Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of HT and HDT on EO Yield
2.2. Effect of HT and HDT on the Chemical Composition of EO
2.3. Effect of HT and HDT on the Total Antioxidant Activity (TAA) of the EO
Essential Oils | TAA (mg TE g−1 EO) | Reference |
---|---|---|
Mentha spicata L. | 61.67 | This study |
Eugenia uniflora L. | 186.9 | Costa et al. [52] |
Calendula officinalis L. | 2.94 | Ak et al. [53] |
Pinus halepensis Mill. | 0.31 | Khouja et al. [54] |
Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson | 51.9 | Barros et al. [55] |
Mentha piperita L. | 19.79 | Pavlić et al. [56] |
Cannabis sativa L., var. “Kompolti”. | 8.63 | Palmieri et al. [57] |
3. Materials and Methods
3.1. Materials
3.2. Hydrodistillation and Yield
3.3. Chemical Composition
3.4. Antioxidant Activity
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokhtarikhah, G.; Ebadi, M.-T.; Ayyari, M. Qualitative Changes of Spearmint Essential Oil as Affected by Drying Methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Brahmi, F.; Khodir, M.; Mohamed, C.; Pierre, D. Chemical composition and biological activities of Mentha species. In Aromatic and Medicinal Plants-Back to Nature, 1st ed.; El-Shemy, H., Ed.; IntechOpen: London, UK, 2017; pp. 47–79. [Google Scholar] [CrossRef]
- Mahendran, G.; Verma, S.K.; Rahman, L.-U. The Traditional Uses, Phytochemistry and Pharmacology of Spearmint (Mentha Spicata L.): A Review. J. Ethnopharmacol. 2021, 278, 114266. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Šišková, J.; Komzáková, K.; De Diego, N.; Kaffková, K.; Tarkowski, P. Phenolic compounds and biological activity of selected Mentha species. Plants 2021, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Chen, Y.; Li, Z.-J.; Li, X.; Fan, G. Bioactive Properties of the Aromatic Molecules of Spearmint (Mentha Spicata L.) Essential Oil: A Review. Food Funct. 2022, 13, 3110–3132. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Y.; Chi, P.; Liu, H.; Jing, Z.; Cao, H.; Du, Y.; Zhao, Y.; Qin, X.; Zhang, W.; et al. Essential Oils: Chemical Constituents, Potential Neuropharmacological Effects and Aromatherapy—A Review. Pharmacol. Res. Mod. Chin. Med. 2023, 6, 100210. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on Essential Oil Extraction from Aromatic and Medicinal Plants: Techniques, Performance and Economic Analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Elkharraf, S.; Farah, A.; Miguel, M.G.; El-Guendouz, S.; El Hadrami, E.M. Two Extraction Methods of Essential Oils: Conventional and Non-Conventional Hydrodistillation. J. Essent. Oil-Bear. Plants 2020, 23, 870–889. [Google Scholar] [CrossRef]
- Oliveira, A.R.d.; Jezler, C.N.; Oliveira, R.A.; Mielke, M.S.; Costa, L.C. Determinação do tempo de hidrodestilação e do horário de colheita no óleo essencial de menta. Hortic. Bras. 2012, 30, 155–159. [Google Scholar] [CrossRef]
- Rguez, S.; Msaada, K.; Daami-Remadi, M.; Chayeb, I.; Bettaieb Rebey, I.; Hammami, M.; Laarif, A.; Hamrouni-Sellami, I. Chemical Composition and Biological Activities of Essential Oils of Salvia Officinalis Aerial Parts as Affected by Diurnal Variations. Plant Biosyst. Int. J. Dealing Aspects Plant Biosyst. 2019, 153, 264–272. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Burkhardt, A.; Gawde, A.; Cantrell, C.L.; Astatkie, T.; Obour, A.E.; Zheljazkov, V.D.; Schlegel, V. Hydrodistillation Time Affects Dill Seed Essential Oil Yield, Composition, and Bioactivity. Ind. Crops Prod. 2015, 63, 190–196. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Schlegel, V. Hydrodistillation Extraction Time Effect on Essential Oil Yield, Composition, and Bioactivity of Coriander Oil. J. Oleo Sci. 2014, 63, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Kumar, A. Process optimization of conventional steam distillation system for peppermint oil extraction. Energy Sources A Recovery Util. Environ. Eff. 2022, 44, 3960–3980. [Google Scholar] [CrossRef]
- Zhao, H.; Ren, S.; Yang, H.; Tang, S.; Guo, C.; Liu, M.; Tao, Q.; Ming, T.; Xu, H. Peppermint Essential Oil: Its Phytochemistry, Biological Activity, Pharmacological Effect and Application. Biomed. Pharmacother. 2022, 154, 113559. [Google Scholar] [CrossRef]
- Bufalo, J.; Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Ciampa, L.; Jeliazkova, E. Diurnal Effects on Spearmint Oil Yields and Composition. Sci. Hortic. 2015, 182, 73–76. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors Affecting Secondary Metabolite Production in Plants: Volatile Components and Essential Oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Ramezani, S.; Ramezani, F.; Rasoul, F.; Ghasemi, M.; Fotokian, M.H. Diurnal Variation of the Essential Oil of Four Medicinal Plants Species in Central Region of Iran. Res. J. Biol. Sci. 2009, 4, 103–106. [Google Scholar]
- Kumar, R.; Sharma, S.; Sood, S.; Agnihotri, V.K.; Singh, B. Effect of Diurnal Variability and Storage Conditions on Essential Oil Content and Quality of Damask Rose (Rosa Damascena Mill.) Flowers in North Western Himalayas. Sci. Hortic. 2013, 154, 102–108. [Google Scholar] [CrossRef]
- Volpini-Klein, A.F.N.; Lima Júnior, S.E.; Cardoso, C.A.L.; Cabral, M.R.P.; Louro, G.M.; Coutinho, E.J.; de Jesus, D.A.; Junior, D.P.; Simionatto, E. Chemical Composition of Essential Oils from Leaves and Fruits of Schinus Molle Obtained by Different Extraction Methods (Hydrodistillation, Fractional Hydrodistillation and Steam Distillation) and Seasonal Variations. J. Essent. Oil-Bear. Plants 2021, 24, 228–242. [Google Scholar] [CrossRef]
- Narasimhamoorthy, B.; Zhao, L.Q.; Liu, X.; Yang, W.; Greaves, J.A. Differences in the Chemotype of Two Native Spearmint Clonal Lines Selected for Rosmarinic Acid Accumulation in Comparison to Commercially Grown Native Spearmint. Ind. Crops Prod. 2015, 63, 87–91. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Kimbaris, A.; Michaelakis, A.; Papachristos, D.P.; Polissiou, M.G.; Emmanouel, N. Chemical Composition and Assessment of Larvicidal and Repellent Capacity of 14 Lamiaceae Essential Oils against Aedes Albopictus. Parasitol. Res. 2018, 117, 1953–1964. [Google Scholar] [CrossRef]
- Kripanand, S.; Guruguntla, S.; Korra, S. Effect of Various Drying Methods on Quality and Flavor Characteristics of Mint Leaves (Mentha Spicata L.). J. Food. Pharm. Sci. 2015, 3, 38–45. [Google Scholar]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Chanotiya, C.S.; Dubey, N.K. Antifungal, Antiaflatoxigenic, and Insecticidal Efficacy of Spearmint (Mentha Spicata L.) Essential Oil. Int. Biodeterior. Biodegrad. 2014, 89, 29–36. [Google Scholar] [CrossRef]
- Sousa Barros, A.D.; de Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; dos Santos Fontenelle, R.O.; de Menezes, J.E.S.A.; da Silva, F.W.F.; de Sousa, H.A. Chemical Composition and Functional Properties of Essential Oils from Mentha Species. Ind. Crops Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Correa Júnior, C.; Ming, L.C.; Scheffer, M.C. Cultivo de Plantas Medicinais Condimentares e Aromáticas; Secretaria da Agricultura e Do Abastecimento-Paraná/EMATER-Paraná: São Paulo, Brazil, 1991; ISBN 978-85-342-3162-6. [Google Scholar]
- Marchese, J.A.; Figueira, G.M. O Uso de Tecnologias Pré e Pós-Colheita e Boas Práticas Agrícolas Na Produção de Plantas Medicinais e Aromáticas. Rev. Bras. Plantas Med. 2005, 7, 86–96. [Google Scholar]
- Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem. 2020, 148, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Gobbo-Neto, L.; Lopes, N.P. Plantas medicinais: Fatores de influência no conteúdo de metabólitos secundários. Quim. Nova 2007, 30, 374–381. [Google Scholar] [CrossRef]
- Shiwakoti, S.; Sintim, H.Y.; Poudyal, S.; Bufalo, J.; Cantrell, C.L.; Astatkie, T.; Jeliazkova, E.; Ciampa, L.; Zheljazkov, V.D. Diurnal Effects on Mentha Canadensis Oil Concentration and Composition at Two Different Harvests. HortScience 2015, 50, 85–89. [Google Scholar] [CrossRef]
- Croteau, R.B.; Davis, E.M.; Ringer, K.L.; Wildung, M.R. (−)-Menthol Biosynthesis and Molecular Genetics. Sci. Natur. Naturwissenschaften 2005, 92, 562. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Piątkowska, E.; Kuś, P.; Marijanović, Z.; Jerković, I.; Tuberoso, C.I.; Fecka, I. Volatile compounds and antibacterial effect of commercial mint cultivars-chemotypes and safety. Ind. Crops Prod. 2021, 166, 113430. [Google Scholar] [CrossRef]
- Telci, I.; Kacar, O.; Bayram, E.; Arabacı, O.; Demirtaş, İ.; Yılmaz, G.; Özcan, I.; Sönmez, C.; Göksu, E. The effect of ecological conditions on yield and quality traits of selected peppermint (Mentha piperita L.) clones. Ind. Crops Prod. 2011, 34, 1193–1197. [Google Scholar] [CrossRef]
- Nascimento, I.B.D.; Innecco, R.; Matos, S.H.; Borges, N.S.S.; Marco, C.A. Influência Do Horário de Corte Na Produção de Óleo Essencial de Capim-Santo (Andropogum sp). Rev. Caatinga 2006, 19, 123–127. [Google Scholar]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef]
- Omar, N.A.; El-Sayed, Z.I.A.; Romeh, A.A. Chemical Constituents and Biocidal Activity of the Essential Oil of Mentha Spicata L. Grown in Zagazig Region, Egypt. Res. J. Agric. Biol. Sci. 2009, 5, 1089–1097. [Google Scholar]
- Dhifi, W.; Jelali, N.; Mnif, W.; Litaiem, M.; Hamdi, N. Chemical Composition of the Essential Oil of Mentha Spicata L. from Tunisia and Its Biological Activities. J. Food Biochem. 2013, 37, 362–368. [Google Scholar] [CrossRef]
- Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Antifungal Activity of Essential Oil from Mentha Spicata L. and Mentha Pulegium L. Growing Wild in Sardinia Island (Italy). Nat. Prod. Res. 2019, 35, 993–999. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Kürkçüoglu, M.; Tarimcilar, G.; Kaynak, G. Essential Oils of Mentha Species from Northern Turkey. J. Essent. Oil Res. 1999, 11, 579–588. [Google Scholar] [CrossRef]
- Scherer, R.; Lemos, M.F.; Lemos, M.F.; Martinelli, G.C.; Martins, J.D.L.; da Silva, A.G. Antioxidant and Antibacterial Activities and Composition of Brazilian Spearmint (Mentha Spicata L.). Ind. Crops Prod. 2013, 50, 408–413. [Google Scholar] [CrossRef]
- Teixeira, M.L.; Cardoso, M.d.G.; Figueiredo, A.C.S.; Moraes, J.C.; Assis, F.A.; Andrade, J.d.; Nelson, D.L.; Souza Gomes, M.d.; de Souza, J.A.; de Albuquerque, L.R.M. Essential Oils from Lippia Origanoides Kunth. and Mentha Spicata L.: Chemical Composition, Insecticidal and Antioxidant Activities. AJPS 2014, 5, 1181–1190. [Google Scholar] [CrossRef]
- Cruz Almeida, E.T.D.; de Medeiros Barbosa, I.; Tavares, J.F.; Barbosa-Filho, J.M.; Magnani, M.; de Souza, E.L. Inactivation of Spoilage Yeasts by Mentha Spicata L. and M. × Villosa Huds. Essential Oils in Cashew, Guava, Mango, and Pineapple Juices. Front. Microbiol. 2018, 9, 1111. [Google Scholar] [CrossRef]
- Braga, V.A.Á.; Cruz, G.d.S.; Arruda, C.G.; Silva, C.T.; Santos, A.A.; da Costa, H.N.; Lapa Neto, C.J.C.; Teixeira, Á.A.C.; Teixeira, V.W. Effect of Essential Oils of Mentha Spicata L. and Melaleuca Alternifolia Cheel on the Midgut of Podisus Nigrispinus (Dallas) (Hemiptera: Pentatomidae). Acta Histochem. 2020, 122, 151529. [Google Scholar] [CrossRef]
- Norouzi, N.; Alizadeh, F.; Khodavandi, A.; Jahangiri, M. Antifungal Activity of Menthol Alone and in Combination on Growth Inhibition and Biofilm Formation of Candida Albicans. J. Herb. Med. 2021, 29, 100495. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In Vitro Antiviral, Anti-Inflammatory, and Antioxidant Activities of the Ethanol Extract of Mentha Piperita L. Food Sci. Biotechnol. 2017, 26, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Ferron, P.-J.; Bursztyka, J.; Montjarret, A.; Duteil, E.; Bazire, A.; Bedoux, G. Evaluation of Immunomodulatory Activities of Essential Oils by High Content Analysis. J. Biotechnol. 2019, 303, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Wetzstein, H.Y. Anti-Tumorigenic Activity of Five Culinary and Medicinal Herbs Grown under Greenhouse Conditions and Their Combination Effects. J. Sci. Food Agric. 2011, 91, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, J.V.; Taylor, R.; LeQuang, J.-A.; Raffa, R.B.; the NEMA Research Group. The Role and Mechanism of Action of Menthol in Topical Analgesic Products. J. Clin. Pharm. Ther. 2018, 43, 313–319. [Google Scholar] [CrossRef]
- Lau, B.K.; Karim, S.; Goodchild, A.K.; Vaughan, C.W.; Drew, G.M. Menthol Enhances Phasic and Tonic GABAA Receptor-Mediated Currents in Midbrain Periaqueductal Grey Neurons. Br. J. Pharmacol. 2014, 171, 2803–2813. [Google Scholar] [CrossRef]
- Trevisan, M.T.S.; Silva, M.G.V.; Pfundstein, B.; Spiegelhalder, B.; Owen, R.W. Characterization of the Volatile Pattern and Antioxidant Capacity of Essential Oils from Different Species of the Genus Ocimum. J. Agric. Food Chem. 2006, 54, 4378–4382. [Google Scholar] [CrossRef]
- Miguel, G.; Cruz, C.; Faleiro, M.L.; Simões, M.T.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Salvia Officinalis L. Essential Oils: Effect of Hydrodistillation Time on the Chemical Composition, Antioxidant and Antimicrobial Activities. Nat. Prod. Res. 2011, 25, 526–541. [Google Scholar] [CrossRef]
- Badawy, M.E.; Marei, G.I.K.; Rabea, E.I.; Taktak, N.E. Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pestic. Biochem. Physiol. 2019, 158, 185–200. [Google Scholar] [CrossRef]
- Costa, J.S.D.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia Uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef]
- Ak, G.; Zengin, G.; Ceylan, R.; Fawzi Mahomoodally, M.; Jugreet, S.; Mollica, A.; Stefanucci, A. Chemical Composition and Biological Activities of Essential Oils from Calendula Officinalis L. Flowers and Leaves. Flavour Fragr. J. 2021, 36, 554–563. [Google Scholar] [CrossRef]
- Khouja, M.; Elaissi, A.; Ghazghazi, H.; Boussaid, M.; Khouja, M.L.; Khaldi, A.; Messaoud, C. Variation of Essential Oil Composition, Antioxidant and Anticholinesterase Activities between Pinus Halepensis Mill. Plant Organs. J. Essent. Oil-Bear. Plants 2020, 23, 1450–1462. [Google Scholar] [CrossRef]
- Barros, L.d.S.P.; Santos da Cruz, E.d.N.; de Araújo Guimarães, B.; Setzer, W.N.; Veras Mourão, R.H.; do Rosário da Silva, J.K.; Silva da Costa, J.; Baia Figueiredo, P.L. Chemometric Analysis of the Seasonal Variation in the Essential Oil Composition and Antioxidant Activity of a New Geraniol Chemotype of Lippia Alba (Mill.) N.E.Br. Ex Britton & P. Wilson from the Brazilian Amazon. Biochem. Syst. Ecol. 2022, 105, 104503. [Google Scholar] [CrossRef]
- Pavlić, B.; Teslić, N.; Zengin, G.; Đurović, S.; Rakić, D.; Cvetanović, A.; Gunes, A.K.; Zeković, Z. Antioxidant and Enzyme-Inhibitory Activity of Peppermint Extracts and Essential Oils Obtained by Conventional and Emerging Extraction Techniques. Food Chem. 2021, 338, 127724. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, S.; Maggio, F.; Pellegrini, M.; Ricci, A.; Serio, A.; Paparella, A.; Lo Sterzo, C. Effect of the Distillation Time on the Chemical Composition, Antioxidant Potential and Antimicrobial Activity of Essential Oils from Different Cannabis Sativa L. Cultivars. Molecules 2021, 26, 4770. [Google Scholar] [CrossRef]
- Da Silva, J.K.; Da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon. Int. J. Mol. Sci. 2017, 18, 1081. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- de Moraes, Â.A.B.; Ferreira, O.O.; da Costa, L.S.; Almeida, L.Q.; Varela, E.L.P.; Cascaes, M.M.; de Jesus Pereira Franco, C.; Percário, S.; Nascimento, L.D.; de Oliveira, M.S.; et al. Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria Floribunda (H. West Ex Willd.) O. Berg. and Myrcia Sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants 2022, 11, 2076. [Google Scholar] [CrossRef]
- Choi, H.-S.; Song, H.S.; Ukeda, H.; Sawamura, M. Radical-Scavenging Activities of Citrus Essential Oils and Their Components: Detection Using 1,1-Diphenyl-2-Picrylhydrazyl. J. Agric. Food Chem. 2000, 48, 4156–4161. [Google Scholar] [CrossRef]
ANOVA | Tukey’s Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effects | df | SS | MS | p * | HT ** | HDT ** | |||
60 min | 90 min | 120 min | Average HT *** | ||||||
HT | 2 | 0.719 | 0.360 | 0.906 | 9 h | 1.499 a | 1.498 a | 1.668 a | 1.555 A |
HDT | 2 | 0.164 | 0.082 | 0.978 | 13 h | 1.833 a | 2.165 a | 1.833 a | 1.944 A |
Error | 23 | 83.359 | 3.624 | 17 h | 1.668 a | 1.835 a | 1.501 a | 1.668 A | |
Total | 27 | 84.242 | Average HDT *** | 1.667 A | 1.833 A | 1.667 A |
RIc | Components | 9 h | 13 h | 17 h | ||||||
---|---|---|---|---|---|---|---|---|---|---|
60 min | 90 min | 120 min | 60 min | 90 min | 120 min | 60 min | 90 min | 120 min | ||
Relative Concentration (%) * | ||||||||||
928 | α-pinene | - | - | 0.04 a | 0.06 b | 0.05 a,b | - | 0.06 b | 0.09 c | 0.08 c |
963 | Sabinene | - | - | - | 0.05 a | - | - | 0.04 a | 0.05 a | 0.05 a |
966 | β-pinene | - | - | 0.07 a | 0.1 b | 0.05 c | - | 0.07 a | 0.1 b | 0.08 a |
982 | 3-octanol | 0.19 a | 0.36 b | 0.38 b | 0.43 c | 0.36 b | 0.34 b,d | 0.30 d | 0.54 e | 0.35 b |
1018 | Limonene | - | 0.05 a | 0.13 b | 0.33 c | 0.22 d | 0.1 b | 0.2 d | 0.47 e | 0.35 c |
1094 | Linalool | 0.2 a | 0.2 a | 0.24 b | 0.06 c | - | - | - | - | - |
1143 | Isopulegol | 0.13 a | 0.51 b | 0.12 c | - | - | - | - | - | - |
1153 | Menthone | 0.72 a | 0.6 a | 0.84 b | 1.11 c | 1.44 d | 1.69 e | 1.80 e | 2.46 f | 2.72 g |
1165 | Isomenthone | 1.44 a,e | 0.55 b | 0.9 c | 1.35 d | 1.36 d,e | - | 1.46 a | 1.40 a,d,e | 1.04 f |
1166 | Neomenthol | - | - | - | - | - | 1.65 a | - | - | - |
1196 | Menthol | 95.68 a | 95.28 b | 95.30 a,b | 93.47 d | 94.33 e | 94.39 e | 92.79 f | 92.02 g | 91.56 h |
1197 | Neoisomenthol | - | - | - | - | - | 0.11 | - | - | - |
1198 | α-terpineol | 0.23 a | 0.27 a | 0.28 a | 0.28 a | - | 0.29 a | - | - | - |
1214 | cis-sabinene acetate hydrate | - | - | - | - | - | - | - | - | 0.34 a |
1235 | (Z)-3-hexenyl-2-methylbutyrate | 0.19 a | 0.22 b | 0.25 c | - | - | - | - | - | - |
1241 | cis-3-hexenyl isovalerate | - | - | - | 0.26 a,d | 0.30 b | 0.21 c | 0.26 a,d | 0.25 a | 0.28 b,d |
1248 | Pulegone | 0.26 a | 0.42 b,d | 0.32 c | 0.46 b | 0.46 b | 0.36 c,d | 0.74 e | 0.69 e | 0.82 f |
1261 | Piperitone | 0.34 a | 0.40 b | 0.35 a | 0.56 c | 0.57 c | 0.45 b | 0.57 c | 0.54 c | 0.68 d |
1334 | δ-elemene | - | 0.03 a | - | 0.05 a | - | - | 0.04 a | 0.04 a | - |
1383 | cis-3-hexenyl hexanoate | - | 0.05 a | 0.06 a | 0.08 a,b | 0.08 a,b | 0.06 a | 0.08 a,b | 0.07 a,b | 0.10 b |
1406 | (Z)-caryophyllene | - | - | 0.13 a | - | 0.16 b | 0.38 c | - | - | 0.04 d |
1421 | (E)-caryophyllene | 0.47 a | 0.7 b | 0.45 a | 0.79 c | 0.19 d | - | 0.94 e | 0.79 c | 1.03 f |
1453 | α-humulene | - | - | - | - | - | - | 0.03 a | - | 0.03 a |
1481 | germacrene D | 0.11 a | 0.19 b,c | - | 0.18 b | - | - | 0.24 d | 0.19 b,c | 0.23 d,c |
1497 | Bicyclogermacrene | 0.04 a | 0.07 a,b,c | - | 0.08 b,c | - | - | 0.09 c | 0.08 b,c | 0.06 a,b |
1575 | germacrene d-4-ol | - | - | - | - | - | - | 0.04 a | - | - |
1584 | caryophyllene oxide | - | - | 0.06 a | - | 0.26 b | - | - | - | 0.04 c |
1622 | Dillapiole | - | - | - | - | - | - | 0.05 a | - | - |
1630 | cis-3-hexenyl phenyl acetate | - | 0.04 a | 0.04 a | - | 0.04 a | - | 0.05 a,b | 0.04 a | 0.07 b |
1653 | geranyl valerate | - | 0.04 a | 0.04 a | - | - | - | - | - | - |
1654 | α-cadinol | - | - | - | 0.05 a | 0.05 a | - | - | 0.05 a | 0.05 a |
hydrocarbon monoterpenes | - | 0.05 | 0.24 | 0.54 | 0.32 | 0.10 | 0.37 | 0.71 | 0.56 | |
oxygenated monoterpenes | 99.38 | 98.83 | 98.96 | 97.98 | 98.92 | 99.40 | 97.92 | 97.89 | 97.79 | |
hydrocarbon sesquiterpenes | 0.62 | 1.04 | 0.7 | 1.18 | 0.69 | 0.44 | 1.46 | 1.17 | 1.53 | |
oxygenated sesquiterpenes | - | 0.08 | 0.08 | 0.05 | 0.09 | - | 0.1 | 0.09 | 0.12 |
ANOVA | Tukey’s Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effects | df | SS | MS | p * | HT ** | HDT ** | |||
60 min | 90 min | 120 min | Average HT *** | ||||||
HT | 2 | 49.4 | 24.7 | <0.001 * | 9 h | 95.68 a | 95.28 b | 95.30 ab | 95.43 A |
HDT | 2 | 0.2 | 0.1 | 0.005 * | 13 h | 93.47 d | 94.33 e | 94.39 e | 94.06 B |
Error | 23 | 237,909.3 | 10,343.9 | 17 h | 92.79 f | 92.02 g | 91.56 h | 92.12 C | |
Total | 27 | 237,958.9 | Average HDT *** | 93.98 A | 93.88 AB | 93.75 B |
ANOVA | Tukey’s Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effects | df | SS | MS | p * | HT ** | HDT ** | |||
60 min | 90 min | 120 min | Average HT *** | ||||||
HT | 2 | 11.7 | 5.8 | <0.001 * | 9 h | 0.72 a | 0.6 b | 0.84 c | 0.72 A |
HDT | 2 | 1.3 | 0.7 | <0.001 * | 13 h | 1.11 d | 1.44 e | 1.69 f | 1.41 B |
Error | 23 | 60.32 | 10,343.9 | 17 h | 1.80 g | 2.46 h | 2.72 i | 2.33 C | |
Total | 27 | 73.32 | Average HDT *** | 1.21 A | 1.5 B | 1.75 C |
Location | Major Components | Reference |
---|---|---|
Espírito Santo (Brazil) | carvone (67.08%), limonene (14.34%), murolene (2.29) | Scherer et al. [39] |
Minas Gerais (Brazil) | piperitone (81.18%), piperitenone (14.57%) and limonene (1.47%) | Teixeira et al. [40] |
São Paulo (Brazil) | carvone (72.69%), limonene (14.25%) and menthol (2.29%) | Cruz Almeida et al. [41] |
Pernambuco (Brazil) | carvone (75.41%), limonene (14.95%) and neomenthol (1.78%) | Braga et al. [42] |
ANOVA | Tukey’s Test | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effects | df | SS | MS | p * | HT ** | HDT ** | |||
60 min | 90 min | 120 min | Average HT *** | ||||||
HT | 2 | 772.601 | 386.300 | <0.0001 * | 9 h | 75.39 a | 70.22 b | 69.21 b | 71.61 A |
HDT | 2 | 74.398 | 37.199 | 0.0006 * | 13 h | 69.52 b | 66.77 b | 68.29 b | 68.19 B |
Error | 23 | 118,574.414 | 5155.409 | 17 h | 60.86 c | 58.55 c | 57.42 c | 58.94 C | |
Total | 27 | 119,421.413 | Average HDT *** | 68.59 A | 65.18 B | 64.97 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, S.d.P.P.M.; Pinheiro, R.O.; Nascimento, R.A.d.; Andrade, E.H.d.A.; Faria, L.J.G.d. Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules 2023, 28, 7583. https://doi.org/10.3390/molecules28227583
Marques SdPPM, Pinheiro RO, Nascimento RAd, Andrade EHdA, Faria LJGd. Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules. 2023; 28(22):7583. https://doi.org/10.3390/molecules28227583
Chicago/Turabian StyleMarques, Samara de Paula Pinheiro Menezes, Rafaela Oliveira Pinheiro, Rafael Alves do Nascimento, Eloísa Helena de Aguiar Andrade, and Lênio José Guerreiro de Faria. 2023. "Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil" Molecules 28, no. 22: 7583. https://doi.org/10.3390/molecules28227583
APA StyleMarques, S. d. P. P. M., Pinheiro, R. O., Nascimento, R. A. d., Andrade, E. H. d. A., & Faria, L. J. G. d. (2023). Effects of Harvest Time and Hydrodistillation Time on Yield, Composition, and Antioxidant Activity of Mint Essential Oil. Molecules, 28(22), 7583. https://doi.org/10.3390/molecules28227583