Involvement of GABAergic and Serotonergic Systems in the Antinociceptive Effect of Jegosaponin A Isolated from Styrax japonicus
Abstract
:1. Introduction
2. Results
2.1. Screening of Antinociceptive Components
2.2. Identification of Compound 1
2.3. Effects of Jegosaponin A in Antinociceptive Tests
2.4. Validation of Antinociceptive Mechanisms of Jegosaponin A
2.4.1. Effects of Jegosaponin A on Anti-Inflammatory and Sedative Tests
2.4.2. Effects of Calcium Ionophore and Antagonists on Antinociceptive Activities of JA
2.4.3. Effects of Jegosaponin A on Contents of Neurotransmitters in Brain Tissues
2.5. Effects of Jegosaponin A on Open Filed and Elevated plus Maze Tests
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Drugs and Animals
4.3. Isolation Procedure and Antinociceptive Tests
4.4. Identification of the Active Compound 1
4.4.1. UHPLC-QE-MS Analysis
4.4.2. Determination of the Absolute Configuration of Sugars
4.4.3. IR and NMR Analysis
4.5. Antinociceptive Effects of Jegosaponin A
4.6. Analysis of Antinociceptive Mechanisms of Jegosaponin A
4.6.1. Mouse Hind Paw Edema and Sleep Tests
4.6.2. Antagonists and Calcium Ionophore Tests of Jegosaponin A
4.6.3. Evaluation of 5-HT and 5-HIAA, Glu and GABA in Brain Tissues of Mice
4.6.4. Anxiolytic Test of Jegosaponin A
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kim, Y.S.; Shin, D.H. Volatile components and antibacterial effects of simultaneous steam distillation and solvent extracts from the leaves of Styrax japonica S. et Z. Food Sci. Biotechnol. 2004, 13, 561–565. [Google Scholar]
- Lee, D.G.; Jin, Q.; Jin, H.G.; Shin, J.F.; Choi, E.J.; Woo, E.R. Isolation of virus-cell fusion inhibitory components from the stem bark of Styrax japonica S. et Z. Arch. Pharm. Res. 2010, 33, 863–866. [Google Scholar] [CrossRef]
- Wu, N.; Wang, L.; Chzn, Y.K.; Liao, Z.; Yang, G.Y.; Hu, Q.F. Lignans from the stem of Styrax japonica. Asian J. Chem. 2011, 23, 931–932. [Google Scholar]
- Min, B.S.; Oh, S.R.; Ahn, K.S.; Kim, J.H.; Lee, J.; Kim, D.Y.; Kim, E.H.; Lee, H.K. Anti-complement activity of norlignans and terpenes from the stem bark of Styrax japonica. Planta Med. 2004, 70, 1210–1215. [Google Scholar] [CrossRef]
- Yun, K.J.Y.; Min, B.S.; Kim, J.Y.; Lee, K.T. Styraxoside A isolated from the stem bark of Styrax japonica inhibits lipopolysaccharide-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells by suppressing nuclear factor-kappa B activation. Biol. Pharm. Bull. 2007, 30, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.Q. Compilation of National Chinese Herbal Medicine, 3rd ed.; People Public Health Publishing Company: Beijing, China, 2014. [Google Scholar]
- He, L.; Zhou, Y.; Wan, G.J.; Wang, W.C.; Zhang, N.; Yao, L. Antinociceptive effects of flower extracts and the active fraction from Styrax japonicus. J. Ethnopharmacol. 2022, 284, 114779. [Google Scholar] [CrossRef]
- Chapman, C.R.; Nakamura, Y. The affctive dimension of pain: Mechanisms and implications. In Emotions, Qualia, and Consciousness; Kaszniak, A., Ed.; World Scientific: Singapore, 2001; pp. 181–210. [Google Scholar]
- McCarberg, B.; Peppin, J. Pain pathways and nervous system plasticity: Learning and memory in pain. Pain Med. 2019, 20, 2421–2437. [Google Scholar] [CrossRef]
- Pan, Y.J.; Wang, D.X.; Yang, J.; He, X.L.; Xiao, N.M.; Ma, R.Q.; Wang, C.H.; Lin, B.C. Oxytocin in hypothalamic supraoptic nucleus is transferred to the caudate nucleus to influence pain modulation. Neuropeptides 2016, 58, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, S. Antinociceptive effect of the citrus flavonoid eriocitrinon postoperative pain conditions. J. Pain Res. 2020, 13, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Imam, M.Z.; Moniruzzaman, M. Antinociceptive effect of ethanol extract of leaves of Lannea coromandelica. J. Ethnopharmacol. 2014, 154, 109–115. [Google Scholar] [CrossRef]
- Kamkar Asl, M.; Nazariborun, A.; Hosseini, M. Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna J. Phytomed. 2013, 3, 186–192. [Google Scholar]
- Park, S.H.; Sim, Y.B.; Kang, Y.J.; Kim, S.S.; Kim, C.H.; Kim, S.J.; Suh, H.W. Mechanisms involved in the antinociceptive effects of orally administered oleanolic acid in the mouse. Arch. Pharm. Res. 2013, 36, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Eijlers, R.; Utens, E.M.W.J.; Staals, L.M.; de Nijs, P.F.A.; Berghmans, J.M.; Wijnen, R.M.H.; Hillegers, M.H.J.; Dierckx, B.; Legerstee, J.S. Systematic review and meta-analysis of virtual reality in pediatrics: Effects on pain and anxiety. Anesth. Analg. 2019, 129, 1344–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, X.W.; Zhang, L.L.; Gao, L.; Guo, Y.; Zhang, L.J.; Li, L.Y.; Si, J.Y.; Cao, L. Antiinflammatory and analgesic activities of ethanol extract and isolated compounds from Millettia pulchra. Biol. Pharm. Bull. 2015, 38, 1328–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Cha, D.S.; Jeon, H. Antinociceptive and hypnotic properties of Celastrus orbiculatus. J. Ethnopharmacol. 2011, 137, 1240–1244. [Google Scholar] [CrossRef]
- Nishimura, M.; Fuchino, H.; Takayanagi, K.; Kawakami, H.; Nakayama, H.; Kawahara, N.; Shimada, Y. Toxicity of jegosaponins A and B from Styrax japonica Siebold et al. Zuccarini in prostate cancer cells and zebrafish embryos resulting from increased membrane permeability. Int. J. Mol. Sci. 2021, 22, 6354. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hirai, H.; Tanaka, M.; Arihara, S. Antisweet natural products. XV. Structures of jegosaponins A-D from Styrax japonica Sieb. et Zucc. Chem. Pharm. Bull. 2000, 48, 1093–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuner, R.; Kuner, T. Cellular circuits in the brain and their modulation in acute and chronic pain. Physiol. Rev. 2021, 101, 213–258. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, M. Cortical excitation and chronic pain. Trends Neurosci. 2008, 31, 199–207. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, P.; Tang, C.Y.; Wang, Y.; Li, Y.Z.; Zhang, H. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of Carthamus tinctorius L. J. Ethnopharmacol. 2014, 151, 944–950. [Google Scholar] [CrossRef]
- de Oliveira, C.M.; Nonato, F.R.; de Lima, F.O.; Couto, R.D.; David, J.P.; David, J.M.; Pereira Soares, M.B.; Villarreal, C.F. Antinociceptive Properties of Bergenin. J. Nat. Prod. 2011, 74, 2062–2068. [Google Scholar] [CrossRef]
- Pervez, S.; Saeed, M.; Khan, H.; Ghaffar, R. Antinociceptive and anti-inflammatory like effects of Berberis baluchistanica. Curr. Molec. Pharmacol. 2021, 14, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Nadeson, R.; Goodchild, C.S. Antinociceptive properties of neurosteroids II. Experiments with Saffan (R) and its components alphaxalone and alphadolone to reveal separation of anaesthetic and antinociceptive effects and the involvement of spinal cord GABA(A) receptors. Pain 2000, 88, 31–39. [Google Scholar] [CrossRef]
- Beedle, A.M.; Zamponi, G.W. Molecular determinants of opioid analgesia: Modulation of presynaptic calcium channels. Drug Dev. Res. 2001, 54, 118–128. [Google Scholar] [CrossRef]
- Lazaro-Ibanez, G.G.; Torres-Lopez, J.E.; Granados-Soto, V. Participation of the nitric oxide-cyclic GMP-ATP-sensitive K+ channel pathway in the antinociceptive action of ketorolac. Eur. J. Pharmacol. 2001, 426, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Nagy, I.; Friston, D.; Valente, J.S.; Perez, J.V.T.; Andreou, A.P. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 ion channel. In Capsaicin as a Therapeutic Molecule, 1st ed.; AbdelSalam, O.M.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 68, pp. 39–76. [Google Scholar]
- Cimpean, A.; David, D. The mechanisms of pain tolerance and pain-related anxiety in acute pain. Health Psychol. Open 2019, 6, 2055102919865160. [Google Scholar] [CrossRef] [PubMed]
- Koshimizu, H.; Leiter, L.M.; Miyakawa, T. M-4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol. Brain 2012, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.F.; Talukder, B.; Rana, M.N.; Refat, T.; Sharmin Nipun, T.; Naim Uddin, S.M.; Moazzem Hossen, S.M. In vivo sedative activity of methanolic extract of Stericulia villosa Roxb. leaves. BMC Complement. Altern. Med. 2016, 16, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savic, M.M.; Kukic, J.M.; Grayer, R.J.; Milinkovic, M.M.; Marin, P.D.; Divljakovic, J.; Van Linn, M.; Cook, J.M.; Petrovic, S.D. Behavioural characterization of four endemic Stachys taxa. Phytother. Res. 2010, 24, 1309–1316. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W.; Jing, S.; Zhang, Y.; Man, S.; Wang, Y.; Zhang, J.; Liu, C. Correlation among cytotoxicity, hemolytic activity and the composition of steroidal saponins from Paris L. J. Ethnopharmacol. 2013, 149, 422–430. [Google Scholar] [CrossRef]
- Voutquenne, L.; Lavaud, C.; Massiot, G.; Le Men-Olivier, L. Structure-activity relationships of haemolytic saponins. Pharm. Biol. 2002, 40, 253–262. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative H-1 NMR spectroscopy. Trac-Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Duan, W.J.; Yang, J.Y.; Chen, L.X.; Zhang, L.J.; Jiang, Z.H.; Cai, X.D.; Zhang, X.; Qiu, F. Monoterpenes from Paeonia albiflora and their inhibitory activity on nitric oxide production by lipopolysaccharide-activated microglia. J. Nat. Prod. 2009, 72, 1579–1584. [Google Scholar] [CrossRef]
- Al Shoyaib, A.; Archie, S.R.; Karamyan, V.T. Intraperitoneal route of drug administration: Should it be used in experimental animal studies? Pharm. Res. 2020, 37, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lu, J.; Yao, L. Involvement of the dopamine D-1 receptor system in the anxiolytic effect of cedrol in the elevated plus maze and light-dark box tests. J. Pharmacol. Sci. 2020, 142, 26–33. [Google Scholar] [CrossRef]
- Zieminska, E.; Toczylowska, B.; Diamandakis, D.; Hilgier, W.; Filipkowski, R.K.; Polowy, R.; Orzel, J.; Gorka, M.; Lazarewicz, J.W. Glutamate, glutamine and GABA levels in rat brain measured using MRS, HPLC and NMR methods in study of two models of autism. Front. Molec. Neurosci. 2018, 11, 418. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, C.; Miyamoto, C.; Furuyashiki, T.; Narumiya, S.; Ohinata, K. Central PGE(2) exhibits anxiolytic-like activity via EP1 and EP4 receptors in a manner dependent on serotonin 5-HT1A, dopamine D-1 and GABA(A) receptors. FEBS Lett. 2011, 585, 2357–2362. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.; Mizushige, T.; Kanamoto, R.; Ohinata, K. Identification of novel beta-lactoglobulin-derived peptides, wheylin-1 and -2, having anxiolytic-like activity in mice. Mol. Nutr. Food Res. 2014, 58, 353–358. [Google Scholar] [CrossRef]
- Zhang, K.; Yao, L. The anxiolytic effect of Juniperus virginiana L. essential oil and determination of its active constituents. Physiol. Behav. 2018, 189, 50–58. [Google Scholar] [CrossRef]
Position | δC | δH (J in Hz) | |
---|---|---|---|
Aglycon | 1 | 38.88 | 0.794 o, 1.330 o |
2 | 26.60 | 1.658 m, 2.066 m | |
3 | 89.77 | 3.204 dd (11.76, 4.2) | |
4 | 39.84 | ||
5 | 55.85 | 0.733 t (12.81) | |
6 | 18.61 | 1.495 (2H) m | |
7 | 33.29 | 1.295 m, 1.562 m | |
8 | 40.18 | ||
9 | 47.03 | 1.677 m | |
10 | 36.90 | ||
11 | 23.98 | 1.754 m,1.839 o | |
12 | 123.97 | 5.384 m | |
13 | 143.02 | ||
14 | 41.85 | ||
15 | 34.84 | ||
16 | 68.22 | 4.439 o | |
17 | 48.15 | ||
18 | 40.24 | 3.073 o | |
19 | 47.37 | 1.391 m, 3.074 m | |
20 | 36.64 | ||
21 | 79.56 | 6.602 dd (10.15, 1.96) | |
22 | 74.48 | 6.267 d (9.30) | |
23 | 28.12 | 1.175 s | |
24 | 16.90 | 1.061 s | |
25 | 15.78 | 0.786 s | |
26 | 17.02 | 1.175 s | |
27 | 27.61 | 1.834 s | |
28 | 63.88 | 3.384 d (10.43), 3.623 dd (10.57, 3.22) | |
29 | 29.70 | 1.098 s | |
30 | 20.31 | 1.328 s | |
AC | 1 | 171.16 | |
2 | 21.05 | 1.895 s | |
Tig | 1 | 168.19 | |
2 | 129.66 | ||
3 | 137.02 | 7.108 q (6.54) | |
4 | 14.39 | 1.643 d (7.00) | |
5 | 12.80 | 1.957 s | |
GlcA | 1 | 105.58 | 4.89 d (5.88) |
2 | 79.87 | 4.747 m | |
3 | 82.89 | 4.757 m | |
4 | 71.25 | 4.486 m | |
5 | 77.53 | 4.584 m | |
6 | 172.38 | ||
Glc | 1 | 102.90 | 5.939 d (7.42) |
2 | 76.50 | 4.159 t (8.12) | |
3 | 78.36 | 4.442 m | |
4 | 72.75 | 4.808 brs | |
5 | 77.21 | 4.27 m | |
6 | 63.73 | 4.352 m, 4.701 m | |
Gal | 1 | 101.60 | 6.199 d (7.70) |
2 | 76.63 | 4.737 m | |
3 | 76.23 | 4.501 m | |
4 | 71.33 | 4.488 m | |
5 | 77.10 | 4.489 m | |
6 | 62.03 | 4.319 m, 4.363 m | |
Rha | 1 | 102.57 | 6.256 o |
2 | 74.24 | 4.392 m | |
3 | 72.81 | 4.713 m | |
4 | 74.07 | 4.225 m | |
5 | 69.96 | 4.903 m | |
6 | 18.48 | 1.437 d (6.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Zhou, Y.; Ma, L.; Wang, W.; Yao, L. Involvement of GABAergic and Serotonergic Systems in the Antinociceptive Effect of Jegosaponin A Isolated from Styrax japonicus. Molecules 2023, 28, 2243. https://doi.org/10.3390/molecules28052243
He L, Zhou Y, Ma L, Wang W, Yao L. Involvement of GABAergic and Serotonergic Systems in the Antinociceptive Effect of Jegosaponin A Isolated from Styrax japonicus. Molecules. 2023; 28(5):2243. https://doi.org/10.3390/molecules28052243
Chicago/Turabian StyleHe, Lei, Ying Zhou, Li Ma, Wencui Wang, and Lei Yao. 2023. "Involvement of GABAergic and Serotonergic Systems in the Antinociceptive Effect of Jegosaponin A Isolated from Styrax japonicus" Molecules 28, no. 5: 2243. https://doi.org/10.3390/molecules28052243
APA StyleHe, L., Zhou, Y., Ma, L., Wang, W., & Yao, L. (2023). Involvement of GABAergic and Serotonergic Systems in the Antinociceptive Effect of Jegosaponin A Isolated from Styrax japonicus. Molecules, 28(5), 2243. https://doi.org/10.3390/molecules28052243