Core–Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Chemicals
3.2. Preparation of Materials
3.3. Materials Characterization
3.4. Cells Fabrication and Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, B.; Liu, H.; Zhang, X.; Zhang, P.; Zhu, Q.; Du, H.; Wang, L.; Zhang, R.; Xu, B. MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. 2021, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Zou, K.; Zou, G.; Hou, H.; Ji, X. Quinone/ester-based oxygen functional group-incorporated full carbon Li-ion capacitor for enhanced performance. Nanoscale 2020, 12, 3677–3685. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Xia, X.; Shi, F.; Zhan, J.; Tu, J.; Fan, H.J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Ye, B.; Cai, M.; Bai, Y.; Xie, M.; Sun, X.; Lv, Z.; Huang, F. Superwettable high-voltage LiCoO2 for low-temperature lithium-ion batteries. ACS Energy Lett. 2023, 8, 881–888. [Google Scholar] [CrossRef]
- Xu, C.; Feng, K.; Yang, X.; Cheng, Y.; Zhao, X.; Yang, L.; Yin, S. In-situ construction of metallic oxide (VNbO5) on VNbCTx MXene for enhanced Li-ion batteries performance. J. Energy Storage 2023, 69, 107888. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Ren, Y.; Gu, S.; Wang, Q.; Li, H.; Yue, K.; Gao, T.; Zhou, G. NiFe2V2O8@N-doped carbon yolk-double shell spheres for efficient lithium storage. Chem. Eng. J. 2023, 454, 140045. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Wang, Y.; Gong, Q.; Gu, S.; Gao, T.; Sun, X.; Zhou, G. Self-template formation of porous yolk-shell structure Mo-doped NiCo2O4 toward enhanced lithium storage performance as anode material. J. Mater. Sci. Technol. 2022, 102, 186–194. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Y.; Hao, Y.; Zheng, Z.; Kong, S.; Zhang, L.; Yang, X. Self-supported selenium doped Fe2P hierarchical microsphere arrays enabling high performance sodium ion batteries. J. Alloys Compd. 2022, 918, 165647. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, T.; Wang, Z.; Mao, T.; Hong, Z.; Han, J.; Peng, D.-L.; Yue, G. Van der Waals Forces between S and P Ions at the CoP-C@MoS2/C Heterointerface with Enhanced Lithium/Sodium Storage. Adv. Funct. Mater. 2023, 33, 2302830. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Dai, Y.; Ren, Y.; Gao, T.; Zhou, G. Bimetallic SnS2/NiS2@S-rGO nanocomposite with hierarchical flower-like architecture for superior high rate and ultra-stable half/full sodium-ion batteries. Chem. Eng. J. 2022, 427, 131784. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Liu, X.; Chen, C.; Xu, Z.; Liu, P. Zeolitic imidazolate frameworks derived ZnS/Co3S4 composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. Carbon 2020, 157, 244–254. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, M.; Wu, F.; Su, Z.; He, L.; Zhou, P.; Xu, P.; Zou, R.; Wang, X.; Huang, Q. Honeycomb-structured α-MnS@N-HC nanocomposite fabricated by sol-gel pyrolysis blowing method and its high-performance lithium storage. Mater. Today Energy 2021, 22, 100876. [Google Scholar] [CrossRef]
- Lin, Y.; Qiu, Z.; Li, D.; Ullah, S.; Hai, Y.; Xin, H.; Liao, W.; Yang, B.; Fan, H.; Xu, J.; et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater. 2018, 11, 67–74. [Google Scholar] [CrossRef]
- Chiu, J.-M.; Chou, T.-C.; Wong, D.P.; Lin, Y.-R.; Shen, C.-A.; Hy, S.; Hwang, B.-J.; Tai, Y.; Wu, H.-L.; Chen, L.-C.; et al. A synergistic “cascade” effect in copper zinc tin sulfide nanowalls for highly stable and efficient lithium-ion storage. Nano Energy 2018, 44, 438–446. [Google Scholar] [CrossRef]
- Nong, Y.; Zhang, M.; Li, Q.; Pan, Q.; Huang, Y.; Wang, H.; Zheng, F.; Li, Q. Carbon coated bimetallic sulfides Co9S8/ZnS heterostructures microrods as advanced anode materials for lithium-ion batteries. J. Taiwan Inst. Chem. Eng. 2022, 141, 104601. [Google Scholar] [CrossRef]
- Jin, R.; Wang, G.; Gao, S.; Kang, H.; Chen, S. NiS1.03@NiMoS4 nanocrystals encapsulated into the mesoporous carbon microspheres for high performance lithium ion batteries. J. Electroanal. Chem. 2021, 895, 115502. [Google Scholar] [CrossRef]
- Xiao, Y.; Hwang, J.-Y.; Belharouak, I.; Sun, Y.-K. Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure. Nano Energy 2017, 32, 320–328. [Google Scholar] [CrossRef]
- He, Z.; Guo, H.; LaCoste, J.D.; Cook, R.A.; Hussey, B.; Zhang, X.; Gang, D.D.; Hao, J.; Chen, L.; Cooke, P.; et al. Directly embedded Ni3S2/Co9S8@S-doped carbon nanofiber networks as a free-standing anode for lithium-ion batteries. Sustain. Energy Fuels 2021, 5, 166–174. [Google Scholar] [CrossRef]
- Fang, G.; Wang, Q.; Zhou, J.; Lei, Y.; Chen, Z.; Wang, Z.; Pan, A.; Liang, S. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction. ACS Nano 2019, 13, 5635–5645. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Ye, L.; Li, G. Capacity and cycle performance of lithium ion batteries employing CoxZn1−xS/Co9S8@N-doped reduced graphene oxide as anode material. Chem. Eng. J. 2021, 409, 127372. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Zhao, H.; Mao, J. Bi2Se0.5Te2.5/S, N-doped reduced graphene oxide as anode materials for high-performance Lithium ion batteries. J. Alloys Compd. 2022, 920, 166003. [Google Scholar] [CrossRef]
- Jiang, S.; Suo, H.; Zheng, X.; Zhang, T.; Lei, Y.; Wang, Y.; Lai, W.; Wang, G. Lightest metal leads to big change: Lithium-mediated metal oxides for oxygen evolution reaction. Adv. Energy Mater. 2022, 12, 2201934. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Shan, Y.; Chen, L.; Gao, G.; Zhu, X.; Cao, B.; He, X. In situ heterogeneous interface construction boosting fast ion/electron transfer for high-performances lithium/potassium storage. Energy Storage Mater. 2021, 37, 55–66. [Google Scholar] [CrossRef]
- Wang, L.; Wan, J.; Zhao, Y.; Yang, N.; Wang, D. Hollow multi-shelled structures of Co3O4 dodecahedron with unique crystal orientation for enhanced photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 2238–2241. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Luan, D.; Chen, Y.; Gao, S.; Lou, X.W. Synthesis of copper-substituted CoS2@CuxS double-shelled nanoboxes by sequential ion exchange for efficient sodium storage. Angew. Chem. Int. Ed. 2020, 59, 2644–2648. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, J.; Wang, J.; Ren, H.; Yu, R.; Gu, L.; Liu, Y.; Feng, S.; Wang, D. Hollow Multi-Shelled Structure with Metal–Organic-Framework-Derived Coatings for Enhanced Lithium Storage. Angew. Chem. Int. Ed. 2019, 131, 5320–5325. [Google Scholar] [CrossRef]
- Gui, Q.; Feng, Y.; Chen, B.; Gu, F.; Chen, L.; Meng, S.; Xu, M.; Xia, M.; Zhang, C.; Yang, J. Extrinsic-structured bimetallic-phase ternary metal phosphorus trisulfides coupled with N-doped graphitized carbon for superior electrochemical lithium storage. Adv. Energy Mater. 2021, 11, 2003553. [Google Scholar] [CrossRef]
- Peng, J.; Li, Y.; Chen, Z.; Liang, G.; Hu, S.; Zhou, T.; Zheng, F.; Pan, Q.; Wang, H.; Li, Q.; et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano 2021, 15, 11607–11618. [Google Scholar] [CrossRef]
- Aslam, M.K.; Shah, S.S.A.; Li, S.; Chen, C. Kinetically controlled synthesis of MOF nanostructures: Single-holed hollow core–shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J. Mater. Chem. A 2018, 6, 14083–14090. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Z.; Wang, J.; Bai, W.; Zhang, Y.; Liu, B. Designing of trimetallic-phase ternary metal sulfides coupled with N/S doped carbon protector for superior and safe Li/Na storage. J. Colloid Interface Sci. 2023, 638, 524–541. [Google Scholar] [CrossRef]
- Cao, L.; Li, Z.; Su, K.; Zhang, M.; Cheng, B. Rational design of hollow oxygen deficiency-enriched NiFe2O4@N/rGO as bifunctional electrocatalysts for overall water splitting. J. Energy Chem. 2021, 54, 595–603. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, C.; Cao, B.; Xu, Y.; Zhang, D.; Li, A.; Zhou, J.; Ma, Z.; Chen, X.; Song, H. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Mater. 2020, 24, 312–318. [Google Scholar] [CrossRef]
- Yang, P.; Yuan, Y.; Zhang, D.; Yang, Q.; Guo, S.; Cheng, J. Nanocapsule of MnS nanopolyhedron core@CoS nanoparticle/carbon shell@pure carbon shell as anode material for high-performance lithium storage. Molecules 2023, 28, 898. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Lv, W.; Yuan, Y.; Guo, S.; Yan, W. Bismuth-antimony alloy nanoparticles embedded in 3D hierarchical porous carbon skeleton film for superior sodium storage. Molecules 2023, 28, 6464. [Google Scholar] [CrossRef]
- Zhu, S.; Yuan, Y.; Du, P.; Zhu, M.; Chen, Y.; Guo, S. α-MnS nanoparticles in-situ anchored in 3D macroporous honeycomb carbon as high-performance anode for Li-ion batteries. Appl. Surf. Sci. 2023, 616, 156619. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhu, L.; Yang, C.; Wang, Y.; Gu, S.; Zhou, G. Core–Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance. Molecules 2023, 28, 7580. https://doi.org/10.3390/molecules28227580
Li X, Zhu L, Yang C, Wang Y, Gu S, Zhou G. Core–Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance. Molecules. 2023; 28(22):7580. https://doi.org/10.3390/molecules28227580
Chicago/Turabian StyleLi, Xiuyan, Liangxing Zhu, Chenyu Yang, Yinan Wang, Shaonan Gu, and Guowei Zhou. 2023. "Core–Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance" Molecules 28, no. 22: 7580. https://doi.org/10.3390/molecules28227580
APA StyleLi, X., Zhu, L., Yang, C., Wang, Y., Gu, S., & Zhou, G. (2023). Core–Shell Structure Trimetallic Sulfide@N-Doped Carbon Composites as Anodes for Enhanced Lithium-Ion Storage Performance. Molecules, 28(22), 7580. https://doi.org/10.3390/molecules28227580