Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microstructure Characterization
2.2. Thermal Properties
2.3. Crystal Structure Characterization
2.4. Chemical Structure Characterization
2.5. Mechanical Properties
3. Experimental
3.1. Materials
3.2. Preparation of PLA/PBS Nonwoven Fibers via a Melt-Blown Process
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018, 85, 83–127. [Google Scholar] [CrossRef]
- Xu, R.; Fang, Y.; Zhang, Z.; Cao, Y.; Yan, Y.; Gan, L.; Xu, J.; Zhou, G. Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing. Materials 2023, 16, 5459. [Google Scholar] [CrossRef] [PubMed]
- Wal, P.; Wal, A.; Saxena, B.; Mishra, S.; Elossaily, G.M.; Arora, R.; Singh, C.; Sachdeva, M.; Anwer, M.K.; Gulati, M. Insights into the innovative approaches in fiber technology for drug delivery and pharmaceuticals. J. Drug Deliv. Sci. Technol. 2023, 87, 104877. [Google Scholar] [CrossRef]
- Madej-Kiełbik, L.; Gzyra-Jagieła, K.; Jóźwik-Pruska, J.; Wiśniewskia-Wrona, M.; Dymel, M. Biodegradable Nonwoven Materials with Antipathogenic Layer. Environments 2022, 9, 79. [Google Scholar] [CrossRef]
- Borojeni, I.A.; Gajewski, G.; Riahi, R.A. Application of electrospun nonwoven fibers in air filters. Fibers 2022, 10, 15. [Google Scholar] [CrossRef]
- Yeom, B.Y.; Pourdeyhimi, B. Aerosol filtration properties of PA6/PE islands-in-the-sea bicomponent spunbond web fibrillated by high-pressure water jets. J. Mater. Sci. 2011, 46, 5761–5767. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yeom, B.Y.; Wilkie, A.; Pourdeyhimi, B.; Khan, S.A. Fabrication of nanofiber meltblown membranes and their filtration properties. J. Membr. Sci. 2013, 427, 336–344. [Google Scholar] [CrossRef]
- Fang, Y.; Herbert, M.; Schiraldi, D.A.; Ellison, C.J. Tin fluorophosphate nonwovens by melt state centrifugal Forcespinning. J. Mater. Sci. 2014, 49, 8252–8260. [Google Scholar] [CrossRef]
- Zhou, H.; Tang, Y.; Wang, Z.; Zhang, P.; Zhu, Q. Cotton-like micro-and nanoscale poly(lactic acid) nonwoven fibers fabricated by centrifugal melt-spinning for tissue engineering. RSC Adv. 2018, 8, 5166–5179. [Google Scholar] [CrossRef]
- Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Review of multifarious applications of poly(lactic acid). Polym.-Plast. Technol. Eng. 2016, 55, 1057–1075. [Google Scholar] [CrossRef]
- Huang, H.; Guo, X.; Gu, J.; Zhang, Y.; Chen, Q.; Wei, Z. Biodegradable poly(lactic acid)/poly(butylene succinate) Nanofibrous membrane with Core-shell structure and high density for improved mechanical properties. J. Polym. Res. 2020, 27, 279. [Google Scholar] [CrossRef]
- Hu, X.; Su, T.; Li, P.; Wang, Z. Blending modification of PBS/PLA and its enzymatic degradation. Polym. Bull. 2018, 75, 533–546. [Google Scholar] [CrossRef]
- Fenni, S.E.; Wang, J.; Haddaoui, N.; Favis, B.D.; Müller, A.J.; Cavallo, D. Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends. Thermochim. Acta 2019, 677, 117–130. [Google Scholar] [CrossRef]
- Lee, S.; Kim, M.; Song, H.Y.; Hyun, K. Characterization of the effect of clay on morphological evaluations of PLA/biodegradable polymer blends by FT-rheology. Macromolecules 2019, 52, 7904–7919. [Google Scholar] [CrossRef]
- Kassos, N.; Kelly, A.L.; Gough, T.; Gill, A.A. Synergistic toughening and compatibilisation effect of poly(butylene succinate) in PLA/poly-caprolactone blends. Mater. Res. Express 2018, 6, 035313. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, D.; Yu, S.; Zhou, H.; Peng, S. Recent advances in compatibility and toughness of poly(lactic acid)/poly(butylene succinate) blends. e-Polymers 2021, 21, 793–810. [Google Scholar] [CrossRef]
- Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly(butylene succinate)(PBS) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers 2022, 14, 844. [Google Scholar] [CrossRef]
- Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and its blends with poly(butylene succinate)(PBS): A brief review. Polymers 2019, 11, 1193. [Google Scholar] [CrossRef]
- Hassan, E.A.; Elarabi, S.E.; Wei, Y.; Yu, M. Biodegradable poly(lactic acid)/poly(butylene succinate) fibers with high elongation for health care products. Text. Res. J. 2018, 88, 1735–1744. [Google Scholar] [CrossRef]
- Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Mater. Sci. Eng. C 2014, 41, 119–126. [Google Scholar] [CrossRef]
- Yokohara, T.; Yamaguchi, M. Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677–685. [Google Scholar] [CrossRef]
- Bo, Z. Nonwovens: Melt blowing non-woven prediction. Filtr. Sep. 2014, 51, 40–41. [Google Scholar] [CrossRef]
- Phiriyawirut, M.; Sarapat, K.; Sirima, S.; Prasertchol, A. Porous Electrospun Nanofiber from Biomass-Based Polyester Blends of Polylactic Acid and Polybutylene Succinate. Open J. Polym. Chem. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Kong, Y.; Hay, J. The measurement of the crystallinity of polymers by DSC. Polymer 2002, 43, 3873–3878. [Google Scholar] [CrossRef]
- Jeong, E.H.; Im, S.S.; Youk, J.H. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers. Polymer 2005, 46, 9538–9543. [Google Scholar] [CrossRef]
- Deng, Y.; Thomas, N.L. Blending poly(butylene succinate) with poly(lactic acid): Ductility and phase inversion effects. Eur. Polym. J. 2015, 71, 534–546. [Google Scholar] [CrossRef]
- Chaiwutthinan, P.; Pimpan, V.; Chuayjuljit, S.; Leejarkpai, T. Biodegradable plastics prepared from poly(lactic acid), poly(butylene succinate) and microcrystalline cellulose extracted from waste-cotton fabric with a chain extender. J. Polym. Environ. 2015, 23, 114–125. [Google Scholar] [CrossRef]
- Moreira, A.C.F.; Cario Jr, F.O.; Soares, B.G. Cocontinuous morphologies in polystyrene/ethylene–vinyl acetate blends: The influence of the processing temperature. J. Appl. Polym. Sci. 2003, 89, 386–398. [Google Scholar] [CrossRef]
- Qu, P.; Gao, Y.; Wu, G.-F.; Zhang, L.-P. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 2010, 5, 1811–1823. [Google Scholar] [CrossRef]
- Zheng, M.; Luo, X. Phase structure and properties of toughened poly(l-lactic acid)/glycidyl methacrylate grafted poly(ethylene octane) blends adjusted by the stereocomplex. Polym.-Plast. Technol. Eng. 2013, 52, 1250–1258. [Google Scholar] [CrossRef]
- Xie, L.; Xu, H.; Li, L.-B.; Hsiao, B.S.; Zhong, G.-J.; Li, Z.-M. Biomimetic nanofibrillation in two-component biopolymer blends with structural analogs to spider silk. Sci. Rep. 2016, 6, 34572. [Google Scholar] [CrossRef] [PubMed]
- Young, R.J.; Lovell, P.A. Introduction to Polymers; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(butylene succinate)(PBS): Materials, processing, and industrial applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Dzierzkowska, E.; Scisłowska-Czarnecka, A.; Kudzin, M.; Boguń, M.; Szatkowski, P.; Gajek, M.; Kornaus, K.; Chadzinska, M.; Stodolak-Zych, E. Effects of process parameters on structure and properties of melt-blown poly(lactic acid) nonwovens for skin regeneration. J. Funct. Biomater. 2021, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Valerio, O.; Misra, M.; Mohanty, A.K. Statistical design of sustainable thermoplastic blends of poly(glycerol succinate-co-maleate)(PGSMA), poly(lactic acid)(PLA) and poly(butylene succinate)(PBS). Polym. Test. 2018, 65, 420–428. [Google Scholar] [CrossRef]
- ASTM D638; Standard Test Method for Tensile Properties of Plastics. ASTM: West Conshohocken, PA, USA, 2010. Available online: https://www.instron.com/en/testing-solutions/astm-standards/astm-d638 (accessed on 1 May 2023).
- Magazzù, A.; Marcuello, C. Investigation of soft matter nanomechanics by atomic force microscopy and optical tweezers: A comprehensive review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef]
- Marcuello, C.; Chabbert, B.; Berzin, F.; Bercu, N.B.; Molinari, M.; Aguié-Béghin, V. Influence of Surface Chemistry of Fiber and Lignocellulosic Materials on Adhesion Properties with Polybutylene Succinate at Nanoscale. Materials 2023, 16, 2440. [Google Scholar] [CrossRef]
PLA Concentration (%) | PBS Concentration (%) | Fabric Formation |
---|---|---|
100 | 0 | Forming |
97.5 | 2.5 | Forming |
95 | 5 | Forming |
90 | 10 | Forming |
80 | 20 | Non-Forming |
70 | 30 | Non-Forming |
60 | 40 | Non-Forming |
50 | 50 | Non-Forming |
0 | 100 | Forming |
PLA/PBS Blend Ratio | PLA Phase | PBS Phase | |||||||
---|---|---|---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tcc (°C) | ΔHm (J/g) | Xc (%) | Tm (°C) | Tcc (°C) | Δ | Xc (%) | |
100/0 | 60.7 | 166.0 | 105.8 | 51.2 | 19.2 | - | - | - | - |
97.5/2.5 | 60.5 | 166.3 | 104.5 | 51.8 | 20.4 | - | - | - | - |
95/5 | 60.2 | 166.3 | 96.2 | 50.4 | 23.9 | - | - | - | - |
90/10 | 59.2 | 165.8 | 91.7 | 52.5 | 28.1 | 113.5 | 96.2 | 48.5 | 40.7 |
0/100 | - | - | - | - | 114.6 | 97.8 | 80.4 | 64.8 |
Parameter | Value |
---|---|
Temperature Extruder zone 1 (°C) | 170 |
Temperature Extruder zone 2 (°C) | 250 |
Temperature Extruder zone 3 (°C) | 270 |
Temperature of die (°C) | 275 |
Polymer flow rate (g/min) | 13.2 |
Air pressure (MPa) | 0.4 |
Hole diameter (mm) | 0.35 |
Die to collector distance DCD (cm) | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangnorawich, B.; Magmee, A.; Roungpaisan, N.; Toommee, S.; Parcharoen, Y.; Pechyen, C. Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process. Molecules 2023, 28, 7215. https://doi.org/10.3390/molecules28207215
Tangnorawich B, Magmee A, Roungpaisan N, Toommee S, Parcharoen Y, Pechyen C. Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process. Molecules. 2023; 28(20):7215. https://doi.org/10.3390/molecules28207215
Chicago/Turabian StyleTangnorawich, Benchamaporn, Areerut Magmee, Nanjaporn Roungpaisan, Surachet Toommee, Yardnapar Parcharoen, and Chiravoot Pechyen. 2023. "Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process" Molecules 28, no. 20: 7215. https://doi.org/10.3390/molecules28207215
APA StyleTangnorawich, B., Magmee, A., Roungpaisan, N., Toommee, S., Parcharoen, Y., & Pechyen, C. (2023). Effect of Polybutylene Succinate Additive in Polylactic Acid Blend Fibers via a Melt-Blown Process. Molecules, 28(20), 7215. https://doi.org/10.3390/molecules28207215