Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding
Abstract
:1. Introduction
2. Basic Principles of Electromagnetic Shielding and Measurement of Shielding Effectiveness
2.1. EMI Shielding Effectiveness
2.2. Electromagnetic Shielding Mechanism
2.3. Measurement of Shielding Effectiveness
3. Intrinsically Conductive Polymers (ICP)
3.1. Factors Affecting the Performance of ICP Materials
3.2. ICP-Based EMI Shielding Materials
3.3. MXene-Based ICP Composites
4. Conductive Polymer-Based Composites (CPC)
4.1. Factors Affecting the Performance of CPC for EMI Shielding
4.1.1. Percolation Threshold
4.1.2. Conductive Packing Concentration
4.1.3. Distribution and Selective Positioning of Conductive Fillers
4.1.4. Shape and Chemical Properties of Conductive Fillers
4.2. Common CPC Materials
4.3. Conductive Anisotropy CPC
5. Lightweight Polymer Composites and Multi-Component Systems
5.1. Lightweight Polymer Composites
5.2. Multicomponent Systems
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sang, G.; Xu, P.; Yan, T.; Murugadoss, V.; Naik, N.; Ding, Y.; Guo, Z. Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.W.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.C.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites—A Review. Polym. Rev. 2019, 59, 280–337. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for Electromagnetic Interference Shielding. Mater. Chem. Phys. 2020, 225, 123587. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Tan, W.K.; Kar, K.K.; Matsuda, A. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 2021, 177, 304–331. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, R.; Yang, S.; Huang, W.; Zeng, Z.; Gui, X. Metal–organic framework-derived core–shell nanospheres anchored on fe-filled carbon nanotube sponge for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 2022, 14, 10577–10587. [Google Scholar] [CrossRef]
- Yuan, M.; Fei, Y.; Zhang, H.; Qiu, B.; Shen, L.; He, X.; Liang, M.; Zhou, S.; Chen, Y.; Zou, H. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding. Compos. Part B Eng. 2022, 233, 109622. [Google Scholar] [CrossRef]
- Parveen, S.; Manju, A. Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. In New Polymers for Special Applications, 1st ed.; Gomes, A.D.S., Ed.; InTechOpen: London, UK, 2012; pp. 71–112. [Google Scholar]
- Bhattacharjee, Y.; Bose, S. Core–shell nanomaterials for microwave absorption and electromagnetic interference shielding: A review. ACS Appl. Nano Mater. 2021, 4, 949–972. [Google Scholar] [CrossRef]
- Chiang, W.; Chiang, Y. Effect of Titanate Coupling Agent on Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of PC–ABS–NCF COMPOSITE. J. Appl. Polym. Sci. 1992, 46, 673–681. [Google Scholar] [CrossRef]
- Wang, M.; Tang, X.-H.; Cai, J.-H.; Wu, H.; Shen, J.-B.; Guo, S.-Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Shi, X.; Qiu, H.; Pan, Y.; Yan, Y.; Gu, J. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021, 175, 271–280. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Jin, S.H.; Zou, H.M.; Li, L.J.; Ma, X.L.; Lv, G.; Gao, F.; Lv, X.J.; Shu, Q.H. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580. [Google Scholar] [CrossRef]
- Wang, Z.; Wei, R.; Gu, J.; Liu, H.; Liu, C.; Luo, C.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z.; et al. Ultralight, Highly Compressible and Fire-Retardant Graphene Aerogel with Self-Adjustable Electromagnetic Wave Absorption. Carbon 2018, 139, 1126–1135. [Google Scholar] [CrossRef]
- Chandra, R.B.J.; Shivamurthy, B.; Kulkarni, S.D.; Kumar, M.S. Hybrid Polymer Composites for EMI Shielding Application—A Review. Mater. Res. Express 2019, 6, 8. [Google Scholar]
- Cai, J.-H.; Li, J.; Chen, X.-D.; Wang, M. Multifunctional polydimethylsiloxane foam with multi-walled carbon nanotube and thermo-expandable microsphere for temperature sensing, microwave shielding and piezoresistive sensor. Chem. Eng. J. 2020, 393, 124805. [Google Scholar] [CrossRef]
- Bhardwaj, P.; Kaushik, S.; Gairola, P.; Gairola, S. Exceptional Electromagnetic Radiation Shielding Performance and Dielectric Properties of Surfactant Assisted Polypyrrole-Carbon Allotropes Composites. Radiat. Phys. Chem. 2018, 151, 156–163. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, Y.; Wen, B. Facile Synthesis of Polyaniline Nanostructures with Effective Electromagnetic Interference Shielding Performance. J. Mater. Sci. Mater. Electron. 2018, 29, 10437–10444. [Google Scholar] [CrossRef]
- He, W.; Li, J.; Tian, J.; Jing, H.; Li, Y. Characteristics and Properties of Wood/Polyaniline Electromagnetic Shielding Composites Synthesized via in Situ Polymerization. Polym. Compos. 2018, 39, 537–543. [Google Scholar] [CrossRef]
- Ebrahimi, I.; Gashti, M.P. Polypyrrole-MWCNT-Ag Composites for Electromagnetic Shielding: Comparison between Chemical Deposition and UV-reduction Approaches. J. Phys. Chem. Solids 2018, 118, 80–87. [Google Scholar] [CrossRef]
- Wan, Y.; Li, J.; Yang, Z.; Ao, H.; Xiong, L.; Luo, H. Simultaneously Depositing Polyaniline onto Bacterial Cellulose Nanofibers and Graphene Nanosheets toward Electrically Conductive Nanocomposites. Curr. Appl. Phys. 2018, 18, 933–940. [Google Scholar] [CrossRef]
- Yu, D.; Wang, Y.; Hao, T.; Wang, W.; Liu, B. Preparation of Silver-Plated Polyimide Fabric Initiated by Polyaniline with Electromagnetic Shielding Properties. J. Ind. Text. 2018, 47, 1392–1406. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, Y.; Yang, J.; Li, Q.; Gu, J. High Performance Porous Ni@Cf Paper with Excellent Electromagnetic Shielding Properties. Compos. Part A Appl. Sci. Manuf. 2023, 172, 107618. [Google Scholar] [CrossRef]
- Chen, J.-J.; Liu, S.-L.; Wu, H.-B.; Sowade, E.; Baumann, R.R.; Wang, Y.; Gu, F.-Q.; Liu, C.-R.; Feng, Z.-S. Structural Regulation of Silver Nanowires and Their Application in Flexible Electronic Thin Films. Mater. Des. 2018, 154, 266–274. [Google Scholar] [CrossRef]
- Faisal, M.; Khasim, S. Polyaniline–Antimony Oxide Composites for Effective Broadband EMI Shielding. Iran. Polym. J. 2013, 22, 473–480. [Google Scholar] [CrossRef]
- Faisal, M.; Khasim, S. Broadband Electromagnetic Shielding and Dielectric Properties of Polyaniline-Stannous Oxide Composites. J. Mater. Sci. Mater. Electron. 2013, 24, 2202–2210. [Google Scholar] [CrossRef]
- Yang, X.H.; Qin, Y.; Peng, L.L.; Pan, M.Y.; Xu, H.Y. Lightweight and anti-corrosive carbon nanotubes (CNTs)/bamboo fiber/HDPE composite for efficient electromagnetic interference shielding. Colloid. Surface A 2023, 672, 131746. [Google Scholar] [CrossRef]
- Saini, M.; Singh, S.K.; Shukla, R.; Kumar, A. Mg Doped Copper Ferrite with Polyaniline Matrix Core–Shell Ternary Nanocomposite for Electromagnetic Interference Shielding. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2306–2315. [Google Scholar] [CrossRef]
- Gu, H.; Zhang, H.; Lin, J.; Shao, Q.; Young, D.P.; Sun, L.; Shen, T.; Guo, Z. Large Negative Giant Magnetoresistance at Room Temperature and Electrical Transport in Cobalt Ferrite-polyaniline Nanocomposites. Polymer 2018, 143, 324–330. [Google Scholar] [CrossRef]
- Bellabed, B.; Wojkiewicz, J.L.; Lamouri, S.; El Kamchi, N.; Lasri, T. Synthesis and Characterization of Hybrid Conducting Composites Based on Polyaniline/magnetite Fillers with Improved Microwave Absorption Properties. J. Alloys Compd. 2012, 527, 137–144. [Google Scholar] [CrossRef]
- Jin, W.-W.; Wang, W.-K.; Mazumdar, S.; Xu, G.-Z.; Zhang, Q.-Q. Carbon foams with Fe-organic network-derived Fe3O4 for efficient electromagnetic shielding. Mater. Chem. Phys. 2023, 304, 127797. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Zhang, H.; Fu, S. Sustainable cellulose-based multifunctional material for electromagnetic shielding, flame retardancy and antibacterial. Int. J. Biol. Macromol. 2023, 230, 123295. [Google Scholar] [CrossRef]
- Wang, S.; Gong, H.; Ashfaq, M.Z.; Qi, D.; Xu, P.; Wu, S.; Meng, L.; Shang, T.; Jiang, M.; Yue, X. Embedding magnetic 3D carbon skeleton in SiCN ceramics for high-performance electromagnetic shielding. Compos. Commun. 2023, 39, 101547. [Google Scholar] [CrossRef]
- Jin, X.; Wang, J.; Dai, L.; Liu, X.; Li, L.; Yang, Y.; Cao, Y.; Wang, W.; Wu, H.; Guo, S. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances. Chem. Eng. J. 2020, 380, 122475. [Google Scholar] [CrossRef]
- Wan, Y.-J.; Li, X.-M.; Zhu, P.-L.; Sun, R.; Wong, C.-P.; Liao, W.-H. Lightweight, flexible MXene/polymer film with simultaneously excellent mechanical property and high-performance electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105764. [Google Scholar] [CrossRef]
- Hao, X.; Xing, L.; Li, D.; Wang, J.; Lan, W.; Liu, C. Superhydrophobic, mechanically robust and self-cleaning MXene/wood composite for high-performance electromagnetic interference shielding. Ind. Crops Prod. 2023, 199, 116744. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Z.; Wu, H.; Nie, W.; Huang, F.; Li, S.; Zhang, H. Hierarchical structures of carbon nanotubes anchored on core-sheath microrads toward electromagnetic wave absorption and shielding with Joule heating and superhydrophobic capacities. Carbon 2023, 208, 50–59. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, T.-T.; Wu, D.-T.; Wu, L.-L.; Cao, M.-S.; Gao, H. Annealed Ti3C2Tx: A green and tunable electromagnetic interference shielding material. Ceram. Int. 2022, 165, 106736. [Google Scholar] [CrossRef]
- Qian, H.; Jiang, W.; Shi, X.; Cao, Q.; Jiang, B.; Huang, Y. Pushing electromagnetic interference shielding self-enhanced based on smart Ti3C2Tx-WVO2 thermal management composite. Carbon 2023, 210, 118081. [Google Scholar] [CrossRef]
- Qu, Y.F.; Li, X.; Wang, X.; Dai, H.Q. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics. Compos. Sci. Technol. 2022, 230, 109753. [Google Scholar] [CrossRef]
- Duan, N.; Shi, Z.; Wang, Z.; Zou, B.; Zhang, C.; Wang, J.; Xi, J.; Zhang, X.; Zhang, X.; Wang, G. Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 2022, 214, 110382. [Google Scholar] [CrossRef]
- Brigandi, P.J.; Cogen, J.M.; Pearson, R.A. Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 2014, 54, 1–16. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Meng, W.; Jiang, L.; Fang, D. Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J. Mater. Chem. C 2022, 10, 5336–5344. [Google Scholar] [CrossRef]
- Nan, C.-W. Physics of Inhomogeneous Inorganic Materials. Prog. Mater. Sci. 1993, 37, 1–116. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, J.; Zhang, S.; Yan, J.; Huang, X.; Wang, L.; Gao, J. Interface sintering engineered superhydrophobic and durable nanofiber composite for high-performance electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 98, 62–71. [Google Scholar] [CrossRef]
- Zha, X.-J.; Li, T.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, W.; Yang, M.-B. Constructing a Special ‘Sosatie’ Structure to Finely Dispersing MWCNT for Enhanced Electrical Conductivity, Ultra-High Dielectric Performance and Toughness of iPP/OBC/MWCNT Nanocomposites. Compos. Sci. Technol. 2017, 139, 17–25. [Google Scholar] [CrossRef]
- Luo, X.L.; Yang, G.D.; Schubert, D.W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy. Adv. Compos. Hybrid Mater. 2022, 5, 250–262. [Google Scholar] [CrossRef]
- Ren, W.; Yang, Y.; Yang, J.; Duan, H.; Zhao, G.; Liu, Y. Multifunctional and corrosion resistant poly(phenylene sulfide)/Ag composites for electromagnetic interference shielding. Chem. Eng. J. 2021, 415, 129052. [Google Scholar] [CrossRef]
- Song, P.; Liu, B.; Qiu, H.; Shi, X.; Cao, D.; Gu, J. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653. [Google Scholar] [CrossRef]
- Cao, M.-S.; Song, W.-L.; Hou, Z.-L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Yilmaz, A.C.; Ozen, M.S.; Sancak, E.; Erdem, R.; Erdem, O.; Soin, N. Analyses of the Mechanical, electrical and Electromagnetic Shielding Properties of Thermoplastic Composites Doped with Conductive Nanofillers. J. Compos. Mater. 2018, 52, 1423–1432. [Google Scholar] [CrossRef]
- Chung, D.D.L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. [Google Scholar] [CrossRef]
- Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded Versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites. Carbon 2012, 50, 5126–5134. [Google Scholar] [CrossRef]
- Shi, H.-G.; Zhao, H.-B.; Liu, B.-W.; Wang, Y.-Z. Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2021, 13, 26505–26514. [Google Scholar] [CrossRef] [PubMed]
- Bhawal, P.; Ganguly, S.; Das, T.K.; Mondal, S.; Choudhury, S.; Das, N. Superior Electromagnetic Interference Shielding Effectiveness and Electro-mechanical Properties of EMA-IRGO Nanocomposites through the in-situ Reduction of GO from Melt Blended EMA-GO Composites. Compos. Part B Eng. 2018, 134, 46–60. [Google Scholar] [CrossRef]
- Maruthi, N.; Faisal, M.; Raghavendra, N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synth. Met. 2021, 272, 116664. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, S.; Chen, L.; Jiang, D.; Shao, Q.; Zhang, B.; Zhai, Z.; Wang, C.; Zhao, M.; Ma, Y.; et al. Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers. Macromol. Chem. Phys. 2017, 218, 1700357. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, X.; Hao, X.; Starý, Z.; Schubert, D.W. Enhancing the Electrical Conductivity of Carbon Black-Filled Immiscible Polymer Blends by Tuning the Morphology. Eur. Polym. J. 2016, 78, 106–115. [Google Scholar] [CrossRef]
- Yan, D.X.; Pang, H.; Xu, L.; Bao, Y.; Ren, P.G.; Lei, J.; Li, Z.M. Electromagnetic Interference Shielding of Segregated Polymer Composite with an Ultralow Loading of in Situ Thermally Reduced Graphene Oxide. Nanotechnology 2014, 25, 145705. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.; Wang, J.; Li, Z. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. [Google Scholar] [CrossRef]
- Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black. Polym. Bull. 1991, 25, 265–271. [Google Scholar] [CrossRef]
- Shahzad, F.; Lee, S.H.; Hong, S.M.; Koo, C.M. Segregated Reduced Graphene Oxide Polymer Composite as A High Performance Electromagnetic Interference Shield. Res. Chem. Intermed. 2018, 44, 4707–4719. [Google Scholar] [CrossRef]
- Bizhani, H.; Nayyeri, V.; Katbab, A.; Jalali-Arani, A.; Nazockdast, H. Double Percolated MWCNTs Loaded PC/SAN Nanocomposites as An Absorbing Electromagnetic Shield. Eur. Polym. J. 2018, 100, 209–218. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Jia, L.-C.; Yan, D.-X.; Gao, J.-F.; Zhang, X.-P.; Ren, P.-G.; Li, Z.-M. Simultaneously Improved Electromagnetic Interference Shielding And mechanical Performance of Segregated Carbon Nanotube/polypropylene Composite via Solid Phase Molding. Compos. Sci. Technol. 2018, 156, 87–94. [Google Scholar] [CrossRef]
- Das, N.C.; Chaki, T.K.; Khastgir, D.; Chakraborty, A. Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-Filled Composites Based on Rubber and Rubber Blends. Adv. Polym. Technol. 2001, 20, 226–236. [Google Scholar] [CrossRef]
- Shu, J.; Cao, W.; Cao, M. Diverse metal–organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 23. [Google Scholar] [CrossRef]
- Vas, J.V.; Thomas, M.J. Electromagnetic Shielding Effectiveness of Layered Polymer Nanocomposites. IEEE Trans. Electromagn. Compat. 2018, 60, 376–384. [Google Scholar] [CrossRef]
- Pawar, S.P.; Pattabhi, K.; Bose, S. Assessing the Critical Concentration of NH2 Terminal Groups on the Surface of MWNTs towards Chain Scission of PC in PC/SAN Blends: Effect on Dispersion, Electrical Conductivity and EMI Shielding. RSC Adv. 2014, 4, 18842–18852. [Google Scholar] [CrossRef]
- Pawar, S.P.; Marathe, D.A.; Pattabhi, K.; Bose, S. Electromagnetic Interference Shielding through MWNT Grafted Fe3O4 Nanoparticles in PC/SAN Blends. J. Mater. Chem. A 2015, 3, 656–669. [Google Scholar] [CrossRef]
- Zhu, M.; Yan, X.; Lei, Y.; Guo, J.; Xu, Y.; Xu, H.; Dai, L.; Kong, L. An ultra strong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 14520–14531. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Panja, S.S.; Bose, S. A Novel Fluorophore–Spacer–Receptor to Conjugate MWNTs and Ferrite Nanoparticles to Design an Ultra-Thin Shield to Screen Electromagnetic Radiation. Mater. Chem. Front. 2017, 1, 132–145. [Google Scholar] [CrossRef]
- Im, J.S.; Park, I.J.; In, S.J.; Kim, T.; Lee, Y.-S. Fluorination Effects of MWCNT Additives for EMI Shielding Efficiency by Developed Conductive Network in Epoxy Complex. J. Fluor. Chem. 2009, 130, 1111–1116. [Google Scholar] [CrossRef]
- Hosseini, H.; Mahdavi, H. Nanocomposite Based on Epoxy and MWCNTs Modified with NiFe2O4 Nanoparticles as Efficient Microwave Absorbing Material. Appl. Organomet. Chem. 2018, 32, e4294. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Liu, X.; Shen, X.; Zheng, Q.; Xue, Q.; Kim, J.-K. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, S.; Haldolaarachchige, N.; Colorado, H.A.; Luo, Z.; Young, D.P.; Guo, Z. Magnetoresistive Conductive Polyaniline–Barium Titanate Nanocomposites with Negative Permittivity. J. Phys. Chem. C 2012, 116, 15731–15740. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Electromagnetic Interference Shielding of Graphene/Epoxy Composites. Carbon 2009, 47, 922–925. [Google Scholar] [CrossRef]
- Moučka, R.; Sedlačík, M.; Kasparyan, H.; Prokeš, J.; Trchová, M.; Hassouna, F.; Kopecký, D. One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region. Int. J. Mol. Sci. 2020, 21, 8814. [Google Scholar] [CrossRef]
- Moučka, R.; Sedlačík, M.; Prokeš, J.; Kasparyan, H.; Valtera, S.; Kopecký, D. Electromagnetic interference shielding of polypyrrole nanostructures. Synth. Met. 2020, 269, 116573. [Google Scholar] [CrossRef]
- Al-Saleh Mohammed, H.; Sundararaj, U. Microstructure, Electrical, and Electromagnetic Interference Shielding Properties of Carbon Nanotube/Acrylonitrile-Butadiene-Styrene Nanocomposites. J. Polym. Sci. B Polym. Phys. 2012, 50, 1356–1362. [Google Scholar] [CrossRef]
- Schmitz, D.P.; Silva, T.I.; Ramoa, S.D.A.S.; Barra, G.M.O.; Pegoretti, A.; Soares, B.G. Hybrid Composites of ABS with Carbonaceous Fillers for Electromagnetic Shielding Applications. J. Appl. Polym. Sci. 2018, 135, 46546. [Google Scholar] [CrossRef]
- Schmitz, D.; Ecco, L.; Dul, S.; Pereira, E.; Soares, B.; Barra, G.; Pegoretti, A. Electromagnetic Interference Shielding Effectiveness of ABS Carbon-Based Composites Manufactured via Fused Deposition Modelling. Mater. Today Commun. 2018, 15, 70–80. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Xiao, Y.; Liu, B.; Xue, Z.; Wang, Y. Additive manufacturing of carbon nanotube/polylactic acid films with efficient electromagnetic interference shielding and electrical heating performance via fused deposition modeling. Synth. Met. 2023, 293, 117258. [Google Scholar] [CrossRef]
- Ma, X.; Shen, B.; Zhang, L.; Liu, Y.; Zhai, W.; Zheng, W. Porous Superhydrophobic Polymer/Carbon Composites for Lightweight and Self-Cleaning EMI Shielding Application. Compos. Sci. Technol. 2018, 158, 86–93. [Google Scholar] [CrossRef]
- Zhou, Y.; Sang, G.; Yu, M.; Xu, P.; Ding, Y. Electrical and magnetic network design for improving electromagnetic interference shielding performance of waterborne polyurethane fabrics. Mater. Lett. 2022, 314, 131862. [Google Scholar] [CrossRef]
- Chang, J.; Meng, C.; Shi, B.; Wei, W.; Li, R.; Meng, J.; Wen, H.; Wang, X.; Song, J.; Hu, Z.; et al. Flexible, breathable, and reinforced ultra-thin Cu/PLLA porous-fibrous membranes for thermal management and electromagnetic interference shielding. J. Mater. Sci. Technol. 2023, 161, 150–160. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Feng, L.-M.; Chen, Y.-F.; Shi, Y.-D.; Chen, X.-D.; Wang, M. Segregated Polypropylene/cross-Linked Poly(Ethylene-co-1-octene)/Multi-Walled Carbon Nanotube Nanocomposites with Low Percolation Threshold and Dominated Negative Temperature Coefficient Effect: Towards Electromagnetic Interference Shielding and Thermistors. Compos. Sci. Technol. 2018, 159, 152–161. [Google Scholar]
- Zha, X.-J.; Pu, J.-H.; Ma, L.-F.; Li, T.; Bao, R.-Y.; Bai, L.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. A Particular Interfacial Strategy in PVDF/OBC/MWCNT Nanocomposites for High Dielectric Performance and Electromagnetic Interference Shielding. Compos. Part A Appl. Sci. Manuf. 2018, 105, 118–125. [Google Scholar] [CrossRef]
- Choi, J.R.; Han, J.; Yu, W.-R.; Lee, H.J.; Cho, S.; Jung, B.M.; Lee, S.-B. Facile fabrication of ultrathin graphene/cellulose composites with efficient electromagnetic interference shielding by spray deposition. Mater. Lett. 2023, 341, 134264. [Google Scholar] [CrossRef]
- Wu, B.Z.; Zhu, K.Q.; Yang, Y.H.; Wen, X.H.; Liu, R.R.; Zhu, H.H.; Yang, J.T. Multi-interface PA6/PS composites constructed of metal-carbon material for adjustable electromagnetic interference shielding. Mater. Today Commun. 2022, 33, 104490. [Google Scholar] [CrossRef]
- Liu, H.; Wu, S.; You, C.; Tian, N.; Li, Y.; Chopra, N. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 2021, 172, 569–596. [Google Scholar] [CrossRef]
- Shi, Y.D.; Yu, H.O.; Li, J.; Tan, Y.J.; Chen, Y.F.; Wang, M.; Wu, H.; Guo, S. Low Magnetic Field-induced Alignment of Nickel Particles in Segregated Poly (l-lactide)/Poly (ecaprolactone)/Multi-walled Carbon Nanotube Nanocomposites: Towards Remarkable and Tunable Conductive Anisotropy. Chem. Eng. J. 2018, 347, 472–482. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Mousavi, S.M.; Arjmand, M.; Yan, N.; Sundararaj, U. Electrified Single-Walled Carbon Nanotube/epoxy Nanocomposite via Vacuum Shock Technique: Effect of Alignment on Electrical Conductivity and Electromagnetic Interference shielding. Polym. Compos. 2017, 39, E1139–E1148. [Google Scholar] [CrossRef]
- Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon 2016, 105, 305–313. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Hua, W.; Zhang, A.; Bao, J. Light-weight silver plating foam and carbon nanotube hybridized epoxy composite foams with exceptional conductivity and electromagnetic shielding property. ACS Appl. Mater. Interfaces 2016, 8, 24131–24142. [Google Scholar] [CrossRef] [PubMed]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2014, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Ni, H.; Jiang, L.; Cheng, Q. Learning from nature: Constructing high performance graphene-based nanocomposites. Mater. Today 2017, 20, 210–219. [Google Scholar] [CrossRef]
- Ghosh, S.; Ganguly, S.; Remanan, S.; Mondal, S.; Jana, S.; Maji, P.K.; Singha, N.; Das, N.C. Ultra-Light Weight, Water Durable and Flexible Highly Electrical Conductive Polyurethane Foam for Superior Electromagnetic Interference Shielding Materials. J. Mater. Sci. Mater. Electron. 2018, 29, 10177–10189. [Google Scholar] [CrossRef]
- Zhao, H.H.; Ji, K.J.; Liu, T.T.; Xu, Y.S.; Dai, Z.D. Electrophoretic deposition of foam Ni/CNT composites and their electromagnetic interference shielding performance. Appl. Mech. Mater. 2014, 461, 436–444. [Google Scholar] [CrossRef]
- Kumar, R.; Kumari, S.; Dhakate, S.R. Nickel nanoparticles embedded in carbon foam for improving electromagnetic shielding effectiveness. Appl. Nanosci. 2015, 5, 553–561. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Qian, W.X.; Liu, J.Y.; Chen, M.; Li, H.; Zhang, Y. Electromagnetic shielding effect of aluminum foam in 10~500 kV electrical substations. Mater. Sci. Forum 2017, 898, 2378–2383. [Google Scholar] [CrossRef]
- Guo, H.; Chen, Y.; Li, Y.; Zhou, W.; Xu, W.; Pang, L.; Fan, X.; Jiang, S. Electrospun fibrous materials and their applications for electromagnetic interference shielding: A review. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106309. [Google Scholar] [CrossRef]
- Liu, P.; Cui, G. Characterization of the electromagnetic shielding and compressive behavior of a highly porous titanium foam with spherical pores. J. Mater. Res. 2015, 30, 3510–3517. [Google Scholar] [CrossRef]
- Ji, K.; Zhao, H.; Zhang, J.; Chen, J.; Dai, Z. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356. [Google Scholar] [CrossRef]
- Yan, A.; Liu, Y.; Wu, Z.; Gan, X.; Li, F.; Tao, J.; Li, C.; Yi, J. RGO reinforced Cu foam with enhanced mechanical and electromagnetic shielding properties. J. Mater. Res. Technol. 2022, 21, 2965–2975. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Huang, Z.; Cheng, J.; Wang, H.; Zhang, D.; Ba, X.; Zheng, G.; Yan, M.; Cao, M. Engineering flexible and green electromagnetic interference shielding materials with high performance through modulating WS2 nanosheets on carbon fibers. J. Materiomics 2022, 8, 327–334. [Google Scholar] [CrossRef]
- Yang, J.; Liao, X.; Li, J.; He, G.; Zhang, Y.; Tang, W.; Wang, G.; Li, G. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption. Compos. Sci. Technol. 2019, 181, 107670. [Google Scholar] [CrossRef]
- Liang, C.; Qiu, H.; Han, Y.; Gu, H.; Song, P.; Wang, L.; Kong, J.; Cao, D.; Gu, J. Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J. Mater. Chem. C 2019, 7, 2725–2733. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Zhou, Z.-H.; Zhou, C.-G.; Sun, W.-J.; Gao, J.-F.; Dai, K.; Yan, D.-X.; Li, Z.-M. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 8704–8712. [Google Scholar] [CrossRef]
- Jia, L.-C.; Yan, D.-X.; Liu, X.; Ma, R.; Wu, H.-Y.; Li, Z.-M. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. [Google Scholar] [CrossRef]
- Oh, H.-J.; Dao, V.-D.; Choi, H.-S. Electromagnetic Shielding Effectiveness of a Thin Silver Layer Deposited onto PET Film via Atmospheric Pressure Plasma Reduction. Appl. Surf. Sci. 2018, 435, 7–15. [Google Scholar] [CrossRef]
- Guo, Y.; Vokhidova, N.R.; Wang, Q.; Lan, B.; Lu, Y. Lightweight and thermal insulation fabric-based composite foam for high-performance electromagnetic interference shielding. Mater. Chem. Phys. 2023, 303, 127787. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L.; Cheng, L. Lightweight Ti2CT x MXene/poly(vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207. [Google Scholar] [CrossRef]
- Wu, X.; Han, B.; Zhang, H.-B.; Xie, X.; Tu, T.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.-Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Y.; Tao, Y.; Lu, J.; Liu, J.; Wang, B.; Song, L.; Jie, G.; Hu, Y. Durable electromagnetic interference (EMI) shielding ramie fabric with excellent flame retardancy and Self-healing performance. J. Colloid Interface Sci. 2021, 602, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Cai, W.; Chen, W.; Liu, P.; Wang, J.; Liu, Z. A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 130729. [Google Scholar] [CrossRef]
- Liu, L.; Guo, R.; Gao, J.; Ding, Q.; Fan, Y.; Yu, J. Mechanically and environmentally robust composite nanofibers with embedded MXene for wearable shielding of electromagnetic wave. Compos. Commun. 2022, 30, 101094. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, M.; Feng, Y.; Li, M.; Yang, S.; Wang, J. Heterogeneous asymmetric double-layer composite with ultra-low reflection for electromagnetic shielding. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 669, 131545. [Google Scholar] [CrossRef]
- Hu, H.; Li, J.; Wang, J.; Zhang, T. Research on mechanical properties and electromagnetic shielding effectiveness in Mg-8Li-2Y-Zn/Al multilayered composites fabricated by asymmetric accumulative roll bonding. J. Alloys Compd. 2023, 939, 168793. [Google Scholar] [CrossRef]
- Zuo, S.; Liang, Y.; Yang, H.; Ma, X.; Ge, S.; Wu, Y.; Fei, B.; Guo, M.; Ahamad, T.; Le, H.S.; et al. High strength composites of carbon fiber sheets-veneers sandwich-structure for electromagnetic interference shielding materials. Prog. Org. Coatings 2022, 165, 106736. [Google Scholar] [CrossRef]
- Wang, S.; Li, D.; Jiang, L.; Fang, D. Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: A multifunctional electromagnetic interference shielding material. Compos. Sci. Technol. 2022, 221, 109337. [Google Scholar] [CrossRef]
- Gao, Y.-N.; Wang, Y.; Yue, T.-N.; Wang, M. Achieving absorption-type electromagnetic shielding performance in silver micro-tubes/barium Ferrites/Poly(lactic acid) composites via enhancing impedance matching and electric-magnetic synergism. Compos. Part B Eng. 2023, 249, 110402. [Google Scholar] [CrossRef]
- Biswas, S.; Arief, I.; Panja, S.S.; Bose, S. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon. ACS Appl. Mater. Interfaces 2017, 9, 3030–3039. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yang, Y.; Yan, D.-X.; Duan, H.; Zhao, G.; Liu, Y. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Hao, R.; Yang, Y.; Zhao, G.; Liu, Y.; Duan, H. Progressive conductivity modular assembled fiber reinforced polymer composites for absorption dominated ultraefficient electromagnetic interference shielding. Compos. Part B Eng. 2023, 260, 110766. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Xu, S.; Wang, H.; Li, Y.; Fang, C. Flexible bilayer Ti3C2Tx MXene/cellulose nanocrystals/waterborne polyurethane composite film with excellent mechanical properties for electromagnetic interference shielding. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 669, 131556. [Google Scholar] [CrossRef]
Materials | Electrical Conductivity | Magnetic Permeability |
---|---|---|
Cu | 1 | 1 |
Fe | 0.17 | 50–1000 |
Ag | 1.05 | 1 |
Au | 0.7 | 50–1000 |
Al | 0.1 | 1 |
Ni | 0.2 | 1 |
Graphene | 0.1 | 1.01 |
Carbon fiber | 2.75 × 10−2 | 0.97 |
CNTs | 0.1 | 1.01 |
Graphite | 1.83 × 10−2 | 0.99 |
Materials | d (mm) | Conductivity (S/cm) | EMI SE (dB) | Frequency (GHz) | Ref. |
---|---|---|---|---|---|
Ni@CNF paper | 0.36 | 400 | 120 | X-band | [26] |
PPy/AgNW film | - | 62.73 | 22.38 | X-band | [22] |
PANI/Sb2O3 | - | - | (18–21)/(17.5–20.5) | X-band/ku-band | [23] |
(CNT)/bamboo fiber/HDPE composites | - | 11,000 | 49.6 | X-band | [25] |
PANI/Fe3O4 | 1 | - | (15%PANI + 10%Fe3O4) 42 | ku-band | [29] |
- | (15%PANI + 25%Fe3O4) 37.4 | ku-band | |||
CNT/Fe3O4/Melamine-based carbon foam (MCF) functional material | 3 | 0.8306 | 46.4 | X-band | [30] |
PDMS/CNT/PANI WA | - | 0.186 | 26 | X-band | [31] |
(3D-CS)/SiCN | - | - | 55 | X-band | [32] |
PVA/MXene multilayered film | 0.027 | 0.716 | 44.4 | X-band | [33] |
MXene/PEDOT:PSS hybrid film | 0.0066 | 675.2 | 40.5 | X-band/ku-band | [34] |
MXene/wood (WP-MXene/Delignified wood) | - | - | 43.4 | X-band | [35] |
MWCNT-MXene@Cotton Fiber (MWMC) | 1 | - | 40.6 | X-band | [36] |
Ti3C2Tx/TiO2 heterostructured | - | - | 35.1 | ku-band | [37] |
21 | X-band | ||||
Ti3C2Tx/WVO2 | - | - | 42.8 | X-band | [38] |
AgNF/MXene/AgNW (AMA) | 0.026 | 500< | 71 | X-band | [39] |
Materials | d (mm) | Filler Concentration | Conductivity (S/cm) | EMI SE (dB) | Frequency (GHz) | Ref. |
---|---|---|---|---|---|---|
Thermally reduced graphene oxide (TGRO)/ultrahigh molecular weight polyethylene (UHMWPE) | - | 0.660 vol.% | 0.34 | 28.3–32.4 | X-band | [58] |
Reduced graphene oxide (RGO)/PS | 2.5 | 3.47 vol.% | 0.44 | 45.1 | X-band | [59] |
PC/ -acrylonitrile (SAN) 60/40 MWCNTs | 10 | 1 wt% | 0.083 | 25–29 | X-band | [64] |
SR/CNF wafers | 0.75 | 2 wt% | - | 38.95 | 2–18.4 | [68] |
Graphene foam (GF)/poly(3,4 ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) | 1.5 | 0.0762 g/cm3 | 43.2 | 91.9 | X-band | [75] |
Graphene/epoxy | 8.8 vol.% | 0.1 | 21 | X-band | [77] | |
Acrylonitrile-butadiene-styrene (ABS)/CNT | - | 3 wt% | 0.1 | 16 | ku-band | [80] |
Multifunctional CNT/polylactic acid (PLA) film | 4 | 4 wt% | - | 68 | 12.3 | [81] |
PDMS/expanded microspheres (EM)/CNT | - | EM/50 vol.%; CNT/1.74 vol.% | 0.66 | 43 | X-band | [15] |
PVdF/MWCNT/GN | 2 | 4.5 vol.% (MWCNT:GN = 1:1) | 0.199–0.22 | 28.5 | X-band | [82] |
Ni@MWCNT/MWCNTs | - | Ni@MWCNTs/10 vol.%; MWCNTs/1.74 vol.% | - | 77.2 | X-band | [83] |
Flexible and porous Cu/poly (L-lactic acid) (PLLA) fiber | 0.015 | - | 9472 | 39.59/39.96 | H-band/Ku-band | [84] |
Isomeric polypropylene (iPP)/polyethylene-1-octene (POE) | 1.2 | 3.0 vol.% | 0.00003 | 25 | X-band | [85] |
PVDF/ethylene-α-octene block copolymer (OBC)/MWCNT | 2 | MWCNT/2.7 vol.% | - | 34 | X-band | [86] |
PA6 @NiM/MWCNT/PS | - | PA6 @NiM/10 wt%; MWCNT/7 wt% | 0.64 | 46.9 | X-band | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, C.; Lang, T.; Gao, J.; Zhang, H.; Zhao, Y.; Guo, Z.; Miao, Z. Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding. Molecules 2023, 28, 7647. https://doi.org/10.3390/molecules28227647
Zhao Y, Li C, Lang T, Gao J, Zhang H, Zhao Y, Guo Z, Miao Z. Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding. Molecules. 2023; 28(22):7647. https://doi.org/10.3390/molecules28227647
Chicago/Turabian StyleZhao, Yuzhen, Chaonian Li, Tingting Lang, Jianjing Gao, Huimin Zhang, Yang Zhao, Zhun Guo, and Zongcheng Miao. 2023. "Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding" Molecules 28, no. 22: 7647. https://doi.org/10.3390/molecules28227647
APA StyleZhao, Y., Li, C., Lang, T., Gao, J., Zhang, H., Zhao, Y., Guo, Z., & Miao, Z. (2023). Research Progress on Intrinsically Conductive Polymers and Conductive Polymer-Based Composites for Electromagnetic Shielding. Molecules, 28(22), 7647. https://doi.org/10.3390/molecules28227647