Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population
Abstract
:1. Introduction
2. Results
2.1. Results of the LC–MS/MS Analysis
2.2. The Distribution of Six Urinary Biomarkers
2.3. A Comparison of the Measurement Status between the Five Urinary Biomarkers
2.4. Agreement of the Measurement Status between the Five Urinary Biomarkers
2.5. Correlations between the Six Urinary Biomarkers
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. LC-MS/MS Analysis
4.3. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Delaimy, W.K.; Willett, W.C. Measurement of tobacco smoke exposure: Comparison of toenail nicotine biomarkers and self-reports. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P., III. Nicotine chemistry, metabolism, kinetics and biomarkers. Handb. Exp. Pharmacol. 2009, 192, 29–60. [Google Scholar] [CrossRef]
- Benowitz, N.L. Cotinine as a biomarker of environmental tobacco smoke exposure. Epidemiol. Rev. 1996, 18, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Bernert, J.T.; Foulds, J.; Hecht, S.S.; Jacob, P.; Jarvis, M.J.; Joseph, A.; Oncken, C.; Piper, M.E. Biochemical Verification of Tobacco Use and Abstinence: 2019 Update. Nicotine Tob. Res. 2020, 22, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Kim, B. Workplace smoking ban policy and smoking behavior. J. Prev. Med. Public Health 2009, 42, 293–297. [Google Scholar] [CrossRef]
- Sim, B.; Park, M.B. Exposure to Secondhand Smoke: Inconsistency between Self-Response and Urine Cotinine Biomarker Based on Korean National Data during 2009–2018. Int. J. Environ. Res. Public Health 2021, 18, 9284. [Google Scholar] [CrossRef]
- Lee, H.-S.; Cho, J.-H.; Lee, Y.-J.; Park, D.-S. Effect of Second-Hand Smoke Exposure on Establishing Urinary Cotinine-Based Optimal Cut-Off Values for Smoking Status Classification in Korean Adults. Int. J. Environ. Res. Public Health 2022, 19, 7971. [Google Scholar] [CrossRef]
- Zhu, A.Z.; Renner, C.C.; Hatsukami, D.K.; Swan, G.E.; Lerman, C.; Benowitz, N.L.; Tyndale, R.F. The ability of plasma cotinine to predict nicotine and carcinogen exposure is altered by differences in CYP2A6: The influence of genetics, race, and sex. Cancer Epidemiol. Biomark. Prev. 2013, 22, 708–718. [Google Scholar] [CrossRef]
- St Helen, G.; Dempsey, D.; Wilson, M.; Jacob, P., III; Benowitz, N.L. Racial differences in the relationship between tobacco dependence and nicotine and carcinogen exposure. Addiction 2013, 108, 607–617. [Google Scholar] [CrossRef]
- Dempsey, D.; Tutka, P.; Jacob, P., III; Allen, F.; Schoedel, K.; Tyndale, R.F.; Benowitz, N.L. Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity. Clin. Pharmacol. Ther. 2004, 76, 64–72. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Lessov-Schlaggar, C.N.; Swan, G.E.; Jacob, P., III. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin. Pharmacol. Ther. 2006, 79, 480–488. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, E.M.; Wassenaar, C.; David, S.P.; Tyndale, R.F.; Altman, R.B.; Whirl-Carrillo, M.; Klein, T.E. PharmGKB summary: Very important pharmacogene information for cytochrome P-450, family 2, subfamily A, polypeptide 6. Pharmacogenet. Genom. 2012, 22, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; St Helen, G.; Nardone, N.; Cox, L.S.; Jacob, P. Urine Metabolites for Estimating Daily Intake of Nicotine from Cigarette Smoking. Nicotine Tob. Res. 2020, 22, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Li, Y.S.; Watanabe, S.; Ootsuyama, Y.; Kawai, K. Urinary biomarkers for secondhand smoke and heated tobacco products exposure. J. Clin. Biochem. Nutr. 2021, 69, 37–43. [Google Scholar] [CrossRef]
- Taghavi, T.; Novalen, M.; Lerman, C.; George, T.P.; Tyndale, R.F. A Comparison of Direct and Indirect Analytical Approaches to Measuring Total Nicotine Equivalents in Urine. Cancer Epidemiol. Biomark. Prev. 2018, 27, 882–891. [Google Scholar] [CrossRef]
- Feng, J.; Sosnoff, C.S.; Bernert, J.T.; Blount, B.C.; Li, Y.; Del Valle-Pinero, A.Y.; Kimmel, H.L.; van Bemmel, D.M.; Rutt, S.M.; Crespo-Barreto, J.; et al. Urinary Nicotine Metabolites and Self-Reported Tobacco Use Among Adults in the Population Assessment of Tobacco and Health (PATH) Study, 2013–2014. Nicotine Tob. Res 2022, 24, 768–777. [Google Scholar] [CrossRef]
- Nakajima, M.; Fukami, T.; Yamanaka, H.; Higashi, E.; Sakai, H.; Yoshida, R.; Kwon, J.; McLeod, H.L.; Yokoi, T. Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations. Clin. Pharmacol. Ther. 2006, 80, 282–297. [Google Scholar] [CrossRef]
- Oh, J.; Park, M.-S.; Chun, M.-R.; Hwang, J.H.; Lee, J.-Y.; Jee, J.H.; Lee, S.-Y. A Simple and High-Throughput LC–MS-MS Method for Simultaneous Measurement of Nicotine, Cotinine, 3-OH Cotinine, Nornicotine and Anabasine in Urine and Its Application in the General Korean Population. J. Anal. Toxicol. 2020, 46, 25–36. [Google Scholar] [CrossRef]
- Moyer, T.P.; Charlson, J.R.; Enger, R.J.; Dale, L.C.; Ebbert, J.O.; Schroeder, D.R.; Hurt, R.D. Simultaneous analysis of nicotine, nicotine metabolites, and tobacco alkaloids in serum or urine by tandem mass spectrometry, with clinically relevant metabolic profiles. Clin. Chem. 2002, 48, 1460–1471. [Google Scholar] [CrossRef]
- Ghosheh, O.; Dwoskin, L.P.; Li, W.K.; Crooks, P.A. Residence times and half-lives of nicotine metabolites in rat brain after acute peripheral administration of [2′-(14)C]nicotine. Drug Metab. Dispos. 1999, 27, 1448–1455. [Google Scholar]
- Rubinstein, M.L.; Benowitz, N.L.; Auerback, G.M.; Moscicki, A.B. Rate of nicotine metabolism and withdrawal symptoms in adolescent light smokers. Pediatrics 2008, 122, e643–e647. [Google Scholar] [CrossRef] [PubMed]
- Goniewicz, M.L.; Gawron, M.; Smith, D.M.; Peng, M.; Jacob, P., III; Benowitz, N.L. Exposure to Nicotine and Selected Toxicants in Cigarette Smokers Who Switched to Electronic Cigarettes: A Longitudinal within-Subjects Observational Study. Nicotine Tob. Res. 2017, 19, 160–167. [Google Scholar] [CrossRef]
- Tanner, J.A.; Novalen, M.; Jatlow, P.; Huestis, M.A.; Murphy, S.E.; Kaprio, J.; Kankaanpää, A.; Galanti, L.; Stefan, C.; George, T.P.; et al. Nicotine metabolite ratio (3-hydroxycotinine/cotinine) in plasma and urine by different analytical methods and laboratories: Implications for clinical implementation. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; St Helen, G.; Dempsey, D.A.; Jacob, P., III; Tyndale, R.F. Disposition kinetics and metabolism of nicotine and cotinine in African American smokers: Impact of CYP2A6 genetic variation and enzymatic activity. Pharmacogenet. Genom. 2016, 26, 340–350. [Google Scholar] [CrossRef]
- Lee, H.-S. Diagnostic Performance Evaluation of the Novel Index Combining Urinary Cotinine and 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Smoking Status Verification and Usefulness for Trend Monitoring of Tobacco Smoking Exposure. Int. J. Environ. Res. Public Health 2022, 19, 12147. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P., III; Yu, L.; Shulgin, A.T.; Benowitz, N.L. Minor tobacco alkaloids as biomarkers for tobacco use: Comparison of users of cigarettes, smokeless tobacco, cigars, and pipes. Am. J. Public Health 1999, 89, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P., III; Hatsukami, D.; Severson, H.; Hall, S.; Yu, L.; Benowitz, N.L. Anabasine and anatabine as biomarkers for tobacco use during nicotine replacement therapy. Cancer Epidemiol. Biomark. Prev. 2002, 11, 1668–1673. [Google Scholar]
- Suh-Lailam, B.B.; Haglock-Adler, C.J.; Carlisle, H.J.; Ohman, T.; McMillin, G.A. Reference Interval Determination for Anabasine: A Biomarker of Active Tobacco Use. J. Anal. Toxicol. 2014, 38, 416–420. [Google Scholar] [CrossRef]
- McGuffey, J.E.; Wei, B.; Bernert, J.T.; Morrow, J.C.; Xia, B.; Wang, L.; Blount, B.C. Validation of a LC-MS/MS method for quantifying urinary nicotine, six nicotine metabolites and the minor tobacco alkaloids—Anatabine and anabasine—In smokers’ urine. PLoS ONE 2014, 9, e101816. [Google Scholar] [CrossRef]
- von Weymarn, L.B.; Thomson, N.M.; Donny, E.C.; Hatsukami, D.K.; Murphy, S.E. Quantitation of the Minor Tobacco Alkaloids Nornicotine, Anatabine, and Anabasine in Smokers’ Urine by High Throughput Liquid Chromatography-Mass Spectrometry. Chem. Res. Toxicol. 2016, 29, 390–397. [Google Scholar] [CrossRef]
- Bendik, P.B.; Rutt, S.M.; Pine, B.N.; Sosnoff, C.S.; Blount, B.C.; Zhu, W.; Feng, J.; Wang, L. Anabasine and Anatabine Exposure Attributable to Cigarette Smoking: National Health and Nutrition Examination Survey (NHANES) 2013–2014. Int. J. Environ. Res. Public Health 2022, 19, 9744. [Google Scholar] [CrossRef] [PubMed]
- Colsoul, M.L.; Goderniaux, N.; Onorati, S.; Dupuis, S.; Jamart, J.; Vanpee, D.; Berlin, I.; Galanti, L. Novel proposed cutoff values for anatabine and anabasine in differentiating smokers from non-smokers. Clin. Biochem. 2023, 116, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.-Y.; Wei, X.; Zhou, Y.-Q.; Liu, X.-W.; Li, J.-X.; Zhang, W.; Wang, C.-B.; Zhang, L.-Y.; Zhou, Y. Genus Alangium—A review on its traditional uses, phytochemistry and pharmacological activities. Fitoterapia 2020, 147, 104773. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Su, H.; Cai, R.; Ma, X. Extraction of dl-anabasine from Alangium platanifolium root using an emulsion liquid membrane. Anal. Methods 2015, 7, 1860–1865. [Google Scholar] [CrossRef]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part I-Development. Ann. Lab. Med. 2022, 42, 121–140. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, S.Y.; Hur, M. Back to the Basics of Liquid Chromatography-Mass Spectrometry. Ann. Lab. Med. 2022, 42, 119–120. [Google Scholar] [CrossRef]
- Rappold, B.A. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II-Operations. Ann. Lab. Med. 2022, 42, 531–557. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, Q.; Liu, Z.; Zhao, H.; Zhou, W.; Zhang, C. Commutability Assessment of Processed Human Plasma Samples for Normetanephrine and Metanephrine Measurements Based on the Candidate Reference Measurement Procedure. Ann. Lab. Med. 2022, 42, 575–584. [Google Scholar] [CrossRef]
- Choi, R.; Chun, M.R.; Park, J.; Lee, J.W.; Ju, H.Y.; Cho, H.W.; Hyun, J.K.; Koo, H.H.; Yi, E.S.; Lee, S.Y. Quantification of Thioguanine in DNA Using Liquid Chromatography-Tandem Mass Spectrometry for Routine Thiopurine Drug Monitoring in Patients with Pediatric Acute Lymphoblastic Leukemia. Ann. Lab. Med. 2021, 41, 145–154. [Google Scholar] [CrossRef]
Biomarkers | Not Detected | Detected | Positive | Concentration | |
---|---|---|---|---|---|
n (%) | n (%) | n (%) | (Mean ± SD; ng/mL) | Range (ng/mL) | |
Cotinine | 15,195 (76.5%) | 4679 (23.5%) | 3682 (18.6%) | 221.2 ± 578.1 | <1.0–4907.4 |
Nicotine | 15,400 (77.5%) | 4474 (22.5%) | 3460 (17.4%) | 214.5 ± 776.5 | <1.0–13,806.4 |
Nornicotine | 16,232 (81.7%) | 3642 (18.3%) | 3434 (17.3%) | 14.3 ± 41.3 | <1.0–766.5 |
3-OH cotinine | 15,649 (78.7%) | 4225 (21.3%) | 3308 (16.6%) | 715.3 ± 2307.5 | <5.0–39,604.5 |
Anabasine | 15,588 (78.4%) | 4286 (21.6%) | 2624 (13.2%) | 2.2 ± 5.1 | <1.0–161.1 |
TNE3 (µmol/L) | 6.3 ± 18.0 | <0.1–268.5 |
Urinary Biomarkers | Cases | Cotinine | Nicotiine | Nornicotine | 3-OH Cotinine | Anabasine | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Detected | Not Detected | Detected | Not Detected | Detected | Not Detected | Detected | Not Detected | Detected | Not Detected | ||
(4679) | (15,195) | (4474) | (15,400) | (3642) | (16,232) | (4225) | (15,649) | (4286) | (15,588) | ||
Cotinine | Detected | 4116 | 563 | 3625 | 1054 | 4122 | 557 | 3081 | 1598 | ||
Not detected | 358 | 14,837 | 17 | 15,178 | 103 | 15,092 | 1205 | 13,990 | |||
κ | 0.869 | (0.861–0.878) | 0.838 | (0.829–0.847) | 0.905 | (0.897–0.912) | 0.597 | (0.583–0.610) | |||
Nicotine | Detected | 4116 | 358 | 3621 | 853 | 3892 | 582 | 3078 | 1396 | ||
Not detected | 563 | 14,837 | 21 | 15,379 | 333 | 15,067 | 1208 | 14,192 | |||
κ | 0.869 | (0.861–0.878) | 0.973 | (0.968–0.977) | 0.865 | (0.857–0.874) | 0.619 | (0.605–0.632) | |||
Nornicotine | Detected | 3625 | 17 | 3621 | 21 | 3594 | 48 | 2957 | 685 | ||
Not detected | 1054 | 15,178 | 853 | 15,379 | 631 | 15,601 | 1329 | 14,903 | |||
κ | 0.838 | (0.829–0.847) | 0.865 | (0.856–0.874) | 0.893 | (0.885–0.900) | 0.683 | (0.670–0.696) | |||
3-OH cotinine | Detected | 4122 | 103 | 3892 | 333 | 3594 | 631 | 3013 | 1212 | ||
Not detected | 557 | 15,092 | 582 | 15,067 | 631 | 15,018 | 1273 | 14,376 | |||
κ | 0.905 | (0.897–0.912) | 0.865 | (0.857–0.874) | 0.893 | (0.885–0.900) | 0.628 | (0.615–0.642) | |||
Anabasine | Detected | 3081 | 1205 | 3078 | 1208 | 2957 | 1329 | 3013 | 1273 | ||
Not detected | 1598 | 13,990 | 1396 | 14,192 | 685 | 14,903 | 1212 | 14,376 | |||
κ | 0.597 | (0.583–0.610) | 0.619 | (0.605–0.632) | 0.683 | (0.670–0.696) | 0.628 | (0.615–0.642) |
Urinary Biomarkers | Cases | Cotinine | Nicotine | Nornicotine | 3-OH Cotinine | Anabasine | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative | Positive | Negative | ||
(3682) | (16,192) | (3460) | (16,414) | (3567) | (16,440) | (3574) | (16,566) | (3566) | (17,250) | ||
Cotinine | Positive | 3437 | 245 | 3550 | 113 | 3519 | 163 | 2641 | 1041 | ||
Negative | 23 | 15,172 | 17 | 15,178 | 55 | 15,140 | 925 | 14,270 | |||
κ | 0.954 | (0.948–0.959) | 0.978 | (0.974–0.982) | 0.963 | (0.958–0.968) | 0.664 | (0.651–0.678) | |||
Nicotine | Positive | 3437 | 23 | 3434 | 26 | 3308 | 152 | 2624 | 836 | ||
Negative | 245 | 16,169 | 133 | 16,281 | 266 | 16,148 | 942 | 15,472 | |||
κ | 0.954 | (0.948–0.959) | 0.973 | (0.968–0.977) | 0.968 | (0.964–0.973) | 0.693 | (0.679–0.706) | |||
Nornicotine | Positive | 3550 | 17 | 3434 | 133 | 3417 | 150 | 2636 | 931 | ||
Negative | 132 | 16,308 | 26 | 16,414 | 157 | 16,283 | 930 | 15,510 | |||
κ | 0.978 | (0.974–0.982) | 0.973 | (0.968–0.977) | 0.948 | (0.942–0.953) | 0.683 | (0.669–0.696) | |||
3-OH cotinine | Positive | 3519 | 55 | 3308 | 266 | 3417 | 157 | 2562 | 1012 | ||
Negative | 163 | 16,403 | 152 | 16,414 | 150 | 16,416 | 1004 | 15,562 | |||
κ | 0.963 | (0.958–0.968) | 0.968 | (0.964–0.973) | 0.948 | (0.942–0.953) | 0.657 | (0.643–0.671) | |||
Anabasine | Positive | 2641 | 925 | 2624 | 942 | 2636 | 930 | 2562 | 1004 | ||
Negative | 1041 | 16,209 | 836 | 16,414 | 931 | 16,319 | 1012 | 16,238 | |||
κ | 0.664 | (0.651–0.678) | 0.693 | (0.679–0.706) | 0.683 | (0.669–0.696) | 0.657 | (0.643–0.671) |
Detection Status | ||
---|---|---|
Cases | Number | % |
Not detected | 13,598 | 68.4 |
Single biomarker detectable | 1788 | 9.0 |
Cotinine | 275 | 1.4 |
Nicotine | 281 | 1.4 |
Nornicotine | 14 | 0.1 |
3-OH cotinine | 76 | 0.4 |
Anabasine | 1142 | 5.7 |
Two biomarkers detectable | 529 | 2.5 |
Cotinine + Nicotine | 187 | 0.9 |
Cotinine + Nornicotine | 1 | 0.0 |
Cotinine + 3-OH cotinine | 224 | 1.1 |
Cotinine + Anabasine | 35 | 0.2 |
Nicotine + 3-OH cotinine | 20 | 0.1 |
Nicotine + Anabasine | 55 | 0.3 |
Nornicotine + Anabasine | 2 | 0.0 |
3-OH cotinine + Anabasine | 5 | 0.0 |
Three biomarkers detectable | 320 | 1.6 |
Cotinine + Nicotine + Nornicotine | 20 | 0.1 |
Cotinine + Nicotine + 3-OH cotinine | 242 | 1.2 |
Cotinine + Nicotine + Anabasine | 28 | 0.1 |
Cotinine + Nornicotine + 3-OH cotinine | 4 | 0.0 |
Cotinine + 3-OH cotinine + Anabasine | 1 | 0.0 |
Nicotine + Nornicotine + 3-OH cotinine | 1 | 0.0 |
Nicotine + 3-OH cotinine + Anabasine | 24 | 0.1 |
Four biomarkers detectable | 695 | 3.5 |
Cotinine + Nicotine + Nornicotine + 3-OH cotinine | 645 | 3.2 |
Cotinine + Nicotine + Nornicotine + Anabasine | 11 | 0.1 |
Cotinine + Nicotine + 3-OH cotinine + Anabasine | 39 | 0.2 |
Five biomarkers detectable | 2944 | 14.8 |
Total | 19,874 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Chun, M.-R.; Lee, S.-Y. Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population. Molecules 2023, 28, 7685. https://doi.org/10.3390/molecules28237685
Lee H-S, Chun M-R, Lee S-Y. Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population. Molecules. 2023; 28(23):7685. https://doi.org/10.3390/molecules28237685
Chicago/Turabian StyleLee, Hyun-Seung, Mi-Ryung Chun, and Soo-Youn Lee. 2023. "Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population" Molecules 28, no. 23: 7685. https://doi.org/10.3390/molecules28237685
APA StyleLee, H. -S., Chun, M. -R., & Lee, S. -Y. (2023). Simultaneous Measurement and Distribution Analysis of Urinary Nicotine, Cotinine, Trans-3′-Hydroxycotinine, Nornicotine, Anabasine, and Total Nicotine Equivalents in a Large Korean Population. Molecules, 28(23), 7685. https://doi.org/10.3390/molecules28237685