Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts
Abstract
:1. Introduction
2. Calculation Formulas
3. Metallic Oxide
3.1. SiO2
- (1)
- SMSI
- (2)
- The structural function support
- (3)
- Surface acidity and alkalinity of the supports
Catalysts | Temperature (K) | Pressure (MPa) | H2/CO | (%) | (%C mol) | (%) | Yield (%) | Reference | Eqs. |
---|---|---|---|---|---|---|---|---|---|
Fe1Si | 553 | 1.5 | 2 | 45 | 8 | 21 | 4 | [16] | (8) a,b |
Fe10Si | 553 | 1.5 | 2 | 34 | 8 | 12 | 3 | [16] | (8) a,b |
Fe25Si | 553 | 1.5 | 2 | 53 | 10 | 18 | 5 | [16] | (8) a,b |
10FeSi17.5 | 573 | 2.0 | 2 | 29 | 15 | 11 | 4 | [23] | (4) b |
FeMnS5 | 573 | 1.0 | 1 | 22 | 23 | 24 | 5 | [26] | (7) b |
FeMnS50 | 573 | 1.0 | 1 | 44 | 29 | 34 | 13 | [27] | (7) b |
FeMnS80 | 573 | 1.0 | 1 | 40 | 32 | 34 | 13 | [27] | (7) b |
FeMnS80E | 573 | 1.0 | 1 | 51 | 36 | 33 | 18 | [27] | (7) b |
Fe@Si | 553 | 2.0 | 2 | 48 | 18 | 21 | 9 | [37] | (4) b |
Fe/Si | 553 | 2.0 | 2 | 56 | 19 | 22 | 11 | [37] | (4) b |
Fe-Si | 553 | 2.0 | 2 | 30 | 13 | 11 | 4 | [37] | (4) b |
Cat0K | 518 | 1.5 | 2 | 38 | 6 | 12 | 2 | [39] | (4) c |
Cat0.5K | 518 | 1.5 | 2 | 45 | 10 | 13 | 4 | [39] | (4) c |
Cat1K | 518 | 1.5 | 2 | 5 | 13 | 18 | 7 | [39] | (4) c |
Cat3K | 518 | 1.5 | 2 | 39 | 12 | 20 | 5 | [39] | (4) c |
Cat5K | 518 | 1.5 | 2 | 28 | 13 | 22 | 4 | [39] | (4) c |
3.2. Al2O3
- (1)
- SMSI
- (2)
- Structural function
- (3)
- Synergetic effect
Catalysts | Temperature (K) | Pressure (Mpa) | H2/CO | (%) | (%C mol) | (%) | Yield | Reference | Eqs. |
---|---|---|---|---|---|---|---|---|---|
Fe | 533 | 1.5 | 0.7 | 75 | --- | 45 | --- | [41] | --- |
Fe/Al2O3 | 533 | 1.5 | 0.7 | 19 | --- | 28 | --- | [41] | --- |
Al2O3 | 618 | 1.5 | 2.0 | 72 | --- | 49 | --- | [42] | (7) b |
50%MgO/Al2O3 | 618 | 1.5 | 1.0 | 91 | 30 | 46 | 27 | [42] | (7) b |
MgO | 618 | 1.5 | 1.0 | 74 | --- | 46 | --- | [42] | (7) b |
S-Al2O3 | 633 | 0.1 | --- | 16 | 24 | 38 | 4 | [31] | (7) b |
M-Al2O3 | 633 | 0.1 | --- | 12 | 24 | 41 | 3 | [31] | (7) b |
L-Al2O3 | 633 | 0.1 | --- | 12 | 25 | 42 | 3 | [31] | (7) b |
5AFe | 623 | 2.0 | 1.0 | 58 | 20 | 45 | 12 | [45] | (7) b |
5AFe/S/Na | 623 | 2.0 | 1.0 | 69 | 29 | 45 | 20 | [45] | (7) b |
Fe-K2O/ZnAl8O13 | 633 | 2.0 | 1.0 | 15 | 30 | 54 | 5 | [47] | (7) b |
4. Molecular Sieve
4.1. Acid Regulation
4.2. Structure
4.3. Metal Modification
Catalysts | Temperature (K) | Pressure (MPa) | H2/CO | (%) | (%C mol) | (%) | Yield | Reference | Eqs. |
---|---|---|---|---|---|---|---|---|---|
Fe-Cu-K/Mordenite | 573 | 2.0 | 1.0 | 73 | 12 | 38 | 9 | [52] | (7) b |
Fe-Cu-K/Beta-zeolite | 573 | 2.0 | 1.0 | 64 | 22 | 25 | 14 | [52] | (7) b |
Fe-Cu-K/ZSM-5 | 573 | 2.0 | 1.0 | 81 | 20 | 36 | 16 | [52] | (7) b |
(Si/Al = 25) | 573 | 1.0 | 2.0 | 81 | 6 | 38 | 5 | [51] | (7) b |
(Si/Al = 40) | 573 | 1.0 | 2.0 | 79 | 6 | 37 | 4 | [54] | (7) b |
(Si/Al = 140) | 573 | 1.0 | 2.0 | 62 | 3 | 29 | 2 | [54] | (7) b |
Fe-SiO2 | 653 | 1.0 | 0.5 | 41 | 20 | --- | 8 | [60] | (4) b |
Fe/SiO2-S | 653 | 1.0 | 0.5 | 21 | 30 | --- | 6 | [60] | (4) b |
Fe/NaY | 593 | 2.0 | 2.0 | 57 | 5 | 38 | 3 | [66] | (7) b |
Fe-K/NaY | 593 | 2.0 | 2.0 | 78 | 37 | 41 | 29 | [66] | (7) b |
Fe/LiY | 543 | 2.0 | 2.0 | 40 | --- | 9 | --- | [70] | --- |
Fe/NaY | 543 | 2.0 | 2.0 | 49 | --- | 21 | --- | [70] | --- |
Fe/KY | 543 | 2.0 | 2.0 | 75 | --- | 36 | --- | [70] | --- |
Fe/CsY | 543 | 2.0 | 2.0 | 91 | --- | 41 | --- | [70] | --- |
5. Carbon Material
5.1. Activated Carbon
5.2. Carbon Nanotubes (CNTs)
5.3. Graphene (GN), Graphene Oxide (GO), and Reduced Graphene Oxide (rGO)
6. Hydrophobicity and Amphiphobic Modification
6.1. Hydrophobic Modification of Metallic Oxide
6.2. Hydrophobic Modification of the Molecular Sieve
6.3. Amphiphobic Modification
Catalysts | Temperature (K) | Pressure (MPa) | H2/CO | (%) | (%C mol) | (%) | Yield | Reference | Eqs. |
---|---|---|---|---|---|---|---|---|---|
Fe2O3@SiO2 | 593 | 1.5 | 2 | 96 | 8 | 40 | 8 | [11] | (8) a,b |
A-Fe2O3@SiO2-(CH3)3 | 593 | 1.5 | 2 | 54 | 20 | 5 | 11 | [11] | (8) a,b |
B-Fe2O3@SiO2-(CH3)3 | 593 | 1.5 | 2 | 50 | 18 | 5 | 9 | [11] | (8) a,b |
FeMnOx | 593 | 2.0 | 2 | 49 | 31 | 17 | 15 | [12] | (4) b |
FeMnOx@SiO2-8.2-(CH3)3 | 593 | 2.0 | 2 | 51 | 55 | 5 | 28 | [12] | (4) b |
FeMnOx@SiO2-13.1-(CH3)3 | 593 | 2.0 | 2 | 45 | 40 | 12 | 18 | [12] | (4) b |
Fe/ZSM-5 | 533 | 1.0 | 2 | 53 | 7 | 20 | 4 | [13] | (4) b |
Fe/ZSM-5@S1-24(×2) | 533 | 1.0 | 2 | 43 | 11 | 11 | 5 | [13] | (4) b |
Fe3O4@SiO2 | 593 | 1.5 | 2 | 34 | 17 | 44 | 6 | [113] | (8) a,b |
Fe3O4@SiO2-PFTS | 593 | 1.5 | 2 | 33 | 22 | 12 | 7 | [113] | (8) a,b |
7. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gholami, Z.; Gholami, F.; Tisler, Z.; Hubacek, J.; Tomas, M.; Baciak, M.; Vakili, M. Production of light olefins via Fischer-Tropsch process using iron-based catalysts: A Review. Catalysts 2022, 12, 174. [Google Scholar] [CrossRef]
- Dry, M.E. Fischer-Tropsch reactions and the environment. Appl. Catal. A Gen. 1999, 189, 185–190. [Google Scholar] [CrossRef]
- Liu, X.J.; Yang, X.Q.; Liu, C.; Chen, P.; Yue, X.M.; Zhang, S.Q. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts. J. Taiwan Inst. Chem. Eng. 2016, 65, 233–241. [Google Scholar] [CrossRef]
- Antoniak-Jurak, K.; Kowalik, P.; Konkol, M.; Próchniak, W.; Bicki, R.; Raróg-Pilecka, W.; Kuśtrowski, P.; Ryczkowski, J. Sulfur tolerant Co-Mo-K catalysts supported on carbon materials for sour gas shift process-effect of support modification. Fuel Process. Technol. 2016, 144, 305–311. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; de Jong, K.P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Dalai, A.K.; Ma, W.P.; Zhang, L.F. Fischer-Tropsch synthesis for light olefins from Syngas: A review of catalyst development. Reactions 2021, 2, 227–257. [Google Scholar] [CrossRef]
- Gao, Y.L.; Shao, L.; Yang, S.Q.; Hu, J.J.; Zhao, S.H.; Dang, J.T.; Wang, W.; Yan, X.Y.; Yang, P.B. Recent advances in iron-based catalysts for Fischer-Tropsch to olefins reaction. Catal. Commun. 2023, 181, 106720. [Google Scholar] [CrossRef]
- Yu, H.L.; Wang, C.Q.; Lin, T.J.; An, Y.L.; Wang, Y.C.; Chang, Q.Y.; Yu, F.; Wei, Y.; Sun, F.F.; Jiang, Z.; et al. Direct production of olefins from syngas with ultrahigh carbon efficiency. Nat. Commun. 2022, 13, 5987. [Google Scholar] [CrossRef]
- Jiao, F.; Li, J.J.; Pan, X.L.; Xiao, J.P.; Li, H.B.; Ma, H.; Wei, M.M.; Pan, Y.; Zhou, Z.Y.; Li, M.R.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef]
- Xie, J.X.; Paalanen, P.P.; van Deelen, T.W.; Weckhuysen, B.M.; Louwerse, M.J.; de Jong, K.P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 2019, 10, 167. [Google Scholar] [CrossRef]
- Yu, X.F.; Zhang, J.L.; Wang, X.; Ma, Q.X.; Gao, X.H.; Xia, H.Q.; Lai, X.Y.; Fan, S.B.; Zhao, T.S. Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Appl. Catal. B Environ. 2018, 232, 420–428. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.Z.; Lu, Y.W.; Lin, T.J.; Gong, K.; Wang, C.Q.; An, Y.L.; Yu, F.; Zhong, L.S.; Sun, Y.H. Fischer-Trospch to olefins over hydrophobic FeMnOx@SiO2 catalysts: The effect of SiO2 shell content. Appl. Catal. A Gen. 2022, 635, 118552. [Google Scholar] [CrossRef]
- Javed, M.; Zhang, G.H.; Gao, W.Z.; Cao, Y.N.; Dai, P.Y.; Ji, X.W.; Lu, C.X.; Yang, R.Q.; Xing, C.; Sun, J. From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsulle catalysts. Catal. Today 2019, 330, 39–45. [Google Scholar] [CrossRef]
- Vilcnik, A.; Jerman, I.; Vuk, A.S.; Kozelj, M.; Orel, B.; Tomsic, B.; Simoncic, B.; Kovac, J. Structural properties and anti-bacterial effects of hydrophobic and oleophobic sol-gel coatings for cotton fabrics. Langmuir 2009, 25, 5869–5880. [Google Scholar] [CrossRef]
- Ma, Z.X.; Zhou, C.L.; Wang, D.M.; Wang, Y.X.; He, W.X.; Tan, Y.S.; Liu, Q.S. Co-precipitated Fe-Zr catalysts for the Fischer-Tropsch synthesis of lower olefins (C2O~C4O): Synergistic effects of Fe and Zr. J. Catal. 2019, 378, 209–219. [Google Scholar] [CrossRef]
- Suo, H.Y.; Wang, S.G.; Zhang, C.H.; Xu, J.; Wu, B.S.; Yang, Y.; Xiang, H.W.; Li, Y.W. Chemical and structural effects of silica in iron-based Fischer-Tropsch synthesis catalysts. J. Catal. 2012, 286, 111–123. [Google Scholar] [CrossRef]
- Qing, M.; Yang, Y.; Wu, B.S.; Xu, J.; Zhang, C.H.; Gao, P.; Li, Y.W. Modification of Fe-SiO2 interaction with zirconia for iron-based Fischer-Tropsch catalysts. J. Catal. 2011, 279, 111–122. [Google Scholar] [CrossRef]
- Mogorosi, R.P.; Fischer, N.; Claeys, M.; van Steen, E. Strong-metal-support interaction by molecular design: Fe-silicate interactions in Fischer-Tropsch catalysts. J. Catal. 2012, 289, 140–150. [Google Scholar] [CrossRef]
- Van Santen, R.A.; Ciobîcă, I.M.; van Steen, E.; Ghouri, M.M. Chapter 3. Mechanistic issues in Fischer-Tropsch catalysis. Adv. Catal. 2011, 54, 127–187. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Li, A.W.; Iglesia, E. Pathways for CO2 Formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts. Catal. Lett. 2002, 80, 77–86. [Google Scholar] [CrossRef]
- Dry, M.E. Fischer-Tropsch synthesis over iron catalysts. Catal. Lett. 1990, 7, 241–251. [Google Scholar] [CrossRef]
- Ning, W.S.; Koizumi, N.; Chang, H.; Mochizuki, T.; Itoh, T.; Yamad, M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction. Appl. Catal. A Gen. 2006, 312, 35–44. [Google Scholar] [CrossRef]
- Cheng, K.; Virginie, M.; Ordomsky, V.V.; Cordier, C.; Chernavskii, P.A.; Ivantsov, M.I.; Paul, S.; Wang, Y.; Khodakov, A.Y. Pore size effects in high-temperature Fischer-Tropsch synthesis over supported iron catalysts. J. Catal. 2015, 328, 139–150. [Google Scholar] [CrossRef]
- Zhao, M.; Ban, Y.J.; Yang, K.; Zhou, Y.W.; Cao, N.; Wang, Y.C.; Yang, W.S. High-selective supramolecule array membrane made of zero-dimensional molecules for gas separation. Angew. Chem. Int. Ed. 2021, 60, 20977–20983. [Google Scholar] [CrossRef]
- Yuan, H.; Lv, L.J.; Ouyang, Y.; Xu, G.T. Study on the acidc sites of ZRP zeolite by low-temperature In Situ FT-IR with CO probe molecule. Spectrosc. Spect. Anal. 2018, 38 (Suppl. S1), 51–52. [Google Scholar]
- Zhou, C.L.; Wen, Y.; He, W.X.; Liu, Q.S. Research progress of iron-based catalysts for FTO reaction on activation manner and active phases. Fine Chem. 2022, 39, 17–23. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.F.; Zhang, Y. The effect of pore size or iron particle size on the formation of light olefins in Fischer-Tropsch synthesis. RSC Adv. 2015, 5, 29002–29007. [Google Scholar] [CrossRef]
- Numpilai, T.; Chanlek, N.; Poo-Arporn, Y.; Wannapaiboon, S.; Cheng, C.K.; Siri-Nguan, N.; Sornchamni, T.; Kongka-Chuichay, P.; Chareonpanich, M.; Rupprechter, G.; et al. Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins. Appl. Surf. Sci. 2019, 483, 581–592. [Google Scholar] [CrossRef]
- Yao, N.; Ma, H.F.; Shao, Y.; Yuan, C.K.; Lv, D.Y.; Li, X.N. Effect of cation-oligomer interactions on the size and reducibility of NiO particles on NiRu/SiO2 catalysts. J. Mater. Chem. 2011, 21, 17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Yoneyama, Y.; Tsubaki, N. Simultaneous introduction of chemical and spatial effects via a new bimodal catalyst support preparation method. Chem. Commun. 2002, 11, 1216–1217. [Google Scholar] [CrossRef]
- Xu, B.L.; Fan, Y.N.; Zhang, Y.; Tsubaki, N. Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis. AIChE J. 2005, 51, 2068–2076. [Google Scholar] [CrossRef]
- Fan, L.; Yokota, K.; Fujimoto, K. Supercritical phase Fischer-Tropsch synthesis: Catalyst pore-size effect. AIChE J. 1992, 38, 1639–1648. [Google Scholar] [CrossRef]
- Chen, X.Q.; Deng, D.H.; Pan, X.L.; Hu, Y.F.; Bao, X.H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 2014, 51, 217–220. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, C.L.; Zhang, Q.; Yu, L.F.; He, W.X.; Liu, Q.S. Research progress electronic and structure promoters of Fe based catalysts for FTO reaction. Inorg. Chem. Ind. 2023, 55, 36–46. [Google Scholar] [CrossRef]
- Thune, P.; Moodley, P.; Scheijen, F.; Fredriksson, H.; Lancee, R.; Kropf, J.; Miller, J.; Niemantsverdriet, J.W. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in situ X-ray absorption spectroscopy. J. Phys. Chem. C 2012, 116, 7367–7373. [Google Scholar] [CrossRef]
- Bukur, D.B.; Todic, B.; Elbashir, N. Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: A review. Catal. Today 2016, 275, 66–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Qing, M.; Wang, H.; Liu, X.W.; Liu, S.Y.; Wan, H.L.; Li, L.G.; Gao, X.; Yang, Y.; Wen, X.D.; et al. Comprehensive understanding of SiO2-promoted Fe Fischer-Tropsch synthesis catalysts: Fe-SiO2 interaction and beyond. Catal. Today 2021, 368, 96–105. [Google Scholar] [CrossRef]
- Wan, H.J.; Wu, B.S.; Tao, Z.C.; Li, T.Z.; An, X.; Xiang, H.W.; Li, Y.W. Study of an iron-based Fischer-Tropsch synthesis catalyst incorporated with SiO2. J. Mol. Catal. A Chem. 2006, 260, 255–263. [Google Scholar] [CrossRef]
- Das, S.K.; Mohanty, P.; Majhi, S.; Pant, K.K. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading. Appl. Energy 2013, 111, 267–276. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, L.T.; Hou, B.; Sun, D.K.; Li, D.B. Cobalt aluminate-modified alumina as a support for cobalt in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2017, 530, 30–36. [Google Scholar] [CrossRef]
- Wan, H.J.; Wu, B.S.; Zhang, C.H.; Xiang, H.W.; Li, Y.W.; Xu, B.F.; Yi, F. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catal. Commun. 2007, 8, 1538–1545. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.X.; Li, X.G.; Chen, D.; Xiao, W.D. An effective iron catalyst supported on mixed MgO-Al2O3 for Fischer-Tropsch synthesis to olefins. Ind. Eng. Chem. Res. 2020, 59, 11462–11474. [Google Scholar] [CrossRef]
- Bogdan, V.I.; Koklin, A.E.; Kustov, A.L.; Pokusaeva, Y.A.; Bogdan, T.V.; Kustov, L.M. Carbon dioxide reduction with hydrogen on Fe, Co supported alumina and carbon catalysts under supercritical conditions. Molecules 2021, 26, 2883. [Google Scholar] [CrossRef]
- Wan, H.J.; Wu, B.S.; Xiang, H.W.; Li, Y.W. Fischer-Tropsch synthesis:influence of support incorporation manner on metal dispersion, metal-support interaction, and activities of iron catalysts. ACS Catal. 2012, 2, 1877–1883. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Koeken, A.C.J.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Effect of precursor on the catalytic performance of supported iron catalysts for the Fischer–Tropsch synthesis of lower olefins. Catal. Today 2013, 215, 95–102. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Koeken, A.C.J.; Bitter, J.H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. J. Catal. 2013, 303, 22–30. [Google Scholar] [CrossRef]
- Galvis, H.M.T.; Bitter, J.H.; Khare, C.B.; Ruitenbeek, M.; Dugulan, A.I.; de Jong, K.P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.X.; Jia, G.P.; Zhao, C.X.; Xing, Y. Selective iron catalysts for direct Fischer-Tropsch synthesis to light olefins. Ind. Eng. Chem. Res. 2021, 60, 6137–6146. [Google Scholar] [CrossRef]
- Zhu, C.X.; Gamliel, D.P.; Valla, J.A.; Bollas, G.M. Fischer-tropsch synthesis in monolith catalysts coated with hierarchical ZSM-5. Appl. Catal. B Environ. 2021, 284, 119719. [Google Scholar] [CrossRef]
- Weber, J.L.; del Monte, D.M.; Beerthuis, R.; Dufour, J.; Martos, C.; de Jong, K.P.; de Jongh, P.E. Conversion of synthesis gas to aromatics at medium temperature with a Fischer-tropsch and ZSM-5 dual catalyst bed. Catal. Today 2021, 369, 175–183. [Google Scholar] [CrossRef]
- Martínez, A.; López, C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts. Appl. Catal. A Gen. 2005, 294, 251–259. [Google Scholar] [CrossRef]
- Kang, S.H.; Bae, J.W.; Prasad, P.S.S.; Jun, K.W. Fischer-Tropsch synthesis using zeolite-supported iron catalysts for the production of light hydrocarbons. Catal. Lett. 2008, 125, 264–270. [Google Scholar] [CrossRef]
- Baranak, M.; Gurunlu, B.; Sarioglan, A.; Atac, O.; Atakul, H. Low acidity ZSM-5 supported iron catalysts for Fischer-Tropsch synthesis. Catal. Today 2013, 207, 57–64. [Google Scholar] [CrossRef]
- Kang, S.H.; Bae, J.W.; Woo, K.J.; Prasad, P.S.S.; Jun, K.W. ZSM-5 supported iron catalysts for Fischer-Tropsch production of light olefin. Fuel Process. Technol. 2010, 91, 399–403. [Google Scholar] [CrossRef]
- Palčić, A.; Valtchev, V. Analysis and control of acid sites in zeolites. Appl. Catal. A Gen. 2020, 606, 117795. [Google Scholar] [CrossRef]
- Plana-Palleja, J.; Abello, S.; Berrueco, C.; Montane, D. Effect of zeolite acidity and mesoporosity on the activity of Fischer-Tropsch Fe/ZSM-5 bifunctional catalysts. Appl. Catal. A Gen. 2016, 515, 126–135. [Google Scholar] [CrossRef]
- Thubsuang, U.; Ishida, H.; Wongkasemjit, S.; Chaisuwan, T. Novel template confinement derived from polybenzoxazine-based carbon xerogels for synthesis of ZSM-5 nanoparticles via microwave irradiation. Micropor. Mesopor. Mater. 2012, 156, 7–15. [Google Scholar] [CrossRef]
- Campo, P.D.; Teresa Navarro, M.; Shaikh, S.K.; Khokhar, M.D.; Aljumah, F.; Martínez, C.; Corma, A. Propene Production by Butene Cracking. Descriptors for Zeolite Catalysts. ACS Catal. 2020, 10, 11878–11891. [Google Scholar] [CrossRef]
- Kang, J.C.; Cheng, K.; Zhang, L.; Zhang, Q.H.; Ding, J.S.; Hua, W.Q.; Lou, Y.H.; Zhai, Q.G.; Wang, Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins. Angew. Chem. Int. Ed. 2011, 50, 5200–5203. [Google Scholar] [CrossRef]
- Jiang, N.; Yang, G.H.; Zhang, X.F.; Wang, L.; Shi, C.Y.; Tsubaki, N. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas. Catal. Commun. 2011, 12, 951–954. [Google Scholar] [CrossRef]
- Xu, J.J.; Wang, X.Q.; Qi, G.S.; Wang, J.; Shen, M.Q.; Li, W. Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: Relationships between active Cu sites and de-NOx performance at low temperature. J. Catal. 2013, 297, 56–64. [Google Scholar] [CrossRef]
- Zhou, H.Q.; Wang, Y.; Wei, F.; Wang, D.Z.; Wang, Z.W. Kinetics of the reactions of the light alkenes over SAPO-34. Appl. Catal. A Gen. 2008, 348, 135–141. [Google Scholar] [CrossRef]
- Qiu, T.; Wang, L.; Lv, S.; Sun, B.L.; Zhang, Y.H.; Liu, Z.N.; Yang, W.M.; Li, J.L. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel 2017, 203, 811–816. [Google Scholar] [CrossRef]
- Cheng, K.; Ordomsky, V.V.; Legras, B.; Virginie, M.; Paul, S.; Wang, Y.; Khodakov, A.Y. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2015, 502, 204–214. [Google Scholar] [CrossRef]
- Zhang, H.W.; Zhang, H.T.; Qian, W.X.; Wu, X.; Ma, H.F.; Sun, Q.W.; Ying, W.Y. Sodium modified Fe-Mn microsphere catalyst for Fischer-Tropsch synthesis of light olefins. Catal. Today 2022, 388–389, 199–207. [Google Scholar] [CrossRef]
- Guo, H.J.; Zhao, M.; Zhang, Q.W.; Sun, J.C. Synthesis of light olefins from syngas over zeolite-supported Fe catalyst. Petrochem. Technol. 2021, 50, 210–216. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. Hydrocracking catalysts based on hierarchical zeolites: A recent progress. J. Ind. Eng. Chem. 2018, 61, 265–280. [Google Scholar] [CrossRef]
- Zhang, M.N.; Qin, B.; Zhang, W.M.; Zheng, J.J.; Ma, J.H.; Du, Y.Z.; Li, R.F. Hydrocraking of light diesel oil over catalysts with industrially modified Y zeolites. Catalysts 2020, 10, 815. [Google Scholar] [CrossRef]
- Kazakov, M.O.; Nadeina, K.A.; Danilova, I.G.; Dik, P.P.; Klimov, O.V.; Pereyma, V.Y.; Paukshtis, E.A.; Golubev, I.S.; Prosvirin, I.P.; Gerasimov, E.Y.; et al. Influence of USY zeolite recrystallization on physicochemical properties and catalytic performance of NiMo/USY-Al2O3 hydrocracking catalysts. Catal. Today 2019, 329, 108–115. [Google Scholar] [CrossRef]
- Wang, P.; Kang, J.C.; Zhang, Q.H.; Wang, Y. Lithium ion-exchanged zeolite faujasite as support of iron catalyst for Fischer-Tropsch synthesis. Catal. Lett. 2007, 114, 178–184. [Google Scholar] [CrossRef]
- Moussa, S.O.; Panchakarla, L.S.; Ho, M.Q.; El-Shall, M.S. Graphene-supported, iron-based Nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas: The role of the graphene support in comparison with carbon nanotubes. ACS Catal. 2014, 4, 535–545. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.L.; Pan, X.L.; Bao, X.H. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, J.; Zheng, S.K.; Ding, J.; Sun, J.Q.; Dong, M.; Abbas, M.; Chen, Y.L.; Jiang, Z.; Chen, J.G. The texture evolution of g-C3N4 nanosheets supported Fe catalyst during Fischer-Tropsch synthesis. Mol. Catal. 2018, 444, 90–99. [Google Scholar] [CrossRef]
- Wu, J.H.; Wang, L.C.; Lv, B.L.; Chen, J.G. Facile fabrication of BCN nanosheet-encapsulated nanoiron as highly stable Fischer-Tropsch synthesis catalyst. ACS Appl. Mater. Interfaces 2017, 9, 14319–14327. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wei, J.T.; Duyar, M.S.; Ordomsky, V.V.; Khodakov, A.Y.; Liu, J. Carbon-based catalysts for Fischer-Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366. [Google Scholar] [CrossRef]
- Valero-Romero, M.J.; Rodriguez-Cano, M.A.; Palomo, J.; Rodriguez-Mirasol, J.; Cordero, T. Carbon-based materials as catalyst supports for Fischer-Tropsch synthesis: A Review. Front. Mater. 2021, 7, 617432. [Google Scholar] [CrossRef]
- Chernavskii, P.A.; Pankina, G.V.; Kazantsev, R.V.; Eliseev, O.L. Potassium as structural promoter for Fe/AC catalyst: Unusual effect of component deposition order on magnetite particle size and catalytic behavior in Fischer-Tropsch synthesis. ChemCatChem. 2017, 10, 1313–1320. [Google Scholar] [CrossRef]
- Asami, K.; Komiyama, K.; Yoshida, K.; Miyahara, H. Synthesis of lower olefins from synthesis gas over active carbon-supported iron catalyst. Catal. Today 2018, 303, 117–122. [Google Scholar] [CrossRef]
- Tian, Z.P.; Wang, C.G.; Si, Z.; Ma, L.L.; Chen, L.G.; Liu, Q.Y.; Zhang, Q.; Huang, H.Y. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method. Appl. Catal. A Gen. 2017, 541, 50–59. [Google Scholar] [CrossRef]
- Ma, S.B.; Ahn, K.Y.; Lee, E.S.; Oh, K.H.; Kim, K.B. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 2007, 45, 375–382. [Google Scholar] [CrossRef]
- Tian, Z.P.; Wang, C.G.; Si, Z.; Wen, C.Y.; Xu, Y.; Lv, W.; Chen, L.G.; Zhang, X.H.; Ma, L.L. Enhancement of light olefins selectivity over N-doped Fischer-Tropsch synthesis catalyst supported on activated carbon pretreated with KMnO4. Catalysts 2019, 9, 505–514. [Google Scholar] [CrossRef]
- Dorjgotov, A.; Ok, J.; Jeon, Y.; Yoon, S.H.; Shul, Y.G. Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction. J. Appl. Electrochem. 2013, 43, 387–397. [Google Scholar] [CrossRef]
- Prieto, P.; Marco, J.F.; Sanz, J.M. Synthesis and characterization of iron nitrides. An XRD, Mössbauer, RBS and XPS characterization. Surf. Interface Anal. 2008, 40, 781–785. [Google Scholar] [CrossRef]
- Xu, S.K.; Zhang, P.; Li, H.B.; Wei, H.J.; Li, L.M.; Li, B.J.; Wang, X.Y. Ru nanoparticles confined in carbon nanotubes: Supercritical CO2 assisted preparation and improved catalytic performances in hydrogenation of D-glucose. RSC Adv. 2014, 4, 7079–7083. [Google Scholar] [CrossRef]
- Abbaslou, R.M.; Tavassoli, A.; Soltan, J.; Dalai, A.K. Iron catalysts supported on carbon nanotubes for Fischer-Tropsch synthesis: Effect of catalytic site position. Appl. Catal. A Gen. 2009, 367, 47–52. [Google Scholar] [CrossRef]
- Fang, Y.; Cao, J.B.; Zhang, X.X.; Cao, Y.Q.; Song, N.; Qian, G.; Zhou, X.G.; Duan, X.Z. Crucial roles of support modification and promoter introduction in Fe/CNT catalyzed syngas conversion to lower olefins. Catal. Today 2021, 368, 126–132. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, X.P.; Ji, J.; Duan, X.Z.; Qian, G.; Zhou, X.G.; Chen, D.; Yuan, W.K. Modified carbon nanotubes by KMnO4 supported iron Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins. J. Mater. Chem. A 2015, 3, 4560–4567. [Google Scholar] [CrossRef]
- Lu, J.Z.; Yang, L.J.; Xu, B.L.; Wu, Q.; Zhang, D.; Yuan, S.J.; Zhai, Y.; Wang, X.Z.; Fan, Y.N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613–621. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, M.C.; An, H.J. An aqueous suspension of carbon nanopowder enhances the efficiency of a polymerase chain reaction. Nanotechnology 2007, 18, 355706. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Guo, S.J.; Pan, X.L.; Wang, J.H.; Bao, X.H. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy Environ. Sci. 2011, 4, 4500–4503. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, Y.Q.; Pei, Y.; Qiao, M.H. Graphene-supported metal/metal oxide nanohybrids: Synthesis and applications in heterogeneous catalysis. Catal. Sci. Technol. 2015, 5, 3903–3916. [Google Scholar] [CrossRef]
- Migkovic-Stankovic, V.; Jevremovic, I.; Jung, I.; Rhee, K. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon 2014, 75, 335–344. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Baringhaus, J.; Ruan, M.; Edler, F.; Tejeda, A.; Sicot, M.; Taleb-Ibrahimi, A.; Li, A.P.; Jiang, Z.G.; Conrad, E.H.; Berger, C.; et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 2014, 506, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Li, J.D. Study on Preparation and Anti-Corrosion Properties of Modified-Graphene Waterborne Coatings; Northeast Electric Power University: Jilin, China, 2017. [Google Scholar]
- Azizighannad, S.; Mitra, S. Stepwise reduction of graphene oxide (GO) and its effects on chemical and colloidal properties. Sci. Rep. 2018, 8, 10083. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.W.; Wu, Y.H.; Liu, G.; Zhao, W.J. Research progress of anti-corrosive graphene oxide composite coatings. Surf. Technol. 2017, 46, 126–134. [Google Scholar]
- Gandikota, S. Selective Toughening of Carbon/Epoxy Composites Using Graphene Oxide. Bachelor’s Thesis, Oklahoma State University, Stillwater, OK, USA, 2011. [Google Scholar]
- Peng, Z. Studies on the Preparation and Properties of Graphene Oxide Nanocomposites; Henan University: Kaifeng, China, 2013. [Google Scholar]
- Sun, B.; Jiang, Z.; Fang, D.; Xu, K.; Pei, Y.; Yan, S.R.; Qiao, M.H.; Fan, K.N.; Zong, B.N. One-Pot approach to a highly robust iron oxide/reduced graphene oxide nanocatalyst for Fischer-Tropsch synthesis. ChemCatChem 2013, 5, 714–719. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, J.; Wu, T.J.; Wang, H.; Xie, S.H.; Pei, Y.; Yan, S.R.; Qiao, M.H.; Zong, B.N. Mg and K dual-decorated Fe-on-reduced graphene oxide for selective catalyzing CO hydrogenation to light olefins with mitigated CO2 emission and enhanced activity. Appl. Catal. B Environ. 2017, 204, 475–485. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, J.; Xu, K.; Wang, H.; Yao, X.Y.; Pei, Y.; Yan, S.R.; Qiao, M.H.; Zong, B.N. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide supported iron catalysts. ACS Catal. 2016, 6, 389–399. [Google Scholar] [CrossRef]
- Xu, Y.F.; Li, X.Y.; Gao, J.H.; Wang, J.; Ma, G.Y.; Wen, X.D.; Yang, Y.; Li, Y.W.; Ding, M.Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Science 2021, 371, 610–613. [Google Scholar] [CrossRef]
- Okoye-Chine, C.G.; Moyo, M.; Hildebrandt, D. Fischer-Tropsch synthesis: The effect of hydrophobicity on silica-supported iron catalysts. J. Ind. Eng. Chem. 2021, 97, 426–433. [Google Scholar] [CrossRef]
- Fellenz, N.A.; Bengoa, J.F.; Cagnoli, M.V.; Marchetti, S.G. Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: A pathway to improve the activity and the oleins production in the Fischer-Tropsch synthesis. J. Porous Mater. 2016, 24, 1025–1036. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Z.N.; Lin, S.Y.; Chen, Y.Y.; Zhang, L.N.; Chen, A.P.; Zhang, X.H.; Lin, J.D.; Zhang, Z.X.; Wan, S.L.; et al. Conversion of syngas to methanol and DME on highly selective Pd/ZnAl2O4 catalyst. J. Energy Chem. 2021, 58, 564–572. [Google Scholar] [CrossRef]
- Pan, X.L.; Jiao, F.; Miao, D.Y.; Bao, X.H. In addition to the above different hydrophobic modified catalysts, there is another sense of functional modified catalysts. Chem. Rev. 2021, 121, 6588–6609. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.T.R.; Mogensen, K.B.; Bøggild, P. Simple approach to superamphiphobic overhanging silicon nanostructures. J. Phys. Chem. C 2010, 114, 2936–2940. [Google Scholar] [CrossRef]
- Goto, Y.; Takashima, H.; Takishita, K.; Sawada, H. Creation of coating surfaces possessing superhydrophobic and superoleophobic characteristics with fluoroalkyl end-capped vinyltrimethoxysilane oligomeric nanocomposites having biphenylene segments. J. Colloid Interface Sci. 2011, 362, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.L.; Seeger, S. Superamphiphobic surfaces. Chem. Soc. Rev. 2014, 43, 2784–2798. [Google Scholar] [CrossRef]
- Guo, C.L.; Ding, H.; Xie, M.X.; Zhang, H.Q.; Hong, X.Y.; Sun, L.Y.; Ding, F.C. Multifunctional superamphiphobic fluorinated silica with a core-shell structure for anti-fouling and anti-corrosion applications. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126155. [Google Scholar] [CrossRef]
- Li, Y.Q.; Si, W.T.; Gao, R.J. Facile preparation of superamphiphobic aluminum alloy surfaces and their corrosion resistance. Surf. Coat. Technol. 2022, 430, 127997. [Google Scholar] [CrossRef]
- Yan, B.; Ma, L.; Gao, X.H.; Zhang, J.L.; Ma, Q.X.; Zhao, T.S. Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2019, 585, 117184. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Zhou, C.; Yu, L.; Zhang, Q.; He, W.; Liu, Q. Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts. Molecules 2023, 28, 7749. https://doi.org/10.3390/molecules28237749
Wen Y, Zhou C, Yu L, Zhang Q, He W, Liu Q. Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts. Molecules. 2023; 28(23):7749. https://doi.org/10.3390/molecules28237749
Chicago/Turabian StyleWen, Yuan, Chenliang Zhou, Linfei Yu, Qiang Zhang, Wenxiu He, and Quansheng Liu. 2023. "Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts" Molecules 28, no. 23: 7749. https://doi.org/10.3390/molecules28237749
APA StyleWen, Y., Zhou, C., Yu, L., Zhang, Q., He, W., & Liu, Q. (2023). Research Progress on the Effects of Support and Support Modification on the FTO Reaction Performance of Fe-Based Catalysts. Molecules, 28(23), 7749. https://doi.org/10.3390/molecules28237749