Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil
Abstract
:1. Introduction
2. Results
2.1. Thermal Analysis
2.2. Peroxide Value (PV)
2.3. Fatty Acid Profile
3. Material and Methods
3.1. Haloarchaeal Strain and Culture Conditions
3.2. Preparation of Halophilic Archaeal Carotenoid Extracts
3.3. Oxidation Experiments Set-Up
3.4. Thermal Decomposition of HAE-Doped Fish Oils by TGA
3.5. Determination of Peroxide Values
3.6. Determination of Fatty Acid Compositions by GC-MS
3.7. Determining the Volatile Compounds of Oxidized and Non-Oxidized Fish Oils by GC-MS
3.8. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Subasinghe, R.; Soto, D.; Jia, J. Global aquaculture and its role in sustainable development. Rev. Aquac. 2009, 1, 2–9. [Google Scholar] [CrossRef]
- Suzuki, A. Rising importance of aquaculture in Asia: Current status, issues, and recommendations. In Asian Development Outlook Update Background Paper; Asian Development Bank: Manila, Philippines, 2021. [Google Scholar]
- Boyd, C.E.; McNevin, A.A.; Davis, R.P. The contribution of fisheries and aquaculture to the global protein supply. Food Secur. 2022, 14, 805–827. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.H.; Verdegem, M.C. Sustainable aquaculture in ponds: Principles, practices and limits. Livest. Sci. 2011, 139, 58–68. [Google Scholar] [CrossRef]
- Regueiro, L.; Newton, R.; Soula, M.; Méndez, D.; Kok, B.; Little, D.C.; Pastres, R.; Johansen, J.; Ferreira, M. Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework. J. Ind. Ecol. 2022, 26, 2033–2044. [Google Scholar] [CrossRef]
- Jackson, A.J. The importance of fishmeal and fish oil in aquaculture diets. Int. Aquafeed 2006, 9, 18–21. [Google Scholar]
- Natale, F.; Hofherr, J.; Fiore, G.; Virtanen, J. Interactions between aquaculture and fisheries. Mar. Policy 2013, 38, 205–213. [Google Scholar] [CrossRef]
- Turchini, G.M.; Torstensen, B.E.; Ng, W. Fish oil replacement in finfish nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- Roy, J.; Mercier, Y.; Tonnet, L.; Burel, C.; Lanuque, A.; Surget, A.; Larroquet, L.; Corraze, G.; Terrier, F.; Panserat, S.; et al. Rainbow trout prefer diets rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Physiol. Behav. 2020, 213, 112692. [Google Scholar] [CrossRef]
- Campos, I.; Matos, E.; Maia, M.R.; Marques, A.; Valente, L.M. Partial and total replacement of fish oil by poultry fat in diets for European seabass (Dicentrarchus labrax) juveniles: Effects on nutrient utilization, growth performance, tissue composition and lipid metabolism. Aquaculture 2019, 502, 107–120. [Google Scholar] [CrossRef]
- Subhadra, B.; Lochmann, R.; Rawles, S.; Chen, R. Effect of dietary lipid source on the growth, tissue composition and hematological parameters of largemouth bass (Micropterus salmoides). Aquaculture 2006, 255, 210–222. [Google Scholar] [CrossRef]
- Oliva-Teles, A.; Enes, P.; Couto, A.; Peres, H. Replacing fish meal and fish oil in industrial fish feeds. In Feed and Feeding Practices in Aquaculture; Woodhead Publishing: Sawston, UK, 2022; pp. 231–268. [Google Scholar]
- Jenkins, D.J.; Sievenpiper, J.L.; Pauly, D.; Sumaila, U.R.; Kendall, C.W.; Mowat, F.M. Are dietary recommendations for the use of fish oils sustainable? Can. Med. Assoc. J. 2009, 180, 633–637. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Turchini, G.M.; Ng, W.K.; Tocher, D.R. (Eds.) Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Montero, D.; Izquierdo, M. Welfare and Health of Fish Fed Vegetable Oils as Alternative Lipid Sources to Fish Oil. In Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds; CRC Press: Boca Raton, FL, USA, 2010; pp. 439–485. [Google Scholar] [CrossRef]
- Demir, O.; Türker, A.; Acar, Ü.; Kesbiç, O.S. Effects of Dietary Fish Oil Replacement by Unrefined Peanut Oil on the Growth, Serum Biochemical and Hematological Parameters of Mozambique Tilapia Juveniles (Oreochromis mossambicus). TrJFAS. 2014, 14, 887–892. [Google Scholar] [CrossRef]
- Kesbiç, O.S.; Acar, Ü.; Yigit, M.; Bulut, M.; Gültepe, N.; Yilmaz, S. Unrefined Peanut Oil as a Lipid Source in Diets for Juveniles of Two-banded Seabream Diplodus vulgaris. N. Am. J. Aquac. 2015, 78, 64–71. [Google Scholar] [CrossRef]
- Hasdemir, Ö.; Kesbiç, O.S.; Cravana, C.; Fazio, F. Antioxidant Performance of Borago officinalis Leaf Essential Oil and Protective Effect on Thermal Oxidation of Fish Oil. Sustainability 2023, 15, 10227. [Google Scholar] [CrossRef]
- Carvajal, A.K.; Mozuraityte, R.; Standal, I.B.; Storrø, I.; Aursand, M. Antioxidants in fish oil production for improved quality. J. Am. Oil Chem. Soc. 2014, 91, 1611–1621. [Google Scholar] [CrossRef]
- Ismail, A.; Bannenberg, G.; Rice, H.B.; Schutt, E.; MacKay, D. Oxidation in EPA-and DHA-rich oils: An overview. Lipid Technol. 2016, 28, 55–59. [Google Scholar] [CrossRef]
- Sandgruber, S.; Buettner, A. Comparative human-sensory evaluation and quantitative comparison of odour-active oxidation markers of encapsulated fish oil products used for supplementation during pregnancy and the breastfeeding period. Food Chem. 2012, 133, 458–466. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, Y.; Wang, Z.; Zhou, J.; Zhang, J.; Zhong, H.; Fu, G.; Zhong, L. The protective effect of taurine on oxidized fish-oil-induced liver oxidative stress and intestinal barrier-function impairment in juvenile Ictalurus punctatus. Antioxidants 2021, 10, 1690. [Google Scholar] [CrossRef]
- Hossain, M.; Israt, S.S.; Muntaha, N.; Jamal, M.S. Effect of antioxidants and blending with diesel on partially hydrogenated fish oil biodiesel to upgrade the oxidative stability. Bioresour. Technol. Rep. 2022, 17, 100938. [Google Scholar] [CrossRef]
- Baik, M.; Suhendro, E.L.; Nawar, W.W.; McClements, D.J.; Decker, E.A.; Chinachoti, P. Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. J. Am. Oil Chem. Soc. 2004, 81, 355–360. [Google Scholar] [CrossRef]
- Lygren, B.; Hamre, K.; Waagbø, R. Effects of dietary pro- and antioxidants on some protective mechanisms and health parameters in atlantic salmon. J. Aquat. Anim. Health 1999, 11, 211–221. [Google Scholar] [CrossRef]
- Hrebień-Filisińska, A. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini-review. J. Food Process. Preserv. 2021, 45, e15342. [Google Scholar] [CrossRef]
- Merel, S.; Regueiro, J.; Berntssen, M.H.; Hannisdal, R.; Ørnsrud, R.; Negreira, N. Identification of ethoxyquin and its transformation products in salmon after controlled dietary exposure via fish feed. Food Chem. 2019, 289, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Błaszczyk, A.; Skolimowski, J. Cytotoxicity and Genotoxicity of Ethoxyquin Used As an Antioxidant. Food Rev. Int. 2015, 31, 222–235. [Google Scholar] [CrossRef]
- Saxena, T.B.; Zachariassen, K.E.; Jørgensen, L. Effects of ethoxyquin on the blood composition of turbot, Scophthalmus maximus L. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 2000, 127, 1–9. [Google Scholar] [CrossRef]
- García-Chavarría, M.; Lara-Flores, M. The use of carotenoid in aquaculture. Res. J. Fish. Hydrobiol. 2013, 8, 38–49. [Google Scholar]
- Pereira da Costa, D.; Campos Miranda-Filho, K. The use of carotenoid pigments as food additives for aquatic organisms and their functional roles. Rev. Aquac. 2020, 12, 1567–1578. [Google Scholar] [CrossRef]
- Ehulka, J. Influence of astaxanthin on growth rate, condition, and some blood indices of rainbow trout. Oncorhynchus Mykiss. 2000, 190, 27–47. [Google Scholar]
- Fawzy, S.; Wang, W.; Wu, M.; Yi, G.; Huang, X. Effects of dietary different canthaxanthin levels on growth performance, antioxidant capacity, biochemical and immune-physiological parameters of white shrimp (Litopenaeus Vannamei). Aquaculture 2022, 556, 738276. [Google Scholar] [CrossRef]
- Baker, R.; Pfeiffer, A.-M.; Schöner, F.-J.; Smith-Lemmon, L. Pigmenting efficacy of astaxanthin and canthaxanthin in fresh-water reared Atlantic salmon, Salmo salar. Anim. Feed. Sci. Technol. 2002, 99, 97–106. [Google Scholar] [CrossRef]
- Torrissen, O.J. Pigmentation of salmonids: Interactions of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture 1989, 79, 363–374. [Google Scholar] [CrossRef]
- Elia, A.C.; Prearo, M.; Dörr, A.J.M.; Pacini, N.; Magara, G.; Brizio, P.; Gasco, L.; Abete, M.C. Effects of astaxanthin and canthaxanthin on oxidative stress biomarkers in rainbow trout. J. Toxicol. Environ. Health Part A 2019, 82, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Kesbiç, F.I.; Gültepe, N. C50 carotenoids extracted from Haloterrigena thermotolerans strain K15: Antioxidant potential and identification. Folia Microbiol. 2022, 67, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Kesbiç, F.I.; Gültepe, N. Bioactive components, sun protective properties, and total phenolic contents of halobacterial extracts. Biochem. Syst. Ecol. 2023, 108, 104647. [Google Scholar] [CrossRef]
- Gruszecki, W.I.; Strzałka, K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2005, 1740, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Miyabe, Y.; Ide, H.; Yamamoto, O. Hydroxyl radical scavenging ability of bacterioruberin. Radiat. Phys. Chem. 1997, 50, 267–269. [Google Scholar] [CrossRef]
- Calegari-Santos, R.; Diogo, R.A.; Fontana, J.D.; Bonfim, T.M.B. Carotenoid production by halophilic archaea under different culture conditions. Curr. Microbiol. 2016, 72, 641–651. [Google Scholar] [CrossRef]
- Britton, G. General carotenoid methods. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1985; Volume 111, pp. 113–149. [Google Scholar]
- Yeşilsu, A.F.; Özyurt, G. Su ürünlerinin kalite ve güvenliği için Türkiye ve dünyada uygulanan mevzuatlar. J. Fish. Sci. 2013, 7, 58–71. [Google Scholar]
- Tengku-Rozaina, T.M.; Birch, E.J. Thermal oxidative stability analysis of hoki and tuna oils by Differential Scanning Calorimetry and Thermogravimetry. Eur. J. Lipid Sci. Technol. 2016, 118, 1053–1061. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Mirzaee–Ghaleh, E. Comparison of chemometrics and AOCS official methods for predicting the shelf life of edible oil. Chemom. Intell. Lab. Syst. 2020, 206, 104165. [Google Scholar] [CrossRef]
- Wu, P.-W.; Tsai, C.-H.; Hsu, C.-Y.; Chang, S.-H.; Kao, Y.-M.; Tseng, S.-H.; Wang, D.-Y. Determination and evaluation of EPA and DHA ethyl esters in fish oils using the TMAH transesterification method. J. Food Drug Anal. 2023, 31, 436–445. [Google Scholar] [CrossRef]
- Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or Negative Actors? Biomolecules 2018, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Alabdaly, Y.Z.; Al-Hamdany, E.K.; Abed, E.R. Toxic effects of butylated hydroxytoluene in rats. Iraqi J. Vet. Sci. 2021, 35, 121–128. [Google Scholar] [CrossRef]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated hydroxyanisole: Carcinogenic food additive to be avoided or harmless antioxidant important to protect food supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef] [PubMed]
- Ventosa, A.; Márquez, M.C.; Sánchez-Porro, C.; de la Haba, R.R. Taxonomy of halophilic archaea and bacteria. In Advances in Understanding the Biology of Halophilic Microorganisms; Springer: Dordrecht, The Netherlands, 2012; pp. 59–80. [Google Scholar]
- Pfeifer, K.; Ergal, İ.; Koller, M.; Basen, M.; Schuster, B.; Simon, K.M.R. Archaea biotechnology. Biotechnol. Adv. 2021, 47, 107668. [Google Scholar] [CrossRef] [PubMed]
- Serrano, S.; Mendo, S.; Caetano, T. Haloarchaea have a high genomic diversity for the biosynthesis of carotenoids of biotechnological interest. Res. Microbiol. 2022, 173, 103919. [Google Scholar] [CrossRef] [PubMed]
- Sathivel, S.; Prinyawiwatkul, W.; Negulescu, I.I.; King, J.M.; Basnayake, B.F.A. Thermal degradation of FA and catfish and menhaden oils at different refining steps. J. Am. Oil Chem. Soc. 2003, 80, 1131–1134. [Google Scholar] [CrossRef]
- Sathivel, S. Thermal and flow properties of oils from salmon heads. J. Am. Oil Chem. Soc. 2005, 82, 147–152. [Google Scholar] [CrossRef]
- Dweck, J.; Sampaio, C.M.S. Analysis of the thermal decomposition of commercial vegetable oils in air by simultaneous TG/DTA. J. Therm. Anal. Calorim. 2004, 75, 385–391. [Google Scholar] [CrossRef]
- Kulås, E.; Ackman, R.G. Different Tocopherols and the Relationship between Two Methods for Determination of Primary Oxidation Products in Fish Oil. J. Agric. Food Chem. 2001, 49, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, H.; Faulks, R.; Granado, H.F.; Hirschberg, J.; Olmedilla, B.; Sandmann, G.; Stahl, W. The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J. Sci. Food Agric. 2000, 80, 880–912. [Google Scholar] [CrossRef]
- Henry, L.K.; Catignani, G.L.; Schwartz, S.J. The influence of carotenoids and tocopherols on the stability of safflower seed oil during heat-catalyzed oxidation. J. Am. Oil Chem. Soc. 1998, 75, 1399–1402. [Google Scholar] [CrossRef]
- Fournier, V.; Destaillats, F.; Juanéda, P.; Dionisi, F.; Lambelet, P.; Sébédio, J.; Berdeaux, O. Thermal degradation of long-chain polyunsaturated fatty acids during deodorization of fish oil. Eur. J. Lipid Sci. Technol. 2006, 108, 33–42. [Google Scholar] [CrossRef]
- Grigorakis, K.; Giogios, I.; Vasilaki, A.; Nengas, I. Effect of the fish oil, oxidation status and of heat treatment temperature on the volatile compounds of the produced fish feeds. Anim. Feed. Sci. Technol. 2010, 158, 73–84. [Google Scholar] [CrossRef]
- Panseri, S.; Soncin, S.; Chiesa, L.M.; Biondi, P.A. A headspace solid-phase microextraction gas-chromatographic mass-spectrometric method (HS-SPME–GC/MS) to quantify hexanal in butter during storage as marker of lipid oxidation. Food Chem. 2011, 127, 886–889. [Google Scholar] [CrossRef]
- Frankel, E.N. Formation of headspace volatiles by thermal decomposition of oxidized fish oils vs. oxidized vegetable oils. J. Am. Oil Chem. Soc. 1993, 70, 767–772. [Google Scholar] [CrossRef]
- Vandamme, J.; Nikiforov, A.; Dujardin, K.; Leys, C.; De Cooman, L.; Van Durme, J. Critical evaluation of non-thermal plasma as an innovative accelerated lipid oxidation technique in fish oil. Food Res. Int. 2015, 72, 115–125. [Google Scholar] [CrossRef]
Stage 1 (°C) | Stage 2 (°C) | Stage 3 (°C) | |
---|---|---|---|
BHT100 | 357.91 | 417.24 | 505.73 |
HAE0 | 352.13 | 418.18 | 514.64 |
HAE50 | 349.3 | 413.66 | 513.15 |
HAE100 | 351.28 | 418.28 | 498.29 |
HAE500 | 383.77 | 417.63 | 514.77 |
HAE1000 | 370.61 | 420.68 | 512.43 |
Experimental Groups | BHT100 | HAE0 | HAE50 | HAE100 | HAE500 | HAE1000 | p-Value |
---|---|---|---|---|---|---|---|
Hours | |||||||
24 | 15.57 (5.15) d/ab | 22.44 (1.72) d/a | 16.46 (3.04) c/ab | 14.00 (2.29) c/ab | 17.23 (2.44) b/ab | 11.37 (1.48) c/b | 0.013 |
48 | 32.22 (3.36) c/b | 60.76 (5.82) c/a | 27.15 (2.29) c/b | 23.61 (2.01) c/bc | 16.27 (2.93) b/c | 17.53 (3.14) c/c | <0.001 |
72 | 27.60 (4.92) b/b | 107.38 (7.77) b/a | 87.47 (9.43) b/b | 79.27 (2.05) b/b | 25.73 (1.76) b/c | 75.80 (4.58) b/b | <0.001 |
96 | 124.98 (2.60) a/b | 203.41 (9.90) a/a | 113.51 (7.76) a/bc | 96.64 (6.50) a/cd | 58.97 (6.09) a/e | 92.09 (5.86) a/d | <0.001 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Fatty Acid | Fresh Fish Oil | BHT100 | HAE0 | HAE50 | HAE100 | HAE500 | HAE1000 | p-Value |
---|---|---|---|---|---|---|---|---|
C14:0 | 5.38 (0.29) c | 6.23 (0.04) ab | 6.69 (0.03) a | 6.19 (0.05) ab | 5.70 (0.56) bc | 5.88 (0.05) bc | 5.94 (0.03) bc | <0.001 |
C15:0 | 1.28 (0.03) d | 1.45 (0.02) b | 1.59 (0.01) a | 1.46 (0.01) b | 1.43 (0.01) bc | 1.38 (0.01) c | 1.42 (0.01) bc | <0.001 |
C16:0 | 16.81 (0.70) e | 20.22 (0.04) b | 21.66 (0.15) a | 19.88 (0.06) bc | 19.21 (0.17) cd | 19.22 (0.05) cd | 18.86 (0.03) d | <0.001 |
C17:0 | 1.30 (0.02) c | 1.43 (0.02) b | 1.54 (0.02) a | 1.42 (0.01) b | 1.36 (0.04) bc | 1.34 (0.017) c | 1.35 (0.028) c | <0.001 |
C18:0 | 4.94 (0.17) e | 5.90 (0.26) b | 6.31 (0.04) a | 5.81 (0.04) bc | 5.66 (0.06) cd | 5.50 (0.035) d | 5.52 (0.01) d | <0.001 |
C20:0 | 0.72 (0.02) e | 0.81 (0.01) bc | 0.90 (0.01) a | 0.84 (0.01) b | 0.80 (0.01) c | 0.76 (0.01) d | 0.79 (0.01) cd | <0.001 |
∑SFA | 30.43 (0.70) d | 36.04 (0.12) b | 38.71 (0.19) a | 35.62 (0.13) b | 34.17 (0.82) c | 34.10 (0.08) c | 33.89 (0.05) c | <0.001 |
C16:1n-7 | 8.5 (0.3) b | 9.57 (0.05) a | 9.78 (0.38) a | 9.59 (0.08) a | 9.42 (0.01) a | 9.36 (0.06) a | 9.32 (0.03) a | <0.001 |
C16:1n-10 | 0.94 (0.1) a | 0.88 (0.01) a | 0.86 (0.06) a | 0.89 (0.01) a | 0.87 (0.01) a | 0.84 (0.01) a | 0.9 (0.02) a | 0.271 |
C18:1n-9 | 12.05 (0.34) d | 13.54 (0.04) b | 14.12 (0.04) a | 13.32 (0.11) bc | 13.21 (0.03) bc | 13.05 (0.06) c | 13.21 (0.02) bc | <0.001 |
C18:1n-7 | 2.52 (0.12) c | 2.96 (0.04) b | 3.14 (0.03) a | 2.95 (0.03) b | 2.91 (0.015) b | 2.82 (0.01) b | 2.89 (0.01) b | <0.001 |
C20:1n-9 | 1.76 (0.10) b | 1.98 (0.06) ab | 2.02 (0.03) ab | 2.24 (0.23) a | 1.98 (0.11) ab | 1.94 (0.2) ab | 2.08 (0.10) ab | 0.030 |
C22:1n-9 | 1.13 (0.12) b | 1.11 (0.01) b | 1.17 (0.01) ab | 1.12 (0.02) b | 1.11 (0.01) b | 1.07 (0.01) b | 1.77 (0.58) a | 0.022 |
∑MUFA | 26.92 (0.28) d | 30.06 (0.07) abc | 31.11 (0.48) a | 30.12 (0.36) abc | 29.53 (0.11) bc | 29.09 (0.30) c | 30.18 (0.7) ab | <0.001 |
C18:2n-6 | 1.94 (0.05) a | 2.03 (0.02) a | 1.98 (0.05) a | 1.99 (0.005) a | 2.03 (0.05) a | 1.96 (0.01) a | 2.02 (0.01) a | 0.092 |
C18:3n-6 | 0.22 (0.01) b | 0.21 (0.01) b | 0.24 (0.01) a | 0.22 (0.01) ab | 0.22 (0.01) ab | 0.22 (0.01) ab | 0.22 (0.01) b | 0.021 |
C18:3n-3 (ALA) | 2.18 (0.07) a | 2.09 (0.03) ab | 1.83 (0.11) c | 2.03 (0.02) b | 2.10 (0.01) ab | 2.17 (0.02) ab | 2.15 (0.02) ab | <0.001 |
C20:4n-6 | 1.01 (0.03) a | 0.82 (0.01) d | 0.72 (0.04) e | 0.84 (0.01) cd | 0.89 (0.01) bc | 0.88 (0.02) bcd | 0.93 (0.02) b | <0.001 |
C20:3n-3 | 0.69 (0.06) a | 0.5 (0.01) cd | 0.45 (0.04) d | 0.58 (0.01) bc | 0.60 (0.01) ab | 0.55 (0.02) bc | 0.61 (0.017) ab | <0.001 |
C20:5n-3 (EPA) | 9.53 (0.15) a | 7.76 (0.04) d | 6.47 (0.07) e | 7.79 (0.03) d | 8.34 (0.02) c | 8.55 (0.13) bc | 8.59 (0.04) b | <0.001 |
C22:6n-3 (DHA) | 18.53 (0.11) a | 14.26 (0.21) e | 11.05 (0.03) f | 14.0 (0.26) e | 14.93 (0.06) d | 16.15 (0.13) b | 15.67 (0.12) c | <0.001 |
C22:5n-6 | 0.82 (0.01) a | 0.61 (0.01) d | 0.50 (0.01) e | 0.61 (0.01) d | 0.66 (0.01) c | 0.7 (0.01) b | 0.68 (0.01) bc | <0.001 |
ΣPUFA | 34.95 (0.22) a | 28.3 (0.18) d | 23.27 (0.27) e | 28.08 (0.25) d | 29.81 (0.08) c | 31.21 (0.11) b | 30.89 (0.13) b | <0.001 |
Others | 7.68 (1.03) a | 5.59 (0.25) bc | 6.89 (0.54) ab | 6.17 (0.73) abc | 6.48 (0.64) abc | 5.59 (0.14) bc | 5.03 (0.79) c | 0.004 |
Volatile Molecule (%) | Fresh Fish Oil | BHT100 | HAE0 | HAE50 | HAE100 | HAE500 | HAE1000 | p-Value |
---|---|---|---|---|---|---|---|---|
Hexenal | 0.00 (0.00) e | 1.19 (0.07) bc | 1.56 (0.15) a | 1.26 (0.02) b | 1.06 (0.02) bc | 0.77 (0.03) d | 1.01 (0.07) c | <0.001 |
2,4-Heptadienal | 0.00 (0.00) e | 1.06 (0.15) bc | 1.35 (0.06) a | 1.21 (0.01) ab | 0.99 (0.03) c | 0.37 (0.04) d | 0.90 (0.03) c | <0.001 |
2,4-Decadienal | 0.00 (0.00) e | 0.71 (0.05) b | 0.94 (0.04) a | 0.71 (0.04) b | 0.60 (0.07) bc | 0.40 (0.01) d | 0.52 (0.04) cd | <0.001 |
Hexadecane | 0.54 (0.19) d | 1.57 (0.35) c | 2.58 (0.31) a | 2.23 (0.09) ab | 1.78 (0.16) cb | 0.97 (0.05) d | 1.96 (0.04) cb | <0.001 |
2,6-Nonadienal | 0.00 (0.00) f | 1.94 (0.17) b | 2.58 (0.20) a | 1.82 (0.10) bc | 1.43 (0.06) de | 1.22 (0.03) e | 1.57 (0.03) cd | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kesbiç, F.I.; Metin, H.; Fazio, F.; Parrino, V.; Kesbiç, O.S. Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil. Molecules 2023, 28, 8023. https://doi.org/10.3390/molecules28248023
Kesbiç FI, Metin H, Fazio F, Parrino V, Kesbiç OS. Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil. Molecules. 2023; 28(24):8023. https://doi.org/10.3390/molecules28248023
Chicago/Turabian StyleKesbiç, Fevziye Işıl, Hilal Metin, Francesco Fazio, Vincenzo Parrino, and Osman Sabri Kesbiç. 2023. "Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil" Molecules 28, no. 24: 8023. https://doi.org/10.3390/molecules28248023
APA StyleKesbiç, F. I., Metin, H., Fazio, F., Parrino, V., & Kesbiç, O. S. (2023). Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil. Molecules, 28(24), 8023. https://doi.org/10.3390/molecules28248023