Comparative Study of the Structural Characteristics and Bioactivity of Polysaccharides Extracted from Aspidopterys obcordata Hemsl. Using Different Solvents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yields and Chemical Composition of AOPs
2.2. Structure Characterizations
2.2.1. Molecular Weight of AOPs
2.2.2. Monosaccharide Composition
2.2.3. UV Spectroscopic Analysis of AOPs
2.2.4. FT-IR Spectroscopy of AOPs
2.2.5. SEM Analysis AOPs-
2.3. In Vitro Antioxidant Activity of AOPs
2.3.1. DPPH Radical Scavenging Assay
2.3.2. Hydroxyl Radicals Scavenging Assay
2.3.3. ABTS Radical Scavenging Assay
2.3.4. Ferric Reducing Antioxidant Power
2.4. CaOx Crystallization Analysis
2.4.1. Effect on Crystal Morphology
2.4.2. Spectrophotometric Crystallization Measurements
3. Materials and Methods
3.1. Biological Materials and Chemicals
3.2. Polysaccharide Extraction and Isolation
3.2.1. Pretreatment of A. obcordate Stem
3.2.2. Polysaccharide Extraction
3.3. Chemical Composition Analysis
3.4. Determination of Molecular Weight and Analysis of Monosaccharide Composition
3.5. UV Spectroscopy Analysis and FT-IR Spectroscopic Analyses
3.6. Scanning Electron Microscopy (SEM)
3.7. In Vitro Antioxidant Activity
3.7.1. DPPH Radical Scavenging Assay
3.7.2. Hydroxyl Radical Scavenging Assay
3.7.3. ABTS Radical Scavenging Assay
3.7.4. Ferric-Reducing Antioxidant Capacity
3.8. CaOx Crystallization Analysis
3.8.1. Stock Solutions
3.8.2. Image Analysis of Crystal Morphology
3.8.3. CaOx Crystallization Assay
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.K.; Funston, M. Malpighiaceae. In Flora of China; Wu, C.Y., Raven, P., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; pp. 132–138. [Google Scholar]
- Lin, Y.F.; Yi, Z.; Zhao, Y.H. Chinese Dai Medicine Colorful Illustrations; Yunnan Nationality Press: Kunming, China, 2003; pp. 540–541. [Google Scholar]
- Yu, H.; Li, Y.; Sun, F.; Ruan, J.Y.; Wang, T.; Zhang, Y. Isolation and identification of sucrose phenylpropanoid glycosides from Aspidopterys obcordata Hemsl. Chin. J. Med. Chem. 2022, 32, 36–42. [Google Scholar]
- Wu, R.; Ye, Q.; Chen, N.Y.; Zhang, G.L. Study on the chemical constituents of Aspidopterys obcordata Hemsl. Nat. Prod. Res. Dev. 2001, 13, 14. [Google Scholar]
- Li, Y.; Li, G.; Song, M.; Li, X.; Zhan, X.; Lu, J.; Chen, X. Acute toxicity study of Aspidopterys obcordata aqueous extract in Sprague-Dawley rats. J. Tradit. Chin. Med. 2016, 36, 377–381. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Sun, Z.; Huo, X.; Zhu, N.; Sun, Z.; Liu, Y.; Wu, H.; Xu, X.; Ma, G.; et al. New polyoxypregnane glycosides from Aspidopterys obcordata vines with antitumor activity. Fitoterapia 2018, 129, 203–209. [Google Scholar] [CrossRef]
- Li, Y.; Ma, G.; Lv, Y.; Su, J.; Li, G.; Chen, X. Efficacy of Obcordata A from Aspidopterys obcordata on kidney stones by inhibiting NOX4 expression. Molecules 2019, 24, 1957. [Google Scholar] [CrossRef]
- Yu, G.L.; Zhao, X. Carbohydrate-Based Pharmaceutics; China Ocean University Press: Qingdao, China, 2012; p. 13. [Google Scholar]
- Liao, N.; Zhong, J.; Ye, X.; Lu, S.; Wang, W.; Zhang, R.; Xu, J.; Chen, S.; Liu, D. Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: Characterization and antioxidant activity. LWT-Food Sci. Technol. 2015, 60, 1113–1121. [Google Scholar] [CrossRef]
- Xie, J.H.; Jin, M.L.; Morris, G.A.; Zha, X.Q.; Chen, H.Q.; Yi, Y.; Li, J.E.; Wang, Z.J.; Gao, J.; Nie, S.P.; et al. Advances on bioactive polysaccharides from medicinal plants. Crit. Rev. Food Sci. Nutr. 2016, 56, S60–S84. [Google Scholar] [CrossRef]
- Liu, H.; Sun, X.Y.; Wang, F.X.; Ouyang, J.M. Regulation on calcium oxalate crystallization and protection on HK-2 cells of tea polysaccharides with different molecular weights. Oxid. Med. Cell. Longev. 2020, 2020, 5057123. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Wu, W.H.; Wang, J.; Lan, M.B. Antioxidant properties of polysaccharide from the brown seaweed sargassum graminifolium (Turn.), and its effects on calcium oxalate crystallization. Mar. Drugs. 2012, 10, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Lu, Y.; Hou, J.; Liu, C.; Sun, Y. A polysaccharide purified from Morchella conica Pers. prevents oxidative stress induced by H2O2 in Human Embryonic Kidney (HEK) 293T cells. Int. J. Mol. Sci. 2018, 19, 4027. [Google Scholar] [CrossRef] [PubMed]
- Neira-Carrillo, A.; Luengo-Ponce, F.; Vásquez-Quitral, P.; Yazdani-Pedram, M.; Soledad Fernández, M.; Cölfen, H.; Arias, J.L. Sulfonated polymethylsiloxane as an additive for selective calcium oxalate crystallization. Eur. J. Inorg. Chem. 2015, 2015, 1167–1177. [Google Scholar] [CrossRef]
- Sun, P.; Liao, S.G.; Yang, R.Q.; Lu, C.L.; Ji, K.L.; Cao, D.H.; Hu, H.B.; Lu, J.M.; Song, X.Z.; Wu, M.; et al. Aspidopterys obcordata vine inulin fructan affects urolithiasis by modifying calcium oxalate crystallization. Carbohydr. Polym. 2022, 294, 119777. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhao, C.; Chen, X.; Chan, S.; Wu, J. Chemical properties and bioactivities of goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods. 2015, 17, 903–909. [Google Scholar] [CrossRef]
- Nie, S.P.; Xie, M.Y. A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocoll. 2011, 25, 144–149. [Google Scholar] [CrossRef]
- Yang, X.B.; Zhao, Y.; Lv, Y. In vivo macrophage activation and physicochemical property of the different polysaccharide fractions purified from Angelica sinensis. Carbohydr. Polym. 2008, 71, 372–379. [Google Scholar] [CrossRef]
- Chen, G.J.; Fang, C.C.; Ran, C.X.; Tan, Y.; Yu, Q.Q.; Kan, J.Q. Comparison of different extraction methods for polysaccharides from bamboo shoots (Chimonobambusa quadrangularis) processing by-products. Int. J. Biol. Macromol. 2019, 130, 903–914. [Google Scholar] [CrossRef]
- Yan, J.K.; Ding, Z.C.; Gao, X.; Wang, Y.Y.; Yang, Y.; Wu, D.; Zhang, H.N. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydr. Polym. 2018, 193, 373–382. [Google Scholar] [CrossRef]
- Yuan, Q.; Lin, S.; Fu, Y.; Nie, X.R.; Liu, W.; Su, Y.; Han, Q.H.; Zhao, L.; Zhang, Q.; Lin, D.R.; et al. Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2019, 127, 178–186. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhao, P.; Qu, Z.; Bai, D.T.; Gao, X.X.; Zhao, C.C.; Chen, J.; Gao, W.Y. Physicochemical characterizations of polysaccharides from Angelica sinensis radix under different drying methods for various applications. Int. J. Biol. Macromol. 2019, 121, 381–389. [Google Scholar] [CrossRef]
- Gao, J.; Lin, L.; Sun, B.G.; Zhao, M.M. A comparison study on polysaccharides extracted from Laminaria japonica using different methods: Structural characterization and bile acid-binding capacity. Food Funct. 2017, 8, 3043–3052. [Google Scholar] [CrossRef]
- Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Wanlapa, S. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int. J. Biol. Macromol. 2015, 81, 912–919. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, L.; Ruan, Y.; Wen, C.; Ge, M.; Qian, Y.; Ma, B. Physicochemical properties and biological activities of polysaccharides from the peel of Dioscorea opposita Thunb. extracted by four different methods. Food Sci. Hum. Well. 2023, 12, 130–139. [Google Scholar] [CrossRef]
- Dou, Z.M.; Chen, C.; Huang, Q.; Fu, X. Comparative study on the effect of extraction solvent on the physicochemical properties and bioactivity of blackberry fruit polysaccharides. Int. J. Biol. Macromol. 2021, 183, 1548–1559. [Google Scholar] [CrossRef]
- Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef]
- Li, J.W.; Ding, S.D.; Ding, X.L. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao. J. Food Eng. 2007, 80, 176–183. [Google Scholar] [CrossRef]
- Yuliarti, O.; Goh, K.; Matia-Merino, L.; Mawson, J.; Drummond, L.; Brennan, C.S. Effect of extraction techniques and conditions on the physicochemical properties of the water soluble polysaccharides from gold kiwifruit (Actinidia vhinensis). Int. J. Food Sci. Technol. 2008, 43, 2268–2277. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, P.P.; Huang, Q.; You, L.J.; Liu, R.H.; Zhao, M.M.; Fu, X.; Luo, Z.G. A comparison study on polysaccharides extracted from Fructus mori using different methods: Structural characterization and glucose entrapment. Food Funct. 2019, 10, 3684–3695. [Google Scholar] [CrossRef]
- Zhao, Q.S.; Dong, B.T.; Chen, J.J.; Zhao, B.; Wang, X.D.; Wang, L.W.; Zha, S.H.; Wang, Y.C.; Zhang, J.H.; Wang, Y.L. Effect of drying methods on physicochemical properties and antioxidant activities of wolfberry (Lycium barbarum) polysaccharide. Carbohydr. Polym. 2015, 127, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Chen, G.J.; Wang, Z.R.; Kan, J.Q. A comparison of a polysaccharide extracted from ginger (Zingiber officinale) stems and leaves using different methods: Preparation, structure characteristics, and biological activities. Int. J. Biol. Macromol. 2020, 151, 635–649. [Google Scholar] [CrossRef]
- Yan, J.K.; Wu, L.X.; Qiao, Z.R.; Cai, W.D.; Ma, H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019, 271, 588–596. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Xiong, Q.P.; Wang, X.L.; Li, X.; Yu, C.H.; Wu, J.; Yi, J.; Zhao, X.J.; Xu, Y.; Cui, H. Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis. Carbohydr. Polym. 2016, 136, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Khawas, S.; Sivová, V.; Anand, N.; Bera, K.; Ray, B.; Nosáľová, G.; Ray, S. Chemical profile of a polysaccharide from Psidium guajava leaves and it’s in vivo antitussive activity. Int. J. Biol. Macromol. 2018, 109, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Yi, Y.; Guo, Y.; Wang, R.; Hu, Q.; Xiong, X. Chemical characterization and antitumor activities of polysaccharide extracted from Ganoderma lucidum. Int. J. Mol. Sci. 2014, 15, 9103–9116. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fu, X.; Huang, Q.; Luo, F.X.; You, L.J. Ultrasonic extraction and structural identification of polysaccharides from Prunella vulgaris and its antioxidant and antiproliferative activities. Eur. Food Res. Technol. 2015, 240, 49–60. [Google Scholar] [CrossRef]
- Li, C.; Dong, Z.P.; Zhang, B.; Huang, Q.; Liu, G.; Fu, X. Structural characterization and immune enhancement activity of a novel polysaccharide from Moringa oleifera Leaves. Carbohydr. Polym. 2020, 234, 115897. [Google Scholar] [CrossRef] [PubMed]
- Nep, E.I.; Carnachan, S.M.; Ngwuluka, N.C.; Kontogiorgos, V.; Morris, G.A.; Sims, I.M.; Smith, A.M. Structural characterisation and rheological properties of a polysaccharide from sesame Leaves (Sesamum radiatum Schumach. & Thonn.). Carbohydr. Polym. 2016, 152, 541–547. [Google Scholar] [CrossRef]
- Deng, Y.J.; Huang, L.X.; Zhang, C.H.; Xie, P.J.; Cheng, J.; Wang, X.; Liu, L.J. Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, alpha-amylase and alpha-glucosidase inhibitory activity evaluation. Int. J. Biol. Macromol. 2020, 153, 755–766. [Google Scholar] [CrossRef]
- Guo, R.; Cao, N.N.; Wu, Y.; Wu, J.H. Optimized extraction and molecular characterization of polysaccharides from Sophora alopecuroides L. seeds. Int. J. Biol. Macromol. 2016, 82, 231–242. [Google Scholar] [CrossRef]
- Liu, X.C.; Zhu, Z.Y.; Tang, Y.L.; Wang, M.; Wang, Z.; Liu, A.J.; Zhang, Y.M. Structural properties of polysaccharides from cultivated Fruit bodies and mycelium of Cordyceps militaris. Carbohydr. Polym. 2016, 142, 63–72. [Google Scholar] [CrossRef]
- Matthaus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 2002, 50, 3444–3452. [Google Scholar] [CrossRef]
- Sudharsan, S.; Subhapradha, N.; Seedevi, P.; Shanmugam, V.; Madeswaran, P.; Shanmugam, A.; Srinivasan, A. Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int. J. Biol. Macromol. 2015, 81, 1031–1038. [Google Scholar] [CrossRef]
- Fan, L.P.; Li, J.W.; Deng, K.Q.; Ai, L.Z. Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydr. Polym. 2012, 87, 1849–1854. [Google Scholar] [CrossRef]
- Sun, Y.J.; Hou, S.T.; Song, S.; Zhang, B.; Ai, C.L.; Chen, X.F.; Liu, N. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria Japonica polysaccharides. Int. J. Biol. Macromol. 2018, 112, 985–995. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Chen, X.X.; Sun, P.L. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr. Polym. 2014, 105, 260–269. [Google Scholar] [CrossRef]
- Han, H.; Weng, X.C.; Bi, K.S. Antioxidants from a Chinese medicinal herb—Lithospermum erythrorhizon. Food Chem. 2008, 106, 2–10. [Google Scholar] [CrossRef]
- Yao, Y.J.; Xiang, H.; You, L.J.; Cui, C.; Sun-Waterhouse, D.; Zhao, M.M. Hypolipidaemic and antioxidant capacities of polysaccharides obtained from Laminaria japonica by different extraction media in diet-induced mouse model. Int. J. Food Sci. Technol. 2017, 52, 2274–2281. [Google Scholar] [CrossRef]
- Li, S.Q.; Shah, N.P. Characterization, antioxidative and bifidogenic effects of polysaccharides from Pleurotus eryngii after heat treatments. Food Chem. 2016, 197, 240–249. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liang, Z.S.; Shan, C.J.; Viernstein, H.; Unger, F. Comprehensive evaluation of natural antioxidants and antioxidant potentials in Ziziphus Jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou fruits based on geographical origin by TOPSIS method. Food Chem. 2011, 124, 1612–1619. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Zor, T.; Seliger, Z. Linearization of the bradford protein assay increases its sensitivity: Theoretical and experimental studies. Anal. Biochem. 1996, 236, 302–308. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.T.; Liu, W.; Han, Q.H. Physicochemical characteristics and antioxidant activities of non-starch polysaccharides from different kiwifruits. Int. J. Biol. Macromol. 2019, 136, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, Z.; Li, L.; Vidyarthi, S.K.; Zheng, Z.; Zhang, R. Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison. Carbohydr. Polym. 2021, 261, 117879. [Google Scholar] [CrossRef]
- Wu, W.L.; Zhu, Y.T.; Zhang, L.; Yang, R.W.; Zhou, Y.H. Extraction, preliminary structural characterization, and antioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge. Carbohydr. Polym. 2012, 87, 1348–1353. [Google Scholar] [CrossRef]
- Boiago Gollücke, A.P.; Catharino, R.R.; de Souza, J.C.; Eberlin, M.N.; de Queiroz Tavares, D. Evolution of major phenolic components and radical scavenging activity of grape juices through concentration process and storage. Food Chem. 2009, 112, 868–873. [Google Scholar] [CrossRef]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jia, X.J.; Ding, C.B.; Yuan, S.; Zhang, Z.W.; Chen, Y.; Du, L.; Yuan, M. Extraction, purification and characterization of polysaccharides from Hawk tea. Carbohydr. Polym. 2014, 99, 319–324. [Google Scholar] [CrossRef]
- De Bellis, R.; Piacentini, M.P.; Meli, M.A.; Mattioli, M.; Menotta, M.; Mari, M.; Valentini, L.; Palomba, L.; Desideri, D.; Chiarantini, L. In vitro effects on calcium oxalate crystallization kinetics and crystal morphology of an aqueous extract from Ceterach officinarum: Analysis of a potential antilithiatic mechanism. PLoS ONE 2018, 14, e0218734. [Google Scholar] [CrossRef]
- Kulaksizoğlu, S.; Sofikerim, M.; Çevik, C. In vitro effect of lemon and orange juices on calcium oxalate crystallization. Int. Urol. Nephrol. 2008, 40, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.; Jordi, S.; Zipperle, L.; Ettinger, E.; Giovanoli, R. Citrate determines calcium oxalate crystallization kinetics and crystal morphology—Studies in the presence of Tamm-Horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol. Dial. Transplant. 2000, 15, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Gilani, A.H. Antiurolithic effect of Bergenia ligulata rhizome: An explanation of the underlying mechanisms. J. Ethnopharmacol. 2009, 122, 106–116. [Google Scholar] [CrossRef] [PubMed]
Item | Sample | |||
---|---|---|---|---|
Hw-AOPs | Ac-AOPs | Al-AOPs | Na-AOPs | |
Yield (%) | 2.06 | 1.66 | 3.32 | 2.03 |
Total sugar (%) | 56.35 ± 0.63 b | 35.42 ± 0.59 d | 51.99 ± 2.19 c | 61.56 ± 0.88 a |
Protein (%) | nd | 0.16 ± 0.12 | 0.23 ± 0.17 | nd |
Uronic acid (%) | 23.14 ± 2.02 b | 64.31 ± 2.82 a | 24.08 ± 3.23 b | 27.26 ± 1.04 b |
Samples | Mw (kDa) | Mn (kDa) | Mw/Mn |
---|---|---|---|
Hw-AOPs | 107.103 | 19.112 | 5.604 |
Ac-AOPs | 78.715 | 26.166 | 3.008 |
Al-AOPs | 81.037 | 19.635 | 4.127 |
Na-AOPs | 77.534 | 16.195 | 4.788 |
Samples | Hw-AOPs | Ac-AOPs | Al-AOPs | Na-AOPs |
---|---|---|---|---|
Fucose | 0.51 | 3.04 | 0.54 | 0.49 |
Rhamnose | 2.49 | 12.50 | 2.03 | 2.00 |
Arabinose | 3.72 | 14.95 | 4.25 | 2.61 |
Galactose | 5.60 | 14.53 | 4.61 | 3.27 |
Glucose | 3.37 | 3.00 | 2.74 | 1.66 |
Xylose | nd | 6.11 | nd | nd |
Fructose | 73.43 | nd | 75.01 | 76.32 |
Galacturonic acid | 9.59 | 42.43 | 9.70 | 12.73 |
Glucuronic acid | 1.29 | 3.44 | 1.13 | 0.91 |
Blank | Hw-AOPs | Ac-AOPs | Al-AOPs | Na-AOPs | |
---|---|---|---|---|---|
tmax (min) | 8.67 ± 0.29 d | 15.67 ± 0.76 b | 14.33 ± 0.29 c | 19.17 ± 1.25 a | 13.83 ± 0.58 c |
SN (×10−3/min) | 10.00 ± 0 a | 3.50 ± 0.87 d | 4.67 ± 0.58 c | 3.33 ± 0.58 d | 7.83 ± 0.28 b |
SA (×10−3/min) | 5.33 ± 0.56 a | 1.80 ± 0.29 d | 2.67 ± 0.58 bc | 2.00 ± 0 cd | 2.50 ± 0.5 0b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, J.-R.; Lu, J.-M.; Fan, Q.-F.; Sun, P.; Li, Y.-J.; Zhou, S.-L.; Wang, X.-Y.; Niu, J.-M.; Xu, Y.-K.; Zhou, J. Comparative Study of the Structural Characteristics and Bioactivity of Polysaccharides Extracted from Aspidopterys obcordata Hemsl. Using Different Solvents. Molecules 2023, 28, 7977. https://doi.org/10.3390/molecules28247977
Yue J-R, Lu J-M, Fan Q-F, Sun P, Li Y-J, Zhou S-L, Wang X-Y, Niu J-M, Xu Y-K, Zhou J. Comparative Study of the Structural Characteristics and Bioactivity of Polysaccharides Extracted from Aspidopterys obcordata Hemsl. Using Different Solvents. Molecules. 2023; 28(24):7977. https://doi.org/10.3390/molecules28247977
Chicago/Turabian StyleYue, Jia-Rui, Jian-Mei Lu, Qing-Fei Fan, Peng Sun, Yang-Jian Li, Shi-Lin Zhou, Xin-Yue Wang, Jun-Mei Niu, You-Kai Xu, and Jing Zhou. 2023. "Comparative Study of the Structural Characteristics and Bioactivity of Polysaccharides Extracted from Aspidopterys obcordata Hemsl. Using Different Solvents" Molecules 28, no. 24: 7977. https://doi.org/10.3390/molecules28247977
APA StyleYue, J. -R., Lu, J. -M., Fan, Q. -F., Sun, P., Li, Y. -J., Zhou, S. -L., Wang, X. -Y., Niu, J. -M., Xu, Y. -K., & Zhou, J. (2023). Comparative Study of the Structural Characteristics and Bioactivity of Polysaccharides Extracted from Aspidopterys obcordata Hemsl. Using Different Solvents. Molecules, 28(24), 7977. https://doi.org/10.3390/molecules28247977