Therapies from Thiopeptides
Abstract
:1. Introduction
2. Synthetic Efforts toward Representative Thiopeptide Antibiotics
3. From Micrococcins to Masitinib® and Beyond
4. New Micrococcin-Based Antibiotics
5. Epilogue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Just-Baringo, X.; Albericio, F.; Álvarez, M. Thiopeptide Antibiotics: Retrospective and Recent Advances. Mar. Drugs. 2014, 12, 317–351. [Google Scholar] [CrossRef] [PubMed]
- Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide Antibiotics. Chem. Rev. 2005, 105, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.J.; Bagley, M.C. The First Synthesis of Promothiocin A. Chem. Commun. 1998, 34, 2049–2050. [Google Scholar] [CrossRef]
- Bagley, M.C.; Bashford, K.E.; Hesketh, C.L.; Moody, C.J. Total Synthesis of the Thiopeptide Promothiocin A. J. Am. Chem. Soc. 2000, 122, 3301–3313. [Google Scholar] [CrossRef]
- Hughes, R.A.; Thompson, S.P.; Alcaraz, L.; Moody, C.J. Total Synthesis of the Thiopeptide Antibiotic Amythiamicin D. J. Am. Chem. Soc. 2005, 127, 15644–15651. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C. How Thiostrepton Was Made in the Laboratory. Angew. Chem. Int. Ed. 2012, 51, 12414–12436. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Higashibayashi, S.; Goto, T.; Kohno, M.; Satouchi, Y.; Shinko, K.; Suzuki, K.; Suzuki, S.; Tohmiya, H.; Hashimoto, K.; et al. Total Synthesis of Siomycin A: Completion of the Total Synthesis. Chem. Asian J. 2008, 3, 1013–1025. [Google Scholar] [CrossRef]
- Müller, H.M.; Delgado, O.; Bach, T. Total Synthesis of the Thiazolyl Peptide GE2270A. Angew. Chem. Int. Ed. 2007, 46, 4771–4774. [Google Scholar] [CrossRef]
- Ciufolini, M.A.; Lefranc, D. Micrococcin P1: Structure, Biology and Synthesis. Nat. Prod. Rep. 2010, 27, 330–342. [Google Scholar] [CrossRef]
- Akasapu, S.; Hinds, A.B.; Powell, W.C.; Walczak, M.A. Total Synthesis of Micrococcin P1 and Thiocillin I enabled by Mo(VI) Catalyst. Chem. Sci. 2019, 10, 1971–1975. [Google Scholar] [CrossRef]
- Christy, M.P.; Johnson, T.; McNerlin, C.D.; Woodard, J.; Nelson, A.T.; Lim, B.; Hamilton, T.L.; Freiberg, K.M.; Siegel, D. Total Synthesis of Micrococcin P1 Through Scalable Thiazole Forming Reactions of Cysteine Derivatives and Nitriles. Org. Lett. 2020, 22, 2365–2370. [Google Scholar] [CrossRef] [PubMed]
- Just-Baringo, X.; Bruno, P.; Ottesen, L.K.; Cañedo, L.M.; Albericio, F.; Álvarez, M. Total Synthesis and Stereochemical Assignment of Baringolin. Angew. Chem. Int. Ed. 2013, 52, 7818–7821. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-J.; Ciufolini, M.A. A Route to the Heterocyclic Cluster of the E-Series of Thiopeptide Antibiotics. J. Org. Chem. 2015, 80, 4184–4188. [Google Scholar] [CrossRef]
- Wojtas, K.P.; Riedrich, M.; Lu, J.-Y.; Winter, P.; Winkler, T.; Walter, S.; Arndt, H.-D. Total Synthesis of Nosiheptide. Angew. Chem. Int. Ed. 2016, 55, 9772–9776. [Google Scholar] [CrossRef] [PubMed]
- Discussion: Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Bycroft, B.W.; Gowland, M.S. The Structure of the Highly Modified Peptide Antibiotics Micrococcin P1 and P2. J. Chem. Soc. Chem. Commun. 1978, 6, 256–258. [Google Scholar] [CrossRef]
- Shoji, J.; Kato, T.; Yoshimura, Y.; Tori, K. Structural Studies on Thiocillins I, II, and III. J. Antibiot. 1981, 29, 1126–1136. [Google Scholar] [CrossRef]
- Antimicrobial Resistance. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 9 November 2023).
- Ciufolini, M.A.; Shen, Y.C. Studies toward Thiostrepton Antibiotics: Assembly of the Central Pyridine-Thiazole Cluster of Micrococcins. J. Org. Chem. 1997, 62, 3804–3805. [Google Scholar] [CrossRef]
- Abdella, A.M.; Abdelmoniem, A.M.; Abdelhamid, I.A.; Elwahy, A.H.M. Synthesis of Heterocyclic Compounds via Michael and Hantzsch Reactions. J. Heterocycl. Chem. 2020, 57, 1476–1523. [Google Scholar] [CrossRef]
- Stork, G.; Ganem, B. alpha.-Silylated Vinyl Ketone. A new Class of Reagents for the Annelation of Ketones. J. Am. Chem. Soc. 1973, 95, 6152–6153. [Google Scholar] [CrossRef]
- Boeckman, R.K., Jr.; Blum, D.M.; Ganem, B. 3-Trimethylsilyl-3-buten-2-one as Michael Acceptor for Conjugate Addition Annelation: Cis-4,4a,5,6,7,8-Hexahydro-4a,5-dimethyl-2(3H)-naphthalenone. Org. Synth. 1978, 58, 158–162. [Google Scholar]
- Ciufolini, M.A.; Shen, Y.C. Synthesis of the Bycroft-Gowland Structure of Micrococcin P1. Org. Lett. 1999, 1, 1843–1846. [Google Scholar] [CrossRef] [PubMed]
- Lefranc, D.; Ciufolini, M.A. Total Synthesis and Stereochemical Assignment of Micrococcin P1. Angew. Chem. Int. Ed. 2009, 48, 4198–4201. [Google Scholar] [CrossRef]
- Aulakh, V.S.; Ciufolini, M.A. An Improved Synthesis of Pyridine-Thiazole Cores of Thiopeptide Antibiotics. J. Org. Chem. 2009, 74, 5750–5753. [Google Scholar] [CrossRef] [PubMed]
- Bagley, M.C.; Dale, J.W.; Jenkins, R.L.; Bower, J. First Synthesis of an Amythiamicin Pyridine Cluster. Chem. Commun. 2004, 35, 102–103. [Google Scholar] [CrossRef]
- Bagley, M.C.; Chapaneri, K.; Dale, J.W.; Xin, X.; Bower, J. One-Pot Multistep Bohlmann−Rahtz Heteroannulation Reactions: Synthesis of Dimethyl Sulfomycinamate. J. Org. Chem. 2005, 70, 1389–1399. [Google Scholar] [CrossRef]
- Bohlmann, F.; Rahtz, D. Ueber Eine Neue Pyrdinsynthese. Chem. Ber. 1957, 90, 2265–2272. [Google Scholar] [CrossRef]
- Bagley, M.C.; Glover, C.; Merritt, E.A. The Bohlmann-Rahtz Pyridine Synthesis: From Discovery to Applications. Synlett 2007, 2459–2482. [Google Scholar] [CrossRef]
- Aulakh, V.S.; Ciufolini, M.A. Total Synthesis and Complete Structural Assignment of Thiocillin I. J. Am. Chem. Soc. 2011, 133, 5900–5904. [Google Scholar] [CrossRef]
- Johnson, T.C.; Christy, M.P.; Siegel, D. Synthesis of the 26-Membered Core of Thiopeptide Natural Products by Scalable Thiazole-Forming Reactions of Cysteine Derivatives and Nitriles. Synthesis 2021, 53, 498–508. [Google Scholar]
- Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95, 2457–2483. [Google Scholar] [CrossRef]
- Hwang, H.-J.; Son, Y.-J.; Kim, D.; Lee, J.; Shin, Y.-J.; Kwon, Y.; Ciufolini, M.A. Diversity-Oriented Routes to Thiopeptide Antibiotics: Total Synthesis and Biological Evaluation of Micrococcin P2. Org. Biomol. Chem. 2022, 20, 1893–1899. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.afirmm.com (accessed on 9 November 2023).
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front. Immunol. 2016, 6, 620. [Google Scholar] [CrossRef]
- Cohen, P.; Cross, D.; Janne, P.A. Kinase Drug Discovery 20 Years After Imatinib: Progress and Future Directions. Nat. Rev. Drug Discov. 2021, 20, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, P.; Letard, S.; Ciufolini, M.; Gros, L.; Humbert, M.; Casteran, N.; Borge, L.; Hajem, B.; Lermet, A.; Sippl, W.; et al. Masitinib (AB1010), a Potent and Selective Tyrosine Kinase Inhibitor Targeting KIT. PLoS ONE 2010, 4, e7258. [Google Scholar] [CrossRef] [PubMed]
- Information available on the AB Science Website. Available online: https://www.ab-science.com (accessed on 9 November 2023).
- Hammam, K.; Saez-Ayala, M.; Rebuffet, E.; Gros, L.; Lopez, S.; Hajem, B.; Humbert, M.; Baudelet, E.; Audebert, S.; Betzi, S.; et al. Dual Protein Kinase and Nucleoside Kinase Modulators for Rationally Designed Polypharmacology. Nat. Commun. 2017, 8, 1420. [Google Scholar] [CrossRef]
- Saez-Ayala, M.; Hoffer, L.; Abel1, S.; Ben Yaala, K.; Sicard, B.; Andrieu, G.P.; Latiri, M.; Davison, E.K.; Ciufolini, M.A.; Bremond, P.; et al. From a Drug Repositioning to a Structure-Based Drug Design Approach to Tackle Acute Lymphoblastic Leukemia. Nat. Commun. 2023, 14, 3079. [Google Scholar] [CrossRef]
- Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Ivanovna Maltseva, K.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; et al. Masitinib is a Broad Coronavirus 3CL Inhibitor that Blocks Replication of SARS-CoV-2. Science 2021, 373, 931–936. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef]
- Umansky, A.A.; Fortier, L.C. The Long and Sinuous Road to Phage-Based Therapy of Clostridioides difficile Infections. Front. Med. 2023, 10, 1259427. [Google Scholar] [CrossRef] [PubMed]
- LaMarche, M.J.; Leeds, J.A.; Amaral, A.; Brewer, J.T.; Bushell, S.M.; Deng, G.; Dewhurst, J.M.; Ding, J.; Dzink-Fox, J.; Gamber, G.; et al. Discovery of LFF571: An Investigational Agent for Clostridium difficile Infection. J. Med. Chem. 2012, 55, 2376–2387. [Google Scholar] [CrossRef] [PubMed]
- LaMarche, M.J.; Leeds, J.A.; Amaral, K.; Brewer, J.T.; Bushell, S.M.; Dewhurst, J.M.; Dzink-Fox, J.; Gangl, E.; Goldovitz, J.; Jain, A.; et al. Antibacterial Optimization of 4-Aminothiazolyl Analogues of the Natural Product GE 2270 A: Identification of the Cycloalkylcarboxylic Acids. J. Med. Chem. 2011, 54, 8099–8109. [Google Scholar] [CrossRef] [PubMed]
- Mullane, K.; Lee, C.; Bressler, A.; Buitrago, M.; Weiss, K.; Dabovic, K.; Praestgaard, J.; Leeds, J.A.; Blais, J.; Pertel, P. Multicenter, Randomized Clinical Trial to Compare the Safety and Efficacy of LFF571 and Vancomycin for Clostridium difficile Infections. Antimicrob. Agents Chemother. 2015, 59, 1435–1440. [Google Scholar] [CrossRef]
- Chan, D.C.K.; Burrows, L.L. Thiopeptides: Antibiotics with Unique Chemical Structures and Diverse Biological Activities. J. Antibiot. 2021, 74, 161–175. [Google Scholar] [CrossRef]
- Vinogradov, A.A.; Suga, H. Introduction to Thiopeptides: Biological Activity, Biosynthesis, and Strategies for Functional Reprogramming. Cell Chem. Biol. 2020, 27, 1032–1051. [Google Scholar] [CrossRef]
- Harms, J.M.; Wilson, D.N.; Schluenzen, F.; Connell, S.R.; Stachelhaus, T.; Zaborowska, Z.; Spahn, C.M.T.; Fucini, P. Translational Regulation via L11: Molecular Switches on the Ribosome Turned on and off by Thiostrepton and Micrococcin. Mol. Cell 2008, 30, 26–38. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, D.; Steitz, T.A.; Polikanov, Y.S.; Gagnon, M.G. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu. Rev. Biochem. 2018, 87, 18.1–18.28. [Google Scholar] [CrossRef]
- Son, Y.-J.; Kim, Y.R.; Oh, S.H.; Jung, S.; Ciufolini, M.A.; Hwang, H.-J.; Kwak, J.-H.; Pai, H. Micrococcin P2 Targets Clostridioides difficile. J. Nat. Prod. 2022, 85, 1928–1935. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.-R.; Hwang, H.-J.; Ciufolini, M.A.; Lee, J.; Lee, H.; Clovis, S.; Jung, S.; Oh, S.-H.; Son, Y.-J.; et al. Nitro-Group-Containing Thiopeptide Derivatives as Promising Agents to Target Clostridioides difficile. Pharmaceuticals 2022, 15, 623. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Shyaka, C.; Kwak, J.H.; Pai, H.; Rho, M.; Ciufolini, M.A.; Han, M.; Park, J.-H.; Kim, Y.-R.; et al. Identification of Micrococcin P2-Derivatives as Antibiotic Candidates Against Two Gram-Positive Pathogens. J. Med. Chem. 2023, 66, 14263–14277. Available online: https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c01309 (accessed on 9 November 2023). [CrossRef] [PubMed]
Antibiotic | MIC (μg/mL) |
---|---|
vancomycin | 1.0 |
2 | 1.0 |
57 | 0.125 |
58 | 0.125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, H.-J.; Ciufolini, M.A. Therapies from Thiopeptides. Molecules 2023, 28, 7579. https://doi.org/10.3390/molecules28227579
Hwang H-J, Ciufolini MA. Therapies from Thiopeptides. Molecules. 2023; 28(22):7579. https://doi.org/10.3390/molecules28227579
Chicago/Turabian StyleHwang, Hee-Jong, and Marco A. Ciufolini. 2023. "Therapies from Thiopeptides" Molecules 28, no. 22: 7579. https://doi.org/10.3390/molecules28227579
APA StyleHwang, H. -J., & Ciufolini, M. A. (2023). Therapies from Thiopeptides. Molecules, 28(22), 7579. https://doi.org/10.3390/molecules28227579