In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of GI Conditions on the Release of Phenols and Antioxidant Activity of Unfermented Fermented, and Fermented Dried Lentils and Quinoa
2.2. Impact of GI Conditions on the Bioaccessibility of Phytic Acid and Minerals of Unfermented, Fermented, and Fermented Dried Lentils and Quinoa
3. Materials and Methods
3.1. Materials
3.2. Fungal Solid-State Fermentation (SSF) and Flour Production
3.3. Simulated In Vitro Gastrointestinal Digestion under Standard and Older Adult Conditions
3.4. Analytical Determinations
3.4.1. Total Phenolic Content (TPC)
3.4.2. Antioxidant Activity
3.4.3. Phenolic Profile by HPLC Analysis
3.4.4. Phytic Acid Content
3.4.5. Mineral Quantification
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 23 June 2023).
- Brownie, S. Why Are Elderly Individuals at Risk of Nutritional Deficiency? Int. J. Nurs. Pract. 2006, 12, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Rémond, D.; Shahar, D.R.; Gille, D.; Pinto, P.; Kachal, J.; Peyron, M.-A.; Nunes, C.; Santos, D.; Walther, B.; Bordoni, A.; et al. Understanding the Gastrointestinal Tract of the Elderly to Develop Dietary Solutions That Prevent Malnutrition. Oncotarget 2015, 6, 13858. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.F.; Miao, J.H.; Zeng, J.; Zhang, T.H.; Zhang, R.M.; Zhang, B.Y.; Wang, C.; Ma, Y.L.; Niu, X.L.; Ni, X.L.; et al. Evaluation of Digestibility Differences for Apple Polyphenolics Using in Vitro Elderly and Adult Digestion Models. Food Chem. 2022, 390, 133154. [Google Scholar] [CrossRef] [PubMed]
- Makran, M.; Miedes, D.; Cilla, A.; Barberá, R.; Garcia-Llatas, G.; Alegría, A. Understanding the Influence of Simulated Elderly Gastrointestinal Conditions on Nutrient Digestibility and Functional Properties. Trends Food Sci. Technol. 2022, 129, 283–295. [Google Scholar] [CrossRef]
- Vural, Z.; Avery, A.; Kalogiros, D.I.; Coneyworth, L.J.; Welham, S.J.M. Trace Mineral Intake and Deficiencies in Older Adults Living in the Community and Institutions: A Systematic Review. Nutrients 2020, 12, 1072. [Google Scholar] [CrossRef]
- Bourre, J.M. Effects of Nutrients (in Food) on the Structure and Function of the Nervous System: Update on Dietary Requirements for Brain. Part 1: Micronutrients. J. Nutr. Health Aging 2006, 10, 377. [Google Scholar]
- Quintaes, K.D.; Diez-Garcia, R.W. The Importance of Minerals in the Human Diet. In Handbook of Mineral Elements in Food; Wiley: Hoboken, NJ, USA, 2015; pp. 1–21. ISBN 9781118654316. [Google Scholar]
- Lobine, D.; Mahomoodally, M.F. Antioxidants and Cognitive Decline in Elderly. In Antioxidants Effects in Health; Elsevier: Amsterdam, The Netherlands, 2022; pp. 651–668. [Google Scholar]
- Thangthaeng, N.; Poulose, S.M.; Miller, M.G.; Shukitt-Hale, B. Preserving Brain Function in Aging: The Anti-Glycative Potential of Berry Fruit. Neuromolecular Med. 2016, 18, 465–473. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Tang, Y.; Li, X.; Zhang, B.; Chen, P.X.; Liu, R.; Tsao, R. Characterisation of Phenolics, Betanins and Antioxidant Activities in Seeds of Three Chenopodium Quinoa Willd. Genotypes. Food Chem. 2015, 166, 380–388. [Google Scholar] [CrossRef]
- Hirose, Y.; Fujita, T.; Ishii, T.; Ueno, N. Antioxidative Properties and Flavonoid Composition of Chenopodium Quinoa Seeds Cultivated in Japan. Food Chem. 2010, 119, 1300–1306. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic Profiles of 20 Canadian Lentil Cultivars and Their Contribution to Antioxidant Activity and Inhibitory Effects on α-Glucosidase and Pancreatic Lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef]
- Safarov, J. Comparative Evaluation of Phenolic and Antioxidant Properties of Red and White Quinoa (Chenopodium quinoa Willd.) Seeds. J. Raw Mater. Process. Foods 2020, 1, 28–33. [Google Scholar]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, C.A.; Andrés-Grau, A.M. Increasing Antioxidant Activity and Protein Digestibility in Phaseolus Vulgaris and Avena Sativa by Fermentation with the Pleurotus Ostreatus Fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [PubMed]
- Ojo, M.A. Phytic Acid in Legumes: A Review of Nutritional Importance and Hydrothermal Processing Effect on Underutilised Species. Food Res. 2020, 5, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, J.; Muñoz-Pina, S.; García-Hernández, J.; Heredia, A.; Andrés, A. Impact of Air-Drying Temperature on Antioxidant Properties and ACE-Inhibiting Activity of Fungal Fermented Lentil Flour. Foods 2023, 12, 999. [Google Scholar] [CrossRef]
- Sánchez-García, J.; Muñoz-Pina, S.; García-Hernández, J.; Heredia, A.; Andrés, A. Fermented Quinoa Flour: Implications of Fungal Solid-State Bioprocessing and Drying on Nutritional and Antioxidant Properties. LWT 2023, 182, 114885. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Effect of Traditional Cooking and in Vitro Gastrointestinal Digestion of the Ten Most Consumed Beans from the Fabaceae Family in Thailand on Their Phytochemicals, Antioxidant and Anti-Diabetic Potentials. Plants 2022, 11, 67. [Google Scholar] [CrossRef]
- Li, M.; Bai, Q.; Zhou, J.; de Souza, T.S.P.; Suleria, H.A.R. In Vitro Gastrointestinal Bioaccessibility, Bioactivities and Colonic Fermentation of Phenolic Compounds in Different Vigna Beans. Foods 2022, 11, 3884. [Google Scholar] [CrossRef]
- Bohn, T. Dietary Factors Affecting Polyphenol Bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Castro, A.P.; Pérez-Jiménez, J.; Bello-Pérez, L.A.; Tovar, J.; Sáyago-Ayerdi, S.G. Bioaccessibility of Phenolic Compounds in Common Beans (Phaseolus vulgaris L.) after in Vitro Gastrointestinal Digestion: A Comparison of Two Cooking Procedures. Cereal Chem. 2020, 97, 670–680. [Google Scholar] [CrossRef]
- Ozcan, T.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L.; Delikanli, B. Phenolics in Human Health. Int. J. Chem. Eng. Appl. 2014, 5, 393–396. [Google Scholar] [CrossRef]
- Ullah, R.; Ikram, M.; Park, T.J.; Ahmad, R.; Saeed, K.; Alam, S.I.; Rehman, I.U.; Khan, A.; Khan, I.; Jo, M.G.; et al. Vanillic Acid, a Bioactive Phenolic Compound, Counteracts Lps-Induced Neurotoxicity by Regulating c-Jun n-Terminal Kinase in Mouse Brain. Int. J. Mol. Sci. 2021, 22, 361. [Google Scholar] [CrossRef]
- Yalameha, B.; Nejabati, H.R.; Nouri, M. Cardioprotective Potential of Vanillic Acid. Clin. Exp. Pharmacol. Physiol. 2023, 50, 193–204. [Google Scholar]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; Adedapo, A.A. Cardio-Protective and Antioxidant Properties of Caffeic Acid and Chlorogenic Acid: Mechanistic Role of Angiotensin Converting Enzyme, Cholinesterase and Arginase Activities in Cyclosporine Induced Hypertensive Rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, M.I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12, 860508. [Google Scholar]
- Priscilla, D.H.; Prince, P.S.M. Cardioprotective Effect of Gallic Acid on Cardiac Troponin-T, Cardiac Marker Enzymes, Lipid Peroxidation Products and Antioxidants in Experimentally Induced Myocardial Infarction in Wistar Rats. Chem.-Biol. Interact. 2009, 179, 118–124. [Google Scholar] [CrossRef]
- Wianowska, D.; Olszowy-Tomczyk, M. A Concise Profile of Gallic Acid—From Its Natural Sources through Biological Properties and Chemical Methods of Determination. Molecules 2023, 28, 1186. [Google Scholar]
- Gallego, M.; Arnal, M.; Barat, J.M.; Talens, P. Effect of Cooking on Protein Digestion and Antioxidant Activity of Different Legume Pastes. Foods 2021, 10, 47. [Google Scholar] [CrossRef]
- Koehnlein, E.A.; Koehnlein, É.M.; Corrêa, R.C.G.; Nishida, V.S.; Correa, V.G.; Bracht, A.; Peralta, R.M. Analysis of a Whole Diet in Terms of Phenolic Content and Antioxidant Capacity: Effects of a Simulated Gastrointestinal Digestion. Int. J. Food Sci. Nutr. 2016, 67, 614–623. [Google Scholar] [CrossRef]
- Soetan, K.O.; Olaiya, C.O.; Oyewole, O.E. The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. Afr. J. Food Sci. 2010, 4, 200–222. [Google Scholar]
- Gupta, U.C.; Gupta, S.C. Sources and Deficiency Diseases of Mineral Nutrients in Human Health and Nutrition: A Review. Pedosphere 2014, 24, 13–38. [Google Scholar]
- National Research Council Minerals. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989; ISBN 0-309-58831-6. [Google Scholar]
- Chakraverty, A.; Mujumdar, A.S.; Ramaswamy, H.S. (Eds.) Structure and Composition of Cereal Grains and Legumes. In Handbook of Postharvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices; Routledge: London, UK, 2003; Volume 93, pp. 1–16. ISBN 0824705149. [Google Scholar]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal Grains: Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar]
- Chawla, P.; Bhandari, L.; Sadh, P.K.; Kaushik, R. Impact of Solid-state Fermentation (Aspergillus oryzae) on Functional Properties and Mineral Bioavailability of Black-eyed Pea (Vigna unguiculata) Seed Flour. Cereal Chem. J. 2017, 94, 437–442. [Google Scholar] [CrossRef]
- Couzy, F.; Mansourian, R.; Labate, A.; Guinchard, S.; Montagne, D.H.; Dirren, H. Effect of Dietary Phytic Acid on Zinc Absorption in the Healthy Elderly, as Assessed by Serum Concentration Curve Tests. Br. J. Nutr. 1998, 80, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Menard, O.; Lesmes, U.; Shani-Levi, C.S.; Araiza Calahorra, A.; Lavoisier, A.; Morzel, M.; Rieder, A.; Feron, G.; Nebbia, S.; Mashiah, L.; et al. Static in Vitro Digestion Model Adapted to the General Older Adult Population: An INFOGEST International Consensus. Food Funct. 2023, 14, 4569–4582. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the Antioxidant Properties of Fresh, Freeze-Dried and Hot-Air-Dried Tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Sharma, S.; Kataria, A.; Singh, B. Effect of Thermal Processing on the Bioactive Compounds, Antioxidative, Antinutritional and Functional Characteristics of Quinoa (Chenopodium quinoa). LWT 2022, 160, 113256. [Google Scholar] [CrossRef]
- Tanleque-Alberto, F.; Juan-Borrás, M.; Escriche, I. Antioxidant Characteristics of Honey from Mozambique Based on Specific Flavonoids and Phenolic Acid Compounds. J. Food Compos. Anal. 2020, 86, 103377. [Google Scholar] [CrossRef]
- Haug, W.; Lantzsch, H.-J. Sensitive Method for the Rapid Determination of Phytate in Cereals and Cereal Products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
- Peng, W.; Tao, Z.; Ji Chun, T. Phytic Acid Contents of Wheat Flours from Different Mill Streams. Agric. Sci. China 2010, 9, 1684–1688. [Google Scholar] [CrossRef]
- Barrera, C.; Betoret, N.; Corell, P.; Fito, P. Effect of Osmotic Dehydration on the Stabilization of Calcium-Fortified Apple Slices (Var. Granny Smith): Influence of Operating Variables on Process Kinetics and Compositional Changes. J. Food Eng. 2009, 92, 416–424. [Google Scholar] [CrossRef]
- Chen, L.; Li, X.; Li, Z.; Deng, L. Analysis of 17 Elements in Cow, Goat, Buffalo, Yak, and Camel Milk by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). RSC Adv. 2020, 10, 6736–6742. [Google Scholar] [CrossRef]
Digested (Standard) | Digested (Older Adult) | |||||||
---|---|---|---|---|---|---|---|---|
UFPL | FPL | FPL-70 | FPL-L | UFPL | FPL | FPL-70 | FPL-L | |
Phenolic acids | ||||||||
Gallic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Caffeic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
p-Coumaric acid | 4.5 ± 0.5 cB | 2.87 ± 0.08 bB | 3.19 ± 0.19 bA | 2.14 ± 0.07 aA | 2.2 ± 0.2 aA | 2.33 ± 0.04 aA | 3.02 ± 0.18 bA | 2.0 ± 0.3 aA |
Sinapic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-O-Caffeoylquinic | 88 ± 31 bA | 49.5 ± 0.2 aB | 42 ± 3 aB | 60.6 ± 0.3 bB | 86 ± 7 cA | 34 ± 5 aA | 32 ± 3 aA | 46.9 ± 0.3 bA |
4-Hydroxybenzoic acid | 4.4 ± 0.2 aA | 4.14 ± 0.15 aB | 4.0 ± 0.5 aB | 3.88 ± 0.13 aB | 3.3 ± 0.3 bA | 3.375 ± 0.010 bA | 2.1 ± 0.3 aA | 2.90 ± 0.17 bA |
Vanillic acid | 7.6 ± 0.5 aA | 19.8 ± 0.6 cB | 20.7 ± 0.5 cB | 17.81 ± 0.12 bB | 7.5 ± 0.7 aA | 13.89 ± 0.12 bA | 16.8 ± 0.7 cA | 13.4 ± 1.3 bA |
Ferulic acid | 4.6 ± 1.2 bA | 2.29 ± 0.02 aB | 2.1 ± 1.3 aA | 2.58 ± 0.09 aA | 3.0 ± 0.2 cA | 2.03 ± 0.03 aA | 2.06 ± 0.03 aA | 2.47 ± 0.11 bA |
trans-Cinnamic acid | traces | 3.02 ± 0.08 aA | 9.5 ± 0.7 bA | 2.19 ± 0.17 aA | n.d. | 2.75 ± 0.02 aA | 9.0 ± 0.6 bA | 2.0 ± 0.3 aA |
Flavonoids | ||||||||
Rutin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Epicatechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercetin 3-glucoside | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercitrin | 4.7 ± 0.4 B | n.d. | traces | traces | 2.0 ± 0.4 A | traces | traces | traces |
Apigenin-7-glucoside | 0.62 ± 0.07 A | n.d. | traces | traces | 2.80 ± 0.06 cB | 2.28 ± 0.03 b | 2.195 ± 0.007 a | 2.67 ± 0.10 c |
Quercetin | 5.3 ± 0.4 aB | 5.181 ± 0.006 a | 5.0 ± 0.4 a | 5.776 ± 0.008 a | 0.78 ± 0.05 A | traces | traces | traces |
Naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Kaempferol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Digested (Standard) | Digested (Older Adult) | |||||||
---|---|---|---|---|---|---|---|---|
UFCL | FCL | FCL-70 | FCL-L | UFCL | FCL | FCL-70 | FCL-L | |
Phenolic acids | ||||||||
Gallic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Caffeic acid | 3.4 ± 0.4 aB | 5.5 ± 0.7 bB | 10.8 ± 1.3 cB | 5.9 ± 0.4 bA | 2.50 ± 0.06 aA | 3.3 ± 0.2 abA | 4.4 ± 0.2 bA | 6.6 ± 0.7 cB |
p-Coumaric acid | 6.2 ± 1.0 cA | 1.91 ± 0.04 aB | 3.0 ± 0.2 bB | 1.74 ± 0.05 aA | 6.4 ± 1.3 bA | 1.637 ± 0.007 aA | 1.80 ± 0.14 aA | 1.86 ± 0.08 aA |
Sinapic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-O-Caffeoylquinic | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-Hydroxybenzoic acid | n.d. | 4.5 ± 1.4 a | 5.5 ± 0.9 a | 7.4 ± 0.4 a | n.d. | n.d. | n.d. | n.d. |
Vanillic acid | 6.2 ± 1.2 a | 18 ± 3 b | 20 ± 2 b | 24 ± 2 b | traces | traces | traces | traces |
Ferulic acid | traces | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
trans-Cinnamic acid | n.d. | 1.6 ± 0.3 aA | 8.9 ± 0.9 bB | 1.93 ± 0.03 aA | n.d. | 2.25 ± 0.06 aB | 5.8 ± 0.2 cA | 3.3 ± 0.3 bB |
Flavonoids | ||||||||
Rutin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Epicatechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercetin 3-glucoside | traces | traces | traces | n.d. | traces | n.d. | n.d. | n.d. |
Quercitrin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Apigenin-7-glucoside | n.d. | 2.61 ± 0.09 aB | 5.4 ± 0.6 bB | 3.23 ± 0.06 aA | n.d. | 2.33 ± 0.03 aA | 3.8 ± 0.4 cA | 3.13 ± 0.15 bA |
Quercetin | n.d. | n.d. | n.d. | n.d. | traces | traces | traces | traces |
Naringenin | n.d. | traces | traces | traces | n.d. | traces | traces | traces |
Kaempferol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Digested (Standard) | Digested (Older Adult) | |||||||
---|---|---|---|---|---|---|---|---|
UFWQ | FWQ | FWQ-70 | FWQ-L | UFWQ | FWQ | FWQ-70 | FWQ-L | |
Phenolic acids | ||||||||
Gallic acid | 20 ± 2 a | 77 ± 7 cA | 139 ± 13 dB | 56 ± 3 bA | traces | 68 ± 8 bA | 75 ± 9 bA | 43 ± 7 aA |
Caffeic acid | 6.7 ± 0.9 b | 2.09 ± 0.09 aB | 2.7 ± 0.6 aB | traces | traces | 0.83 ± 0.06 aA | 0.88 ± 0.02 aA | traces |
p-Coumaric acid | 2.9 ± 0.9 A | n.d. | traces | traces | 6.8 ± 1.0 B | n.d. | traces | traces |
Sinapic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-O-Caffeoylquinic | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-Hydroxybenzoic acid | n.d. | traces | n.d. | n.d. | n.d. | traces | n.d. | n.d. |
Vanillic acid | 16 ± 2 bB | 3.5 ± 0.4 aA | 5.0 ± 0.4 aA | 3.1 ± 0.3 aA | 8.3 ± 0.9 cA | 2.93 ± 0.02 aA | 4.1448 ± 0.0014 bA | 3.0 ± 0.4 aA |
Ferulic acid | 9.0 ± 1.0 bA | traces | 1.68 ± 0.12 aA | traces | 8.6 ± 0.7 bA | traces | 1.699 ± 0.004 aA | traces |
trans-Cinnamic acid | traces | 1.3 ± 0.2 bA | 2.95 ± 0.05 cA | 0.74 ± 0.05 aA | traces | 2.14 ± 0.08 bB | 3.69 ± 0.02 cB | 1.87 ± 0.10 aB |
Flavonoids | ||||||||
Rutin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Epicatechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercetin 3-glucoside | 4.5 ± 1.0 a | 3.162 ± 0.014 a | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercitrin | 6.2 ± 0.3 abA | 6.7 ± 0.9 bB | 6.60 ± 0.08 abA | 5.3 ± 0.4 aA | 6.8 ± 1.7 bA | 3.51 ± 0.10 aA | 5.9 ± 0.7 abA | 4.0 ± 1.1 abA |
Apigenin-7-glucoside | 2.23 ± 0.04 a | 2.62 ± 0.08 aA | 9.3 ± 0.4 cB | 3.43 ± 0.14 bB | n.d. | 2.33 ± 0.03 bA | 8.40 ± 0.03 cA | 1.99 ± 0.04 aA |
Quercetin | traces | traces | traces | traces | traces | traces | traces | traces |
Naringenin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Kaempferol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Digested (Standard) | Digested (Older Adult) | |||||||
---|---|---|---|---|---|---|---|---|
UFBQ | FBQ | FBQ-70 | FBQ-L | UFBQ | FBQ | FBQ-70 | FBQ-L | |
Phenolic acids | ||||||||
Gallic acid | 30 ± 4 aB | 21 ± 3 aB | 42 ± 2 bB | 39 ± 3 bB | 15 ± 2 aA | 16.03 ± 0.18 aA | 29.81 ± 0.12 bA | 27.7 ± 2.0 bA |
Caffeic acid | 2.08 ± 0.18 A | n.d. | n.d. | n.d. | 1.87 ± 0.06 A | n.d. | n.d. | n.d. |
p-Coumaric acid | traces | traces | traces | traces | 1.97 ± 0.06 b | traces | traces | 1.30 ± 0.07 a |
Sinapic acid | 15 ± 3 bA | 1.29 ± 0.17 aA | traces | 2.19 ± 0.03 aB | 32 ± 3 bB | 1.34 ± 0.11 aA | traces | 1.64 ± 0.12 aA |
4-O-Caffeoylquinic | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
4-Hydroxybenzoic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Vanillic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Ferulic acid | 4.9 ± 0.4 A | traces | traces | traces | 8.79 ± 0.04 B | traces | traces | traces |
trans-Cinnamic acid | traces | traces | traces | traces | traces | traces | traces | traces |
Flavonoids | ||||||||
Rutin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Epicatechin | traces | n.d. | n.d. | n.d. | traces | traces | traces | traces |
Quercetin 3-glucoside | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercitrin | 10.0 ± 1.0 bA | 3.7 ± 0.4 aA | 5 ± 3 abA | 8.71 ± 0.11 abB | 11.5 ± 1.3 bA | 6.95 ± 0.07 aB | 6.030 ± 0.009 aA | 5.4 ± 0.3 aA |
Apigenin-7-glucoside | n.d. | 2.23 ± 0.13 aA | 3.6 ± 0.5 bA | 3.92 ± 0.02 bB | n.d. | 3.0 ± 0.3 aA | 3.2 ± 0.4 aA | 2.9 ± 0.3 aA |
Quercetin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Naringenin | n.d. | 1.58 ± 0.18 aA | 2.6 ± 0.3 bA | 3.04 ± 0.08 bB | n.d. | 2.77 ± 0.08 aB | 2.33 ± 0.15 aA | 2.26 ± 0.10 aA |
Kaempferol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Antioxidant Activity | APCI * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ABTS and ABTS Index | DPPH and DPPH Index | FRAP and FRAP Index | ||||||||||
Undigested | Digested (Standard) | Digested (Older Adult) | Undigested | Digested (Standard) | Digested (Older Adult) | Undigested | Digested (Standard) | Digested (Older Adult) | Undig. | Standard | Older Adult | |
Pardina Lentil | ||||||||||||
UFPL | 9.5 ± 0.4 dA (100.0) | 11.5 ± 0.3 aB (84.0) | 11.6 ± 0.5 abB (92.3) | 2.07 ± 0.09 cA (100.0) | 2.29 ± 0.08 cB (100.0) | 2.51 ± 0.09 cC (100.0) | 7.6 ± 0.2 bB (100.0) | 4.1 ± 0.4 cA (100.0) | 3.79 ± 0.18 cA (100.0) | 100.0 | 94.7 | 97.4 |
FPL | 5.7 ± 0.5 cA (60.7) | 12.8 ± 0.4 bC (93.2) | 11.4 ± 0.2 abB (90.9) | 0.64 ± 0.04 bC (30.8) | 0.53 ± 0.04 aB (22.9) | 0.44 ± 0.05 aA (17.5) | 0.31 ± 0.02 aA (4.1) | 1.8 ± 0.2 aC (43.2) | 1.35 ± 0.11 aB (35.6) | 31.9 | 53.1 | 48.0 |
FPL-70 | 3.91 ± 0.16 bA (41.4) | 13.7 ± 0.5 bB (100.0) | 12.5 ± 1.2 bB (100.0) | 0.516 ± 0.010 aA (25.0) | 0.88 ± 0.04 bC (38.4) | 0.76 ± 0.06 bB (30.2) | 0.351 ± 0.007 aA (4.6) | 2.60 ± 0.14 bB (62.7) | 2.38 ± 0.19 bB (62.8) | 23.7 | 67.0 | 64.3 |
FPL-L | 3.20 ± 0.04 aA (33.9) | 11.8 ± 0.8 aB (85.7) | 11.0 ± 0.5 aB (87.9) | 0.502 ± 0.014 aA (24.3) | 0.83 ± 0.05 bC (36.1) | 0.70 ± 0.05 bB (27.8) | 0.31 ± 0.02 aA (4.1) | 2.54 ± 0.11 bB (61.3) | 2.3 ± 0.2 bB (61.3) | 20.7 | 61.0 | 59.0 |
Castellana Lentil | ||||||||||||
UFCL | 8.4 ± 0.4 cA (100.0) | 14.0 ± 1.4 aB (80.7) | 12.2 ± 1.5 aB (70.5) | 1.634 ± 0.015 bA (72.0) | 1.65 ± 0.05 cA (100.0) | 1.78 ± 0.16 cA (100.0) | 8.3 ± 0.2 dB (100.0) | 3.2 ± 0.4 cA (70.2) | 3.02 ± 0.06 cA (67.9) | 90.7 | 83.6 | 79.5 |
FCL | 2.50 ± 0.09 aA (29.9) | 16.9 ± 1.3 abC (97.2) | 14.3 ± 1.4 aB (82.7) | 2.27 ± 0.13 cB (100.0) | 0.25 ± 0.04 aA (15.0) | 0.213 ± 0.017 aA (11.9) | 1.10 ± 0.03 aC (13.4) | 0.89 ± 0.02 aB (19.8) | 0.77 ± 0.05 aA (17.4) | 47.7 | 44.0 | 37.3 |
FCL-70 | 6.2 ± 0.2 bA (73.9) | 17.4 ± 1.8 bB (100.0) | 17.2 ± 1.5 bB (100.0) | 1.71 ± 0.02 bA (75.1) | 1.64 ± 0.10 cA (99.3) | 1.55 ± 0.10 bA (87.1) | 7.0 ± 0.3 cB (85.3) | 4.50 ± 0.15 dA (100.0) | 4.45 ± 0.11 dA (100.0) | 78.1 | 99.8 | 95.7 |
FCL-L | 2.32 ± 0.16 aA (27.7) | 14.5 ± 1.7 abB (83.5) | 13.7 ± 1.7 aB (79.5) | 1.093 ± 0.016 aC (48.2) | 0.39 ± 0.04 bB (23.4) | 0.323 ± 0.014 aA (18.1) | 2.14 ± 0.05 bC (25.9) | 1.38 ± 0.07 bB (30.7) | 1.13 ± 0.13 bA (25.3) | 33.9 | 45.9 | 41.0 |
White Quinoa | ||||||||||||
UFWQ | 1.48 ± 0.08 bA (64.7) | 8.20 ± 1.14 aB (64.5) | 7.1 ± 0.6 aB (61.5) | 1.070 ± 0.005 cC (80.2) | 0.48 ± 0.04 cB (100.0) | 0.23 ± 0.02 bA (75.0) | 1.53 ± 0.05 cB (81.5) | 1.22 ± 0.14 cA (100.0) | 1.70 ± 0.03 cB (100.0) | 75.5 | 88.2 | 78.8 |
FWQ | 1.87 ± 0.08 cA (81.7) | 10.1 ± 1.2 abB (79.4) | 9.1 ± 1.2 aB (78.5) | 1.334 ± 0.012 dB (100.0) | 0.127 ± 0.008 aA (26.4) | 0.119 ± 0.011 aA (38.5) | 0.47 ± 0.03 aB (24.9) | 0.34 ± 0.05 aA (27.8) | 0.53 ± 0.07 aB (31.3) | 68.9 | 44.5 | 49.5 |
FWQ-70 | 2.287 ± 0.006 dA (100.0) | 12.7 ± 1.3 cB (100.0) | 11.6 ± 1.8 bB (100.0) | 0.80 ± 0.04 aB (60.3) | 0.37 ± 0.02 bA (76.2) | 0.31 ± 0.04 cA (100.0) | 1.88 ± 0.09 dB (100.0) | 1.05 ± 0.04 bA (86.2) | 1.15 ± 0.16 bA (67.7) | 86.8 | 87.5 | 89.2 |
FWQ-L | 1.12 ± 0.04 aA (49.1) | 10.8 ± 1.0b cC (84.5) | 8.1 ± 0.8 aB (69.7) | 1.00 ± 0.03 bB (74.8) | 0.104 ± 0.009 aA (21.6) | 0.093 ± 0.013 aA (30.3) | 0.63 ± 0.03 bB (33.3) | 0.40 ± 0.02 aA (32.5) | 0.49 ± 0.08 aA (28.7) | 52.4 | 46.2 | 42.9 |
Black Quinoa | ||||||||||||
UFBQ | 2.48 ± 0.03 cA (100.0) | 10.1 ± 0.7 aC (99.0) | 7.3 ± 0.6 bB (99.4) | 0.88 ± 0.03 bB (63.6) | 0.69 ± 0.04 dA (100.0) | 0.63 ± 0.03 dA (100.0) | 2.74 ± 0.04 dC (100.0) | 1.7 ± 0.2 cA (100.0) | 2.1 ± 0.3 bB (100.0) | 87.9 | 99.7 | 99.8 |
FBQ | 1.69 ± 0.10 bA (68.2) | 9.6 ± 0.4 aC (94.1) | 6.7 ± 0.7 abB (90.8) | 1.38 ± 0.02 dB (100.0) | 0.25 ± 0.02 bA (35.5) | 0.26 ± 0.03 cA (40.9) | 0.52 ± 0.02 aA (19.1) | 0.42 ± 0.03 aA (25.1) | 0.71 ± 0.09 aB (34.3) | 62.4 | 51.6 | 55.3 |
FBQ-70 | 1.68 ± 0.06 bA (67.8) | 10.2 ± 0.5 aC (100.0) | 7.4 ± 0.2 bB (100.0) | 0.666 ± 0.014 aC (48.3) | 0.36 ± 0.06 cB (52.4) | 0.20 ± 0.02 bA (31.0) | 1.26 ± 0.04 cB (46.2) | 0.66 ± 0.08 bA (39.8) | 0.74 ± 0.05 aA (35.5) | 54.1 | 64.1 | 55.5 |
FBQ-L | 1.33 ± 0.05 aA (53.7) | 9.8 ± 1.2 aC (96.1) | 5.5 ± 1.0 aB (74.6) | 0.96 ± 0.06 cB (69.6) | 0.13 ± 0.02 aA (19.4) | 0.139 ± 0.009 aA (22.0) | 0.82 ± 0.05 bB (30.0) | 0.49 ± 0.08 abA (29.7) | 0.58 ± 0.09 aA (27.9) | 51.1 | 48.4 | 41.5 |
Magnesium (Mg) | Calcium (Ca) | Iron (Fe) | |||||||
---|---|---|---|---|---|---|---|---|---|
Undigested | Digested (Standard) | Digested (Older Adult) | Undigested | Digested (Standard) | Digested (Older Adult) | Undigested | Digested (Standard) | Digested (Older Adult) | |
Pardina Lentil | |||||||||
UFPL | 112.6 ± 0.9 aB | 76 ± 4 aA | 71 ± 3 aA | 62 ± 2 aB | 43 ± 4 cA | 44.1 ± 0.6 bA | 11.3 ± 0.3 cB | 1.60 ± 0.05 aA | 1.05 ± 0.14 aA |
FPL | 125 ± 3 bB | 78 ± 2 aA | 70 ± 3 aA | 90.5 ± 0.9 cB | 22 ± 3 bA | 15 ± 3 aA | 10.05 ± 0.04bC | 3.168 ± 0.004 cB | 2.45 ± 0.02 bA |
FPL-70 | 112 ± 2 aB | 74 ± 5 aA | 75 ± 10 aA | 79.6 ± 0.4 bB | 12 ± 2 aA | 12 ± 4 aA | 8.92 ± 0.05 aB | 2.6 ± 0.3 bA | 2.2 ± 0.3 bA |
FPL-L | 109 ± 2 aB | 71 ± 7 aA | 76.4 ± 0.6 aA | 80 ± 2 bB | 44 ± 5 cA | 52 ± 2 cA | 8.9 ± 0.3 aB | 2.60 ± 0.02 bA | 2.78 ± 0.08 cA |
Castellana Lentil | |||||||||
UFCL | 122 ± 2 aB | 82 ± 7 aA | 84.8 ± 0.9 aA | 64.1 ± 0.9 aB | 48 ± 6 aA | 43 ± 4 aA | 9.04 ± 0.07 aB | 1.4 ± 0.3 aA | 1.5 ± 0.3 aA |
FCL | 127 ± 4 abB | 93 ± 5 abA | 96 ± 2 cA | 94.0 ± 1.0 bB | 61 ± 6 bA | 57 ± 9 bA | 8.9 ± 0.2 aC | 5.8 ± 1.0 bB | 4.43 ± 0.03 cA |
FCL-70 | 142 ± 4 cC | 102 ± 2 bB | 91 ± 2 bA | 102 ± 5 bB | 58 ± 3 bA | 43 ± 6 aA | 9.2 ± 0.3 aC | 5.0 ± 0.2 bB | 3.8 ± 0.2 bA |
FCL-L | 135 ± 3 bcC | 107 ± 10 bB | 92.5 ± 0.4 bcA | 101 ± 6 bB | 49 ± 5 aA | 54 ± 5 abA | 8.8 ± 0.2 aB | 6.0 ± 1.4 bA | 4.56 ± 0.12 cA |
White Quinoa | |||||||||
UFWQ | 218 ± 2 aB | 146 ± 3 aA | 139 ± 6 abA | 63 ± 2 aB | 32.1 ± 1.5 aA | 38 ± 3 aA | 3.67 ± 0.02 bB | 3.3 ± 0.2 bA | 3.1 ± 0.6 aA |
FWQ | 232 ± 10 aB | 163.7 ± 1.3 bA | 157 ± 10 bA | 81 ± 4 bB | 72 ± 7 cB | 47 ± 4 cA | 3.45 ± 0.02 aB | 2.4 ± 0.2 aA | 2.0 ± 0.5 aA |
FWQ-70 | 261 ± 3 bB | 163 ± 7 bA | 156 ± 3 bA | 79 ± 3 bC | 65 ± 6 cB | 45 ± 3 bA | 4.54 ± 0.07 cB | 3.50 ± 0.04 bA | 2.9 ± 0.5 aA |
FWQ-L | 248.3 ± 1.3 bC | 166 ± 5 bB | 133 ± 11 aA | 78.4 ± 0.6 bB | 49.8 ± 0.7 bA | 54 ± 3 cA | 3.78 ± 0.13 bB | 2.9 ± 0.3 abA | 2.2 ± 0.6 aA |
Black Quinoa | |||||||||
UFBQ | 210 ± 8 aB | 111 ± 10 aA | 135 ± 6 aA | 55 ± 2 aB | 36 ± 4 aA | 36 ± 5 aA | 4.3 ± 0.3 abB | 2.9 ± 0.4 bA | 3.3 ± 0.2 bA |
FBQ | 212.0 ± 1.4 aB | 136 ± 2 abA | 135 ± 11 aA | 63 ± 2 bA | 56 ± 5 bA | 60 ± 10 cA | 3.86 ± 0.03 aB | 1.9 ± 0.2 aA | 1.54 ± 0.09 aA |
FBQ-70 | 217 ± 12 aB | 145 ± 2 bA | 138.9 ± 0.7 aA | 62 ± 2 bA | 57 ± 12 bA | 41 ± 4 bA | 4.5 ± 0.2 bB | 2.2 ± 0.6 bA | 1.6 ± 0.3 aA |
FBQ-L | 220 ± 7 aB | 130 ± 16 abA | 144 ± 2 aA | 66 ± 4 bA | 58 ± 10 bA | 42 ± 5 bA | 4.4 ± 0.2 abB | 1.7 ± 0.3 aA | 1.8 ± 0.3 aA |
Digestive Stage | Digestion Models | |
---|---|---|
Healthy Adult (Standard) | Older Adult | |
Oral stage | Amylase (75 U/mL) | Amylase (112.5 U/mL) |
pH 7 | pH 7 | |
2 min | 2 min | |
Gastric stage | Pepsin (2000 U/mL) | Pepsin (1200 U/mL) |
pH 3 | pH 3.7 | |
2 h | 2h | |
Intestinal stage | Pancreatin (100 U/mL) | Pancreatin (80 U/mL) |
Bile salts (10 mM) | Bile salts (7 mM) | |
pH 7 | pH 7 | |
2 h | 2 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-García, J.; Muñoz-Pina, S.; García-Hernández, J.; Tárrega, A.; Heredia, A.; Andrés, A. In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules 2023, 28, 7298. https://doi.org/10.3390/molecules28217298
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Tárrega A, Heredia A, Andrés A. In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules. 2023; 28(21):7298. https://doi.org/10.3390/molecules28217298
Chicago/Turabian StyleSánchez-García, Janaina, Sara Muñoz-Pina, Jorge García-Hernández, Amparo Tárrega, Ana Heredia, and Ana Andrés. 2023. "In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa" Molecules 28, no. 21: 7298. https://doi.org/10.3390/molecules28217298
APA StyleSánchez-García, J., Muñoz-Pina, S., García-Hernández, J., Tárrega, A., Heredia, A., & Andrés, A. (2023). In Vitro Digestion Assessment (Standard vs. Older Adult Model) on Antioxidant Properties and Mineral Bioaccessibility of Fermented Dried Lentils and Quinoa. Molecules, 28(21), 7298. https://doi.org/10.3390/molecules28217298