.T.K.; Tuan, N.T.; Huong, B.T.C.; Nhan, T.C.; Trang, D.T.X. Use of essential oils for the control of anthracnose disease caused by Colletotrichum acutatum on post-harvest mangoes of Cat Hoa Loc variety. Membranes 2021, 11, 719. [Google Scholar] [CrossRef]
- De Oliveira, T.S.; Costa, A.M.M.; Cabral, L.M.C.; Freitas-Silva, O.; Rosenthal, A.; Tonon, R.V. Anthracnose controlled by essential oils: Are nanoemulsion-based films and coatings a viable and efficient technology for tropical fruit preservation? Foods 2023, 12, 279. [Google Scholar] [CrossRef]
- Oliveira, P.D.L.; de Oliveira, K.Á.R.; dos Santos Vieira, W.A.; Câmara, M.P.S.; de Souza, E.L. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (DC ex Nees) Stapf. essential oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Grande Tovar, C.D.; Delgado-Ospina, J.; Navia Porras, D.P.; Peralta-Ruiz, Y.; Cordero, A.P.; Castro, J.I.; Chaur Valencia, M.N.; Mina, J.H.; Chaves López, C. Colletotrichum gloesporioides inhibition in situ by chitosan-Ruta graveolens essential oil coatings: Effect on microbiological, physicochemical, and organoleptic properties of guava (Psidium guajava L.) during room temperature storage. Biomolecules 2019, 9, 399. [Google Scholar] [CrossRef] [Green Version]
- Peralta-Ruiz, Y.; Grande Tovar, C.; Sinning-Mangonez, A.; Bermont, D.; Pérez Cordero, A.; Paparella, A.; Chaves-López, C. Colletotrichum gloesporioides inhibition using chitosan-Ruta graveolens L essential oil coatings: Studies in vitro and in situ on Carica papaya fruit. Int. J. Food Microbiol. 2020, 326, 108649. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Hernández, E.; González-García, V.; Correa-Guimarães, A.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Phytochemical profile and activity against Fusarium species of Tamarix gallica bark aqueous ammonia extract. Agronomy 2023, 13, 496. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, S.; Zhang, W.; Ng, T.; Ye, X. Buckwheat antifungal protein with biocontrol potential to inhibit fungal (Botrytis cinerea) infection of cherry tomato. J. Agric. Food. Chem. 2019, 67, 6748–6756. [Google Scholar] [CrossRef]
Wavenumber (cm−1) | Assignment |
---|---|
3259 | –O–H stretching (H-bonded) |
2932 | C–H stretching vibration |
1688 | C=O stretching |
1652 | C=O stretching/C=C stretching |
1597 | aromatic ring C=C vibration |
1514 | aromatic ring C=C vibration |
1444 | H–C–H asymmetrical bending |
1367 | symmetric methyl bending |
1263 | phenol –C–O vibration |
1178 | C–H in-plane bending/phenol –C–O vibration |
1116 | ring C–H bending |
1069 | C–O stretching vibration/C–O–C stretching vibration |
984 | –CH=CH2 groups vibration |
925 | CH2 rocking vibration |
853 | out-of-plane bending of =C–H bonds of an aromatic ring |
812 | C–H out-of-plane bending |
781 | C–H wagging mode |
596 | C–C in-plane bending |
RT (min) | Area (%) | Assignment | Qual |
---|---|---|---|
5.3068 | 1.7654 | 2-Cyclopenten-1-one, 2-hydroxy- | 86 |
6.2920 | 2.6204 | 2-Hydroxy-γ-butyrolactone | 32 |
6.4166 | 2.0342 | 1-Butoxypropan-2-yl isobutyl carbonate | 43 |
7.6987 | 1.2980 | 1-Methyl-2,4,5-trioxoimidazolidine | 43 |
7.8530 | 1.5041 | 1,3-Propanediamine, N-methyl- | 56 |
8.0785 | 2.3624 | Maltol | 97 |
8.6127 | 2.0475 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 87 |
9.4793 | 3.5314 | Catechol | 97 |
9.6811 | 5.8441 | Benzofuran, 2,3-dihydro- | 87 |
9.7998 | 1.2578 | 5-Hydroxymethylfurfural | 93 |
10.7019 | 2.4234 | 3(2H)-Pyridazinone, 6-methyl- | 70 |
10.9987 | 1.9835 | 2-Methoxy-4-vinylphenol | 91 |
12.7793 | 10.3925 | 4-Ethenyl-1,3-benzenediol | 64 |
12.9930 | 2.2004 | 1-Acetyl-2-amino-3-cyano-7-isopropyl-4-methylazulene | 53 |
13.5865 | 4.5524 | β-d-Glucopyranose, 1,6-anhydro- | 90 |
14.1325 | 1.4610 | Dodecanoic acid | 99 |
15.1712 | 5.6205 | Quinic acid | 87 |
15.3018 | 1.3040 | d-Glycero-l-gluco-heptose | 50 |
15.6995 | 2.1454 | α-Bisabolol | 64 |
17.9371 | 2.6290 | 4-Pyrimidinol, 6-(methoxymethyl)-2-(1-methylethyl)- | 43 |
18.1448 | 1.4783 | Hexadecanoic acid, methyl ester | 98 |
18.5840 | 2.8538 | Scopoletin | 98 |
19.8364 | 1.5206 | 9-Octadecenoic acid (Z)-, methyl ester | 99 |
20.1866 | 2.0290 | Octadec-9-enoic acid | 97 |
25.9082 | 5.0748 | 4H-1-Benzopyran-4-one, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl- | 94 |
EC | A. alternata | C. coccodes | F. oxysporum f. sp. lycopersici | V. dahliae | R. solani | S. sclerotiorum |
---|---|---|---|---|---|---|
EC50 | 279.3 | 177.0 | 185.1 | 182.6 | 75.7 | 87.0 |
EC90 | 481.3 | 276.6 | 372.8 | 330.4 | 106.9 | 132.0 |
Commercial Fungicide | Pathogen | Radial Growth of Mycelium (mm) | Inhibition (%) | Ref. | ||
---|---|---|---|---|---|---|
Rd/10 | Rd * | Rd/10 | Rd * | |||
Azoxystrobin | A. alternata | 49.4 | 38.9 | 34.1 | 48.1 | This work |
C. coccodes | 30.6 | 24.4 | 59.2 | 67.5 | ||
F. oxysporum f. sp. lycopersici | 35.6 | 32.2 | 52.5 | 57.1 | ||
R. solani | 50.6 | 17.2 | 32.5 | 77.1 | ||
S. sclerotiorum | 14.0 | 9.0 | 81.3 | 88.0 | [23] | |
V. dahliae | 26.0 | 24.0 | 65.3 | 68.0 | [24] | |
Mancozeb | A. alternata | 19.4 | 16.1 | 74.1 | 78.5 | This work |
C. coccodes | 0.0 | 0.0 | 100.0 | 100.0 | ||
F. oxysporum f. sp. lycopersici | 0.0 | 0.0 | 100.0 | 100.0 | ||
R. solani | 0.0 | 0.0 | 100.0 | 100.0 | ||
S. sclerotiorum | 0.0 | 0.0 | 100.0 | 100.0 | [23] | |
V. dahliae | 0.0 | 0.0 | 100.0 | 100.0 | [24] | |
Fosetyl-Al | A. alternata | 71.1 | 9.4 | 5.2 | 87.5 | This work |
C. coccodes | 0.0 | 0.0 | 100.0 | 100.0 | ||
F. oxysporum f. sp. lycopersici | 67.8 | 4.4 | 9.6 | 94.1 | ||
R. solani | 75.0 | 0.0 | 0.0 | 100.0 | ||
S. sclerotiorum | 75.0 | 13.3 | 0.0 | 82.2 | [23] | |
V. dahliae | 36.0 | 0.0 | 52.0 | 100.0 | [24] |
Treatment | LD (mm) | LSR (%) |
---|---|---|
Negative control | 0 | 100 |
Positive control | 42.2 ± 3.7 | 0 |
H. stoechas extract at 375 μg·mL−1 | 30.8 ± 3 | 27 |
H. stoechas extract at 750 μg·mL−1 | 7.8 ± 1.1 | 81.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, E.; Álvarez-Martínez, J.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Martín-Ramos, P. Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management. Molecules 2023, 28, 5861. https://doi.org/10.3390/molecules28155861
Sánchez-Hernández E, Álvarez-Martínez J, González-García V, Casanova-Gascón J, Martín-Gil J, Martín-Ramos P. Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management. Molecules. 2023; 28(15):5861. https://doi.org/10.3390/molecules28155861
Chicago/Turabian StyleSánchez-Hernández, Eva, Javier Álvarez-Martínez, Vicente González-García, José Casanova-Gascón, Jesús Martín-Gil, and Pablo Martín-Ramos. 2023. "Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management" Molecules 28, no. 15: 5861. https://doi.org/10.3390/molecules28155861
APA StyleSánchez-Hernández, E., Álvarez-Martínez, J., González-García, V., Casanova-Gascón, J., Martín-Gil, J., & Martín-Ramos, P. (2023). Helichrysum stoechas (L.) Moench Inflorescence Extract for Tomato Disease Management. Molecules, 28(15), 5861. https://doi.org/10.3390/molecules28155861