Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense
Abstract
:1. Introduction
2. Results
2.1. Isolation and Characterization of Polysaccharides
2.2. Biological Activity of Polysaccharides
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Procedures
4.2.1. Polysaccharide Extraction
4.2.2. Anion-Exchange Chromatography of Polysaccharides on Macro-Prep DEAE
4.2.3. Acid Hydrolysis of Polysaccharides
4.3. Analyses
4.3.1. Instruments
4.3.2. Analytical Procedures
4.3.3. Molecular Weight Determination
4.3.4. Biological Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phang, S.; Yeong, H.; Ganzon-Fortes, E.; Lewmanomont, K.; Prathep, A.; Hau, L.; Gerung, G.; Tan, K. Marine algae of the South China Sea bordered by Indonesia, Malaysia, Philippines, Singapore, Thailand and Vietnam. Raffles Bull. Zool. 2016, 34, 13–59. [Google Scholar]
- Imbs, T.I.; Zvyagintseva, T.N. Phlorotannins are polyphenolic metabolites of brown algae. Russ. J. Mar. Biol. 2018, 44, 263–273. [Google Scholar] [CrossRef]
- Malyarenko, O.S.; Ermakova, S.P. Fucoidans: Anticancer activity and molecular mecha-nisms of action. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications; Venkatesan, J., Anil, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 175–203. [Google Scholar]
- Oliveira, C.; Neves, N.M.; Reis, R.L.; Martins, A.; Silva, T.H. A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydr. Polym. 2020, 239, 116131. [Google Scholar] [CrossRef] [PubMed]
- Barroso, E.M.; Costa, L.S.; Medeiros, V.P.; Cordeiro, S.L.; Costa, M.S.; Franco, C.R.; Nader, H.B.; Leite, E.L.; Rocha, H.A. A non-anticoagulant heterofucan has antithrombotic activity in vivo. Planta Med. 2008, 74, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.M.; Nobre, L.; Rossi, G.R.; Almeida-Lima, J.; Melo-Silveira, R.F.; Franco, C.R.C.; Trindade, E.S.; Nader, H.B.; Rocha, H.A.O. A low-molecular-weight galactofucan from the seaweed, Spatoglossum schroederi, binds fibronectin and inhibits capillary-like tube formation in vitro. Int. J. Biol. Macromol. 2018, 111, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Palanisamy, S.; Vinosha, M.; Marudhupandi, T.; Rajasekar, P.; Prabhu, N.M. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 2017, 170, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, A.; Subramanian, P.; Manoharan, V.; Muthu, T.; Periyannan, R.; Thangapandi, M.; Ponnuchamy, K.; Pandi, B.; Marimuthu, P.N. Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J. Photochem. Photobiol. B 2018, 185, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.B.E.; Maximo, A.I.; Magno, J.M.; de Lima Bellan, D.; Buzzo, J.L.A.; Simas, F.F.; Rocha, H.A.O.; da Silva Trindade, E.; Camargo de Oliveira, C. A Fucose-Containing Sulfated Polysaccharide from Spatoglossum schroederi Potentially Targets Tumor Growth Rather Than Cytotoxicity: Distinguishing Action on Human Melanoma Cell Lines. Mar. Biotechnol. 2024, 26, 181–198. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.A.; Bezerra, L.C.; de Albuquerque, I.R.; Costa, L.S.; Guerra, C.M.; de Abreu, L.D.; Nader, H.B.; Leite, E.L. A xylogalactofucan from the brown seaweed Spatoglossum schroederi stimulates the synthesis of an antithrombotic heparan sulfate from endothelial cells. Planta Med. 2005, 71, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.A.; Franco, C.R.; Trindade, E.S.; Carvalho, L.C.; Veiga, S.S.; Leite, E.L.; Dietrich, C.P.; Nader, H.B. A fucan from the brown seaweed Spatoglossum schroederi inhibits Chinese hamster ovary cell adhesion to several extracellular matrix proteins. Braz. J. Med. Biol. Res. 2001, 34, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.A.; Franco, C.R.; Trindade, E.S.; Veiga, S.S.; Leite, E.L.; Nader, H.B.; Dietrich, C.P. Fucan inhibits Chinese hamster ovary cell (CHO) adhesion to fibronectin by binding to the extracellular matrix. Planta Med. 2005, 71, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Rocha, H.A.; Moraes, F.A.; Trindade, E.S.; Franco, C.R.; Torquato, R.J.; Veiga, S.S.; Valente, A.P.; Mourao, P.A.; Leite, E.L.; Nader, H.B.; et al. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spatoglossum schroederi. An ideal antithrombotic agent? J. Biol. Chem. 2005, 280, 41278–41288. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Souza, I.; Pessatti, J.B.K.; da Silva, L.R.; de Lima Bellan, D.; de Souza, I.R.; Cestari, M.M.; de Assis, H.C.S.; Rocha, H.A.O.; Simas, F.F.; da Silva Trindade, E.; et al. Protective potential of sulfated polysaccharides from tropical seaweeds against alkylating- and oxidizing-induced genotoxicity. Int. J. Biol. Macromol. 2022, 211, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Rocha Amorim, M.O.; Lopes Gomes, D.; Dantas, L.A.; Silva Viana, R.L.; Chiquetti, S.C.; Almeida-Lima, J.; Silva Costa, L.; Oliveira Rocha, H.A. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death. Int. J. Biol. Macromol. 2016, 93 Pt A, 57–65. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Surits, V.V.; Shevchenko, N.M.; Thinh, P.D.; Zadorozhny, P.A.; Ermakova, S.P. Comparison of structure and in vitro anticancer activity of native and modified fucoidans from Sargassum feldmannii and S. duplicatum. Int. J. Biol. Macromol. 2019, 124, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.O.; Oliveira, J.W.F.; Moreno, C.J.G.; de Medeiros, M.J.C.; Fernandes-Negreiros, M.M.; Souza, F.R.M.; Pontes, D.L.; Silva, M.S.; Rocha, H.A.O. Silver Nanoparticles Containing Fucoidan Synthesized by Green Method Have Anti-Trypanosoma cruzi Activity. Nanomaterials 2022, 12, 2059. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Santos, N.; Almeida-Lima, J.; Vidal, A.A.J.; Lopes Gomes, D.; Medeiros Oliveira, R.; Santos Pedrosa, S.; Pereira, P.; Gama, F.M.; Oliveira Rocha, H.A. Antiproliferative activity of fucan nanogel. Mar. Drugs 2012, 10, 2002–2022. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. A colorimetric method for the determination of sugars. Nature 1951, 168, 167. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
Fraction | Yield, % * | SO3Na, % ** | Mw, kDa | Monosaccharide Composition, mol % | ||||
---|---|---|---|---|---|---|---|---|
Fuc | Gal | Man | Xyl | Glc | ||||
SpvF1 | 0.42 | 3.5 | 16.266 | 3.6 | 0.8 | 86.6 | 5.3 | 3.6 |
SpvF2 | 0.41 | 5.5 | 25.266 | 9.3 | 2.4 | 69.8 | 11.5 | 6.8 |
SpvF3 | 0.75 | 10.4 | 31.931 | 22.8 | 7.5 | 20.3 | 35.7 | 13.6 |
SpvF4 | 0.56 | 8.8 | 44.047 | 24.3 | 17.4 | 8.9 | 31.8 | 17.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trung, D.T.; Surits, V.V.; Zueva, A.O.; Cao, H.T.T.; Shevchenko, N.M.; Ermakova, S.P.; Thinh, P.D. Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense. Molecules 2024, 29, 4982. https://doi.org/10.3390/molecules29214982
Trung DT, Surits VV, Zueva AO, Cao HTT, Shevchenko NM, Ermakova SP, Thinh PD. Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense. Molecules. 2024; 29(21):4982. https://doi.org/10.3390/molecules29214982
Chicago/Turabian StyleTrung, Dinh Thanh, Valerii Victorovich Surits, Anastasia Olegovna Zueva, Hang Thi Thuy Cao, Natalia Michailovna Shevchenko, Svetlana Pavlovna Ermakova, and Pham Duc Thinh. 2024. "Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense" Molecules 29, no. 21: 4982. https://doi.org/10.3390/molecules29214982
APA StyleTrung, D. T., Surits, V. V., Zueva, A. O., Cao, H. T. T., Shevchenko, N. M., Ermakova, S. P., & Thinh, P. D. (2024). Anticancer Activity In Vitro of Sulfated Polysaccharides from the Brown Alga Spatoglossum vietnamense. Molecules, 29(21), 4982. https://doi.org/10.3390/molecules29214982