Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV–Visible Study
2.2. FTIR Analysis
2.3. Raman Spectroscopy
2.4. XPS Study
2.5. XRD Analysis
2.6. BET Analysis
2.7. SEM Analysis
2.8. Dielectric Studies
2.8.1. Dielectric Constant
2.8.2. Dielectric Loss
2.8.3. AC Conductivity
Compositions Ce2−xSbx(MoO4)3 | Frequency 20 Hz | Frequency 20 MHz | ||||
---|---|---|---|---|---|---|
ε′ | tanδ | σac (S m−1) | ε’ | tanδ | σac (S m−1) | |
x = 0.00 | 3.263 105 | 3.844 | 0.00139 | 7.970 104 | 0.0182 | 2.270 |
x = 0.01 | 2.929 106 | 1.583 | 0.00516 | 7.506 105 | 0.0015 | 2.772 |
x = 0.03 | 2.254 107 | 1.576 | 0.0395 | 7.779 104 | 0.0114 | 2.810 |
x = 0.05 | 2.385 107 | 1.577 | 0.0418 | 7.376 104 | 0.0126 | 2.914 |
x = 0.07 | 2.717 107 | 1.807 | 0.05459 | 8.195 104 | 0.0508 | 5.483 |
x = 0.09 | 2.856 108 | 1.647 | 0.5232 | 8.441 104 | 0.1826 | 17.141 |
2.8.4. Electric Modulus Analysis
2.8.5. Cole–Cole Plot
2.9. Photocatalytic Activity
2.10. Optimization
2.10.1. Effect of pH
2.10.2. Effect of Catalyst Dosage
2.10.3. Effect of Initial Drug Concentration
2.11. Reusability
2.12. Reaction Kinetics
2.13. Radical Scavenging Study and Photodegradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Cerium Molybdate and Sb-Doped Cerium Molybdate
3.3. Characterization
3.4. Photocatalytic Activity
3.4.1. Optimization of Photocatalytic Operating Parameters
3.4.2. Reusability
3.4.3. Radical Scavenging Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Energy Storage Systems Market Size, Share & Trends Analysis Report By Technology (Pumped Storage, Electrochemical Storage, Electromechanical Storage, Thermal Storage), By Region, And Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/energy-storage-systems-market (accessed on 15 May 2023).
- Xie, Z.; Peng, Y.-P.; Yu, L.; Xing, C.; Qiu, M.; Hu, J.; Zhang, H. Solar-inspired water purification based on emerging 2D materials: Status and challenges. Sol. RRL 2020, 4, 1900400. [Google Scholar] [CrossRef]
- Ansari, M.O.; Kumar, R.; Ansari, S.P.; Hassan, M.S.A.-W.; Alshahrie, A.; Barakat, M.A.E.-F. Nanocarbon aerogel composites. In Nanocarbon and its Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–26. [Google Scholar]
- Kannan, K.; Radhika, D.; Sadasivuni, K.K.; Reddy, K.R.; Raghu, A.V. Nanostructured metal oxides and its hybrids for photocatalytic and biomedical applications. Adv. Colloid Interface Sci. 2020, 281, 102178. [Google Scholar] [CrossRef]
- Dargahi, M.; Masteri-Farahani, M.; Shahsavarifar, S.; Feizi, M. Microemulsion-mediated preparation of Ce2(MoO4)3 nanoparticles for photocatalytic degradation of crystal violet in aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 12047–12054. [Google Scholar] [CrossRef]
- Muthuvel, I.; Sathyapriya, S.; Suguna, S.; Gowthami, K.; Thirunarayanan, G.; Rajalakshmi, S.; Sundaramurthy, N.; Karthik, A.D.; Rajachandrasekar, T. Solar light driven cerium molybdate nanocatalyst for effective photodecomposition of fuchsin basic dye. Mater. Today Proc. 2021, 43, 2274–2279. [Google Scholar] [CrossRef]
- Tian, H.; Liu, L.; Du, J.; Wu, H.; Li, M.; Tao, B. Crystal structure, infrared-reflectivity spectra, and microwave dielectric properties of novel Ce2(MoO4)2(Mo2O7) ceramics. Ceram. Int. 2021, 47, 31375–31382. [Google Scholar] [CrossRef]
- Saleh, N.B.; Milliron, D.J.; Aich, N.; Katz, L.E.; Liljestrand, H.M.; Kirisits, M.J. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species. Sci. Total Environ. 2016, 568, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, K.; Hu, X.; Peng, R.; Xia, C. Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fe1.5Mo0.5O6−δ perovskite as a ceramic anode for solid oxide fuel cells. J. Mater. Chem. A 2021, 9, 24336–24347. [Google Scholar] [CrossRef]
- Tian, H.; Zhou, X.; Jiang, T.; Du, J.; Wu, H.; Lu, Y.; Zhou, Y.Y.; Yue, Z. Bond characteristics and microwave dielectric properties of (Mn1/3Sb2/3)4+ doped molybdate based low-temperature sintering ceramics. J. Alloys Compd. 2022, 906, 164333. [Google Scholar] [CrossRef]
- Klimova, A.; Mikhailovskaya, Z.; Buyanova, E.; Petrova, S. Synthesis and Conductivity of Bismuth Molybdates Doped with Antimony and Tin. Russ. J. Electrochem. 2021, 57, 825–832. [Google Scholar] [CrossRef]
- Lee, W.S.; Kang, Y.G.; Sharma, M.; Lee, Y.M.; Jeon, S.; Sharma, A.; Demir, H.V.; Han, M.J.; Koh, W.K.; Oh, S.J. Ligand exchange and impurity doping in 2D CdSe nanoplatelet thin films and their applications. Adv. Electron. Mater. 2022, 8, 2100739. [Google Scholar] [CrossRef]
- Morassaei, M.S.; Salehabadi, A.; Salavati-Niasari, M.; Akbari, A. Preparation, structural analysis, and assessing the impacts of holmium and ytterbium on electrochemical hydrogen storage property of strontium cerium molybdate nanostructures. Electrochim. Acta 2020, 356, 136851. [Google Scholar] [CrossRef]
- Ma, B.; Zha, Y.; Yu, P.; Chen, G.; Guo, Y.; Lan, Y.; Li, J.; Xia, W.; Zhao, B. Hydrothermal nanoarchitectonics of Z-scheme g-C3N4/Bi2WO6 heterojunction with enhanced adsorption and photocatalytic activity for fluoroquinolone antibiotics removal: Kinetics, mechanism and degradation pathway. J. Alloys Compd. 2023, 952, 170061. [Google Scholar] [CrossRef]
- Ayni, S.; Sabet, M.; Salavati-Niasari, M.; Hamadanian, M. Synthesis and characterization of cerium molybdate nanostructures via a simple solvothermal method and investigation of their photocatalytic activity. J. Mater. Sci. Mater. Electron. 2016, 27, 7342–7352. [Google Scholar] [CrossRef]
- Gonsalves, L.; Mojumdar, S.; Verenkar, V. Synthesis and characterization of ultrafine spinel ferrite obtained by precursor combustion technique. J. Therm. Anal. Calorim. 2012, 108, 859–863. [Google Scholar] [CrossRef]
- Lakshmi, C.S.; Sridhar, C.S.; Govindraj, G.; Bangarraju, S.; Potukuchi, D. Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites. Phys. B Condens. Matter 2015, 459, 97–104. [Google Scholar] [CrossRef]
- Yousefi, T.; Khanchi, A.R.; Ahmadi, S.J.; Rofouei, M.K.; Yavari, R.; Davarkhah, R.; Myanji, B. Cerium (III) molybdate nanoparticles: Synthesis, characterization and radionuclides adsorption studies. J. Hazard. Mater. 2012, 215, 266–271. [Google Scholar] [CrossRef] [PubMed]
- de Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragon, F.F.; Mantilla, J.C.; Coaquira, J.A.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces 2019, 14, 34–43. [Google Scholar] [CrossRef]
- Maisang, W.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Photoluminescence and photonic absorbance of Ce2(MoO4)3 nanocrystal synthesized by microwave–hydrothermal/solvothermal method. Rare Met. 2018, 37, 868–874. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, B.; Zhang, X.; Jia, J.; Yi, G. Effect of calcining temperature and time on the characteristics of Sb-doped SnO2 nanoparticles synthesized by the sol–gel method. Particuology 2012, 10, 365–370. [Google Scholar] [CrossRef]
- Chauhan, S.; Kar, M.; Kumar, J.; Jaiswal, S.K. Cerium induced Raman spectra of (Ba0.5Sr0.5)(Fe1−xCex)O3−δ (x = 0 − 1). Mater. Chem. Phys. 2020, 241, 122378. [Google Scholar] [CrossRef]
- Oliveira, F.K.; Santiago, A.A.; Catto, A.C.; da Silva, L.F.; Tranquilin, R.L.; Longo, E.; Motta, F.V.; Bomio, M.R. Cerium molybdate nanocrystals: Microstructural, optical and gas-sensing properties. J. Alloys Compd. 2021, 857, 157562. [Google Scholar] [CrossRef]
- You, Z.; Yue, K.; Zhang, J.; Ke, P.; Gu, D.; Guo, Q.; Luo, W. Effects of atmosphere and temperature on luminescence property of YAG: Ce synthesized by co-precipitation method. Optik 2019, 176, 241–245. [Google Scholar] [CrossRef]
- Karthik, R.; Vinoth Kumar, J.; Chen, S.-M.; Karuppiah, C.; Cheng, Y.-H.; Muthuraj, V. A study of electrocatalytic and photocatalytic activity of cerium molybdate nanocubes decorated graphene oxide for the sensing and degradation of antibiotic drug chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9, 6547–6559. [Google Scholar] [CrossRef] [PubMed]
- Jouyandeh, M.; Ganjali, M.R.; Rezapour, M.; Mohaddespour, A.; Jabbour, K.; Vahabi, H.; Rabiee, N.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Nonisothermal cure behavior and kinetics of cerium-doped Fe3O4/epoxy nanocomposites. Appl. Organomet. Chem. 2022, 36, e6825. [Google Scholar] [CrossRef]
- Karuppaiah, B.; Ramachandran, R.; Chen, S.-M.; Wan-Ling, S.; Wan, J.Y. Hierarchical construction and characterization of lanthanum molybdate nanospheres as an unassailable electrode material for electrocatalytic sensing of the antibiotic drug nitrofurantoin. New J. Chem. 2020, 44, 46–54. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Tang, L.-Y.; Li, N.; Xiao, K.; Wang, J.; Zhang, J.-H.; Su, Y.-Z.; Tong, Y.-X. Facile synthesis of large-area hierarchical bismuth molybdate nanowires for supercapacitor applications. J. Electrochem. Soc. 2012, 159, D582. [Google Scholar] [CrossRef]
- Zha, C.; Wu, D.; Gu, X.; Chen, H. Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. J. Energy Chem. 2021, 59, 599–607. [Google Scholar] [CrossRef]
- Costa, I.; Colmenares, Y.; Pizani, P.; Leite, E.; Chiquito, A. Sb doping of VLS synthesized SnO2 nanowires probed by Raman and XPS spectroscopy. Chem. Phys. Lett. 2018, 695, 125–130. [Google Scholar] [CrossRef]
- Brazdil, J.F.; Toft, M.A.; Lin, S.S.-Y.; McKenna, S.T.; Zajac, G.; Kaduk, J.A.; Golab, J.T. Characterization of bismuth–cerium-molybdate selective propylene ammoxidation catalysts. Appl. Catal. A Gen. 2015, 495, 115–123. [Google Scholar] [CrossRef]
- Jakab-Costenoble, S.; Rumaux, I.; Odore, E.; Picart, S. Synthesis, characterization and solubility of mixed zirconium-cerium molybdate precipitates. J. Nucl. Sci. Technol. 2018, 55, 1235–1244. [Google Scholar] [CrossRef]
- Sena, M.S.; Santos, A.G.d.; Lopes-Moriyama, A.L.; Souza, C.P.d. Synthesis and characterization of cerium molybdate semiconductor nanoparticles. Mater. Res. 2017, 20, 485–491. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Zhou, B.-X.; Zhang, H.-W.; Ma, S.-F.; Huang, W.-Q.; Peng, W.; Hu, W.; Huang, G.-F. Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve their visible-light photocatalytic activity. Nanoscale 2019, 11, 6876–6885. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Gyawali, G.; Cho, S.H.; Narro-García, R.; Sekino, T.; Lee, S.W. Er3+/Yb3+ co-doped bismuth molybdate nanosheets upconversion photocatalyst with enhanced photocatalytic activity. J. Solid State Chem. 2014, 209, 74–81. [Google Scholar] [CrossRef]
- Ruggles, T.; Fullwood, D. Estimations of bulk geometrically necessary dislocation density using high resolution EBSD. Ultramicroscopy 2013, 133, 8–15. [Google Scholar] [CrossRef]
- Zdorovets, M.; Kozlovskiy, A. Study of the effect of La3+ doping on the properties of ceramics based on BaTiOx. Vacuum 2019, 168, 108838. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, M.T.; Ganesh, V.; Yahia, I.; Haq, B.U.; Almohammedi, A.; Patil, P.S.; Maidur, S.R.; AlFaify, S. Influence of Dy doping on key linear, nonlinear and optical limiting characteristics of SnO2 films for optoelectronic and laser applications. Opt. Laser Technol. 2018, 108, 609–618. [Google Scholar] [CrossRef]
- Worku, A.K.; Ayele, D.W.; Habtu, N.G.; Melas, G.A.; Yemata, T.A.; Mekonnen, N.Y.; Teshager, M.A. Structural and thermal properties of pure and chromium doped zinc oxide nanoparticles. SN Appl. Sci. 2021, 3, 699. [Google Scholar] [CrossRef]
- Yari, A.; Heidari Fathabad, S. A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode. J. Mater. Sci. Mater. Electron. 2020, 31, 13051–13062. [Google Scholar] [CrossRef]
- Anitha, T.; Reddy, A.E.; Kumar, Y.A.; Cho, Y.-R.; Kim, H.-J. One-step synthesis and electrochemical performance of a PbMoO 4/CdMoO 4 composite as an electrode material for high-performance supercapacitor applications. Dalton Trans. 2019, 48, 10652–10660. [Google Scholar] [CrossRef]
- ALOthman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Lv, L.; Cheng, P.; Wang, Y.; Xu, L.; Zhang, B.; Lv, C.; Ma, J.; Zhang, Y. Sb-doped three-dimensional ZnFe2O4 macroporous spheres for N-butanol chemiresistive gas sensors. Sens. Actuators B Chem. 2020, 320, 128384. [Google Scholar] [CrossRef]
- Bibi, F.; Iqbal, S.; Sabeeh, H.; Saleem, T.; Ahmad, B.; Nadeem, M.; Shakir, I.; Aadil, M.; Kalsoom, A. Evaluation of structural, dielectric, magnetic and photocatalytic properties of Nd and Cu co-doped barium hexaferrite. Ceram. Int. 2021, 47, 30911–30921. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Usman, A.; Nazli, H.; Sagheer, R.; Riaz, S.; Naseem, S. Dielectric and magnetic properties of dilute magnetic semiconductors Ag-doped ZnO thin films. Appl. Phys. A 2020, 126, 1–10. [Google Scholar] [CrossRef]
- Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Gul, I.; Losic, D. Dielectric and impedance spectroscopic studies of three phase graphene/titania/poly (vinyl alcohol) nanocomposite films. Results Phys. 2018, 11, 540–548. [Google Scholar] [CrossRef]
- Siddique, M.N.; Ahmed, A.; Tripathi, P. Electric transport and enhanced dielectric permittivity in pure and Al doped NiO nanostructures. J. Alloys Compd. 2018, 735, 516–529. [Google Scholar] [CrossRef]
- Benzebeiri, D.; Benhamideche, C.; Belhocine, Y.; May, A.; Bouaoud, S.-E.; Benachour, C. Synthesis, microstructure and dielectric properties of Sb-doped multiferroic Bi0.8Ba0.2Fe1−xSbxO3 ceramics. J. Adv. Dielectr. 2019, 9, 1950030. [Google Scholar] [CrossRef]
- Rayssi, C.; Kossi, S.E.; Dhahri, J.; Khirouni, K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 2018, 8, 17139–17150. [Google Scholar] [CrossRef] [PubMed]
- Anis-ur-Rehman, M.; Mahmood, W.; Ghazanfar, H.; Khan, M.; Haq, A. Structural and Electrical Dependence in Zn-Doped Li-Ferrite Nanostructures. J. Supercond. Nov. Magn. 2019, 32, 2787–2791. [Google Scholar] [CrossRef]
- Fahmy, T.; Elhendawi, H.; Elsharkawy, W.; Reicha, F. AC conductivity and dielectric relaxation of chitosan/poly (vinyl alcohol) biopolymer polyblend. Bull. Mater. Sci. 2020, 43, 243. [Google Scholar] [CrossRef]
- Chouhan, L.; Panda, S.K.; Bhattacharjee, S.; Das, B.; Mondal, A.; Parida, B.; Brahma, R.; Manglam, M.K.; Kar, M.; Bouzerar, G. Room temperature d0 ferromagnetism, zero dielectric loss and ac-conductivity enhancement in p-type Ag-doped SnO2 compounds. J. Alloys Compd. 2021, 870, 159515. [Google Scholar] [CrossRef]
- Deka, B.; Ravi, S.; Pamu, D. Impedance spectroscopy and ac conductivity mechanism in Sm doped Yttrium Iron Garnet. Ceram. Int. 2017, 43, 10468–10477. [Google Scholar]
- Saadi, H.; Rhouma, F.; Benzarti, Z.; Bougrioua, Z.; Guermazi, S.; Khirouni, K. Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Surjith, A.; Ratheesh, R. High Q ceramics in the ACe2(MoO4)4 (A=Ba, Sr and Ca) system for LTCC applications. J. Alloys Compd. 2013, 550, 169–172. [Google Scholar] [CrossRef]
- Baidya, A.; Dutta, A. Structural, electrical, and dielectric properties of chemically derived Sm-doped cubic lanthanum molybdate nanomaterials. J. Phys. Chem. Solids 2021, 159, 110272. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Y.; Kimura, H.; Tao, B.; Zhang, Y.; Zhang, Y.; Chen, Y.; Zhou, Y.; Wu, H.; Yue, Z. Sintering characteristics, crystal structure, and microwave dielectric properties of Ce2[Zr1−x(Al1/2Nb1/2)x]3(MoO4)9 ceramics. J. Alloys Compd. 2022, 925, 166566. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, L.; Hideo, K.; Zhang, Y.; Shan, L.; Haitao, W.; Teng, X.; Zhenxing, Y. Effects of (Cr1/2Nb1/2)4+-substitution on the chemical bond characteristics, and microwave dielectric properties of cerium zirconium molybdate ceramics. Mater. Chem. Phys. 2022, 287, 126261. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, W.; Li, H.; Du, J.; Zhang, Y.; Wu, H.; Duan, G.; Yue, Z. Microstructure, chemical bond characteristics, and dielectric response of Cr/Sb co-doped molybdate-based ceramics at microwave and terahertz frequency. Ceram. Int. 2023, 49, 17323–17330. [Google Scholar] [CrossRef]
- Hussain, S.; Sadiq, I.; Jan, S.S.; Idrees, M.; Sadiq, F.; Riaz, S.; Naseem, S. Exploration of structural, optical, dielectric properties and curve fittings of Yb3+-substituted β-type hexagonal ferrites. J. Mater. Sci. Mater. Electron. 2020, 31, 17931–17942. [Google Scholar] [CrossRef]
- Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Losic, D. Dielectric properties of graphene/titania/polyvinylidene fluoride (G/TiO2/PVDF) nanocomposites. Materials 2020, 13, 205. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M. Electrical conductivity and complex electric modulus of titanium doped nickel–zinc ferrites. Phys. B Condens. Matter 2012, 407, 606–613. [Google Scholar] [CrossRef]
- Malik, H.; Khan, M.A.; Hussain, A.; Warsi, M.F.; Mahmood, A.; Ramay, S.M. Structural, spectral, thermal and dielectric properties of Nd-Ni co-doped Sr-Ba-Cu hexagonal ferrites synthesized via sol-gel auto-combustion route. Ceram. Int. 2018, 44, 605–612. [Google Scholar] [CrossRef]
- Divya, N.; Pradyumnan, P. Enhancement of photocatalytic activity in Nd doped ZnO with an increase in dielectric constant. J. Mater. Sci. Mater. Electron. 2017, 28, 2147–2156. [Google Scholar] [CrossRef]
- Irandost, M.; Akbarzadeh, R.; Pirsaheb, M.; Asadi, A.; Mohammadi, P.; Sillanpää, M. Fabrication of highly visible active N, S co-doped TiO2@MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: Mechanisms, modeling and degradation pathway. J. Mol. Liq. 2019, 291, 111342. [Google Scholar] [CrossRef]
- Zargazi, M.; Entezari, M.H. Bi2MoO6 nanofilms on the stainless steel mesh by PS-PED method: Photocatalytic degradation of diclofenac sodium as a pharmaceutical pollutant. Ultrason. Sonochem. 2020, 62, 104867. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Li, R.; Xie, Z.; Huang, J.; Zeng, Y.; Zhang, Q.; Liu, H.; Lv, W.; Liu, G. Synthesis of a core-shell heterostructured MoS2/Cd0.9Zn0.1S photocatalyst for the degradation of diclofenac under visible light. Appl. Catal. B Environ. 2019, 259, 118033. [Google Scholar] [CrossRef]
- Oliveros, A.N.; Pimentel, J.A.I.; de Luna, M.D.G.; Garcia-Segura, S.; Abarca, R.R.M.; Doong, R.-A. Visible-light photocatalytic diclofenac removal by tunable vanadium pentoxide/boron-doped graphitic carbon nitride composite. Chem. Eng. J. 2021, 403, 126213. [Google Scholar] [CrossRef]
- Yadav, V.; Sharma, H.; Singh, R.K.; Kumar, A.; Saini, V.K. Cerium and boron co-doping in TiO2 boosts diclofenac photodegradation. Appl. Nanosci. 2023, 13, 5903–5919. [Google Scholar] [CrossRef]
- Salaa, F.; Bendenia, S.; Lecomte-Nana, G.L.; Khelifa, A. Enhanced removal of diclofenac by an organohalloysite intercalated via a novel route: Performance and mechanism. Chem. Eng. J. 2020, 396, 125226. [Google Scholar] [CrossRef]
- Rashid, J.; Karim, S.; Kumar, R.; Barakat, M.; Akram, B.; Hussain, N.; Bin, H.B.; Xu, M. A facile synthesis of bismuth oxychloride-graphene oxide composite for visible light photocatalysis of aqueous diclofenac sodium. Sci. Rep. 2020, 10, 14191. [Google Scholar] [CrossRef]
- De Moraes, N.P.; Silva, F.N.; da Silva, M.L.C.P.; Campos, T.M.B.; Thim, G.P.; Rodrigues, L.A. Methylene blue photodegradation employing hexagonal prism-shaped niobium oxide as heterogeneous catalyst: Effect of catalyst dosage, dye concentration, and radiation source. Mater. Chem. Phys. 2018, 214, 95–106. [Google Scholar] [CrossRef]
- Sayadi, M.H.; Ahmadpour, N.; Homaeigohar, S. Photocatalytic and antibacterial properties of Ag-CuFe2O4@WO3 magnetic nanocomposite. Nanomaterials 2021, 11, 298. [Google Scholar] [CrossRef] [PubMed]
- Rostamzadeh, D.; Sadeghi, S. Ni doped zinc oxide nanoparticles supported bentonite clay for photocatalytic degradation of anionic and cationic synthetic dyes in water treatment. J. Photochem. Photobiol. A Chem. 2022, 431, 113947. [Google Scholar] [CrossRef]
- Jiménez-Salcedo, M.; Monge, M.; Tena, M.T. The photocatalytic degradation of sodium diclofenac in different water matrices using g-C3N4 nanosheets: A study of the intermediate by-products and mechanism. J. Environ. Chem. Eng. 2021, 9, 105827. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Wang, X.; Xia, Y.; Zhang, A.; Shi, J.; Gao, L.; Wei, H.; Chen, W. Z-scheme BiVO4/g-C3N4 heterojunction: An efficient, stable and heterogeneous catalyst with highly enhanced photocatalytic activity towards Malachite Green assisted by H2O2 under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126445. [Google Scholar] [CrossRef]
- Ahamad, T.; Alshehri, S.M. Fabrication of Ag@SrTiO3/g-C3N4 heterojunctions for H2 production and the degradation of pesticides under visible light. Sep. Purif. Technol. 2022, 297, 121431. [Google Scholar] [CrossRef]
- Kaur, A.; Kansal, S.K. Bi2WO6 nanocuboids: An efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem. Eng. J. 2016, 302, 194–203. [Google Scholar] [CrossRef]
- Mayuranathan, K.K.; Augustine, C.A.; Bauri, R. A facile synthesis route and photo-catalytic properties of mixed-phase bismuth molybdate. J. Lumin. 2022, 252, 119341. [Google Scholar] [CrossRef]
- Akram, H.A.; Imran, M.; Latif, S.; Hatshan, M.R.; Khan, M.; Abuhagr, A.; Alotaibi, K.M.; Adil, S.F. Bi3+/Ce3+ doped ZnO nanoparticles with enhanced photocatalytic and dielectric properties. J. Saudi Chem. Soc. 2023, 27, 101567. [Google Scholar] [CrossRef]
Composition | D (nm) | δ (lines/m2) | ε | Crystallinity (%) |
---|---|---|---|---|
x = 0.00 | 40.29 | 6.16 10−13 | 0.000467 | 70.5 |
x = 0.01 | 36.86 | 7.36 10−13 | 0.000471 | 77.6 |
x = 0.03 | 34.98 | 8.17 10−13 | 0.000502 | 85.2 |
x = 0.05 | 32.63 | 9.39 10−13 | 0.000586 | 83.2 |
x = 0.07 | 31.27 | 1.02 10−12 | 0.000559 | 70.7 |
x = 0.09 | 29.09 | 1.18 10−12 | 0.000646 | 85.4 |
Material | Frequency | Dielectric Constant | Dielectric Loss | AC Conductivity | Reference |
---|---|---|---|---|---|
BaCe2(MoO4)4 | 7.44 GHz | 12.3 | – | – | [55] |
Ce2(MoO4)2(Mo2O7) | 12.73 GHz | 10. 69 | 1.88 10−4 | – | [7] |
La6−xSmxMoO12 (x = 0.8) | 2 MHz | 32.40 | – | 1.5 × 10−5 S cm−1 | [56] |
Ce2[Zr1−x(Al1/2Nb1/2)x]3(MoO4)9 (x = 0.04) | 12.97 GHz | 10.54 | 1.04 × 10−4 | – | [57] |
Ce2[Zr1−x(Cr1/2Nb1/2)x]3(MoO4)9 (x = 0.06) | 13.069 GHz | 10.56 | 1.383 × 10−3 | – | [58] |
Ce2[Zr0.98(Cr0.5Sb0.5)0.02]3(MoO4)9 | 13.18 GHz | 10.53 | 1.42 × 10−3 | – | [59] |
Ce2−xSbx(MoO4)3 (x = 0.09) | 20 MHz | 8.441 104 | 0.1826 | 17.141 S m−1 | This work |
Catalyst | Catalyst Amount | Diclofenac Concentration | Light Source | Irradiation Time | Photocatalytic Efficiency | Rate Constant | Ref. |
---|---|---|---|---|---|---|---|
N, S co-doped TiO2@MoS2 | 1 g/L | 5 mg/L | LED lamp (60 W) | 150 min | 64% | 0.002 min−1 | [65] |
Bi2MoO6 nanofilms | – | 10 ppm | Sunlight | 60 min | 98.57% | 0.052 min−1 | [66] |
MoS2/Cd0.9Zn0.1S | 25 mg | 20 μM | Xenon lamp | 30 min | 86% | – | [67] |
V2O5/B–co-doped g–C3N4 | 2 g/L | 5 mg/L or 10 mg/L | Xenon lamp (150 W) | 100 min | 100% | – | [68] |
Ce–B–TiO2 | – | 5 ppm | Mercury lamp (125 W) | 180 min | 99% | 0.388 min−1 | [69] |
Ce2−xSbx(MoO4)3 (x = 0.09) | 25 mg | 5 mg/L | UV lamp (8 W) | 180 min | 85.8% | 0.0105 min−1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javaid, A.; Imran, M.; Kanwal, F.; Latif, S.; Adil, S.F.; Shaik, M.R.; Khan, M. Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media. Molecules 2023, 28, 7979. https://doi.org/10.3390/molecules28247979
Javaid A, Imran M, Kanwal F, Latif S, Adil SF, Shaik MR, Khan M. Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media. Molecules. 2023; 28(24):7979. https://doi.org/10.3390/molecules28247979
Chicago/Turabian StyleJavaid, Ayesha, Muhammad Imran, Farah Kanwal, Shoomaila Latif, Syed Farooq Adil, Mohammed Rafi Shaik, and Mujeeb Khan. 2023. "Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media" Molecules 28, no. 24: 7979. https://doi.org/10.3390/molecules28247979
APA StyleJavaid, A., Imran, M., Kanwal, F., Latif, S., Adil, S. F., Shaik, M. R., & Khan, M. (2023). Sb-Doped Cerium Molybdate: An Emerging Material as Dielectric and Photocatalyst for the Removal of Diclofenac Potassium from Aqueous Media. Molecules, 28(24), 7979. https://doi.org/10.3390/molecules28247979