In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimized Structures of the ApoE4–Ligand Complexes
2.2. Interactions between ApoE4 and Compounds with Higher Binding Affinities
2.3. Interactions between ApoE4 and Other Compounds with Lower Binding Affinities
2.4. Classification of Compounds Using VISCANA Analysis
2.5. Proposal of Novel Quercetin Derivatives as Potent ApoE4 Inhibitors
3. Methods of Molecular Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Breijyeh, Z.; Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 2020, 25, 5789. [Google Scholar] [CrossRef]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Zhao, N.; Caulfield, T.R.; Liu, C.-C.; Bu, G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019, 15, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Husain, M.A.; Laurent, B.; Plourde, M. APOE and Alzheimer’s Disease: From Lipid Transport to Physiopathology and Therapeutics. Front. Neurosci. 2021, 15, 630502. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Basak, J.M.; Holtzman, D.M. The Role of Apolipoprotein E in Alzheimer’s Disease. Neuron 2009, 63, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA 1993, 90, 1977–1981. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Mahaman, Y.A.R.; Huang, F.; Wu, M.; Wang, Y.; Wei, Z.; Bao, J.; Salissou, M.T.M.; Ke, D.; Wang, Q.; Liu, R.; et al. Moringa oleifera Alleviates Homocysteine-Induced Alzheimer’s Disease-Like Pathology and Cognitive Impairments. J. Alzheimer’s Dis. 2018, 63, 1141–1159. [Google Scholar] [CrossRef]
- Ghimire, S.; Subedi, L.; Acharya, N.; Gaire, B.P. Moringa oleifera: A Tree of Life as a Promising Medicinal Plant for Neurodegenerative Diseases. J. Agric. Food Chem. 2021, 69, 14358–14371. [Google Scholar] [CrossRef]
- Mbikay, M. Therapeutic Potential of Moringa oleifera Leaves in Chronic Hyperglycemia and Dyslipidemia: A Review. Front. Pharmacol. 2012, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef] [PubMed]
- Fakurazi, S.; Sharifudin, S.A.; Arulselvan, P. Moringa oleifera Hydroethanolic Extracts Effectively Alleviate Acetaminophen-Induced Hepatotoxicity in Experimental Rats through Their Antioxidant Nature. Molecules 2012, 17, 8334–8350. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.S.; Arulselvan, P.; Karthivashan, G.; Fakurazi, S. Moringa oleifera flower extract suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF-kappaB pathway. Mediat. Inflamm. 2015, 2015, 720171. [Google Scholar] [CrossRef] [PubMed]
- Sutalangka, C.; Wattanathorn, J.; Muchimapura, S.; Thukham-Mee, W. Moringa oleifera Mitigates Memory Impairment and Neurodegeneration in Animal Model of Age-Related Dementia. Oxidative Med. Cell. Longev. 2013, 2013, 695936. [Google Scholar] [CrossRef]
- Karthivashan, G.; Kura, A.U.; Arulselvan, P.; Isa, N.M.; Fakurazi, S. The modulatory effect of Moringa oleifera leaf extract on endogenous antioxidant systems and inflammatory markers in an acetaminophen-induced nephrotoxic mice model. PeerJ 2016, 4, e2127. [Google Scholar] [CrossRef]
- Gupta, R.; Mathur, M.; Bajaj, V.K.; Katariya, P.; Yadav, S.; Kamal, R.; Gupta, R.S. Evaluation of antidiabetic and antioxidant activity of Moringa oleifera in experimental diabetes. J. Diabetes 2012, 4, 164–171. [Google Scholar] [CrossRef]
- Tiloke, C.; Phulukdaree, A.; A Chuturgoon, A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med. 2013, 13, 226. [Google Scholar] [CrossRef]
- Hannan, A.; Kang, J.-Y.; Mohibbullah; Hong, Y.-K.; Lee, H.; Choi, J.-S.; Choi, I.S.; Moon, I.S. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials. J. Ethnopharmacol. 2014, 152, 142–150. [Google Scholar] [CrossRef]
- Arozal, W.; Purwoningsih, E.; Lee, H.J.; Barinda, A.J.; Munim, A. Effects of Moringa oleifera in Two Independents Formulation and as Neuroprotective Agent Against Scopolamine-Induced Memory Impairment in Mice. Front. Nutr. 2022, 9, 799127. [Google Scholar] [CrossRef] [PubMed]
- Mundkar, M.; Bijalwan, A.; Soni, D.; Kumar, P. NNeuroprotective potential of Moringa oleifera mediated by NF-kB/Nrf2/HO-1 signaling pathway: A review. J. Food Biochem. 2022, 46, e14451. [Google Scholar] [CrossRef]
- Mahaman, Y.A.R.; Feng, J.; Huang, F.; Salissou, M.T.M.; Wang, J.; Liu, R.; Zhang, B.; Li, H.; Zhu, F.; Wang, X. Moringa oleifera Alleviates Aβ Burden and Improves Synaptic Plasticity and Cognitive Impairments in APP/PS1 Mice. Nutrients 2022, 14, 4284. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Hussain, G.; Hameed, A.; Iftikhar, I.; Ibrahim, M.; Asghar, R.; Nisar, I.; Farooq, T.; Khalid, T.; Rehman, K.; et al. Metabolites of Moringa oleifera Activate Physio-Biochemical Pathways for an Accelerated Functional Recovery after Sciatic Nerve Crush Injury in Mice. Metabolites 2022, 12, 1242. [Google Scholar] [CrossRef]
- Muhammed, R.E.; El-Desouky, M.A.; Abo-Seda, S.B.; Nahas, A.; Elhakim, H.K.; Alkhalaf, M.I. The protecting role of Moringa oleifera in cypermethrin-induced mitochondrial dysfunction and apoptotic events in rats brain. J. King Saud Univ. Sci. 2020, 32, 2717–2722. [Google Scholar] [CrossRef]
- Igado, O.O.; Olopade, J.O. A Review on the Possible Neuroprotective Effects of Moringa oleifera Leaf Extract. Niger. J. Physiol. Sci. 2016, 31, 183–187. [Google Scholar]
- Bakre, A.G.; Aderibigbe, A.O.; Ademowo, O.G. Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. J. Ethnopharmacol. 2013, 149, 783–789. [Google Scholar] [CrossRef]
- Khan, M.F.; Yadav, S.; Banerjee, S. Review Article on Effects of Moringa on Central Nervous System. J. Young Pharm. 2021, 13, 315–319. [Google Scholar] [CrossRef]
- Shaji, D.; Yamamoto, S.; Saito, R.; Suzuki, R.; Nakamura, S.; Kurita, N. Proposal of novel natural inhibitors of severe acute respiratory syndrome coronavirus 2 main protease: Molecular docking and ab initio fragment molecular orbital calculations. Biophys. Chem. 2021, 275, 106608. [Google Scholar] [CrossRef]
- Shaji, D.; Suzuki, R.; Yamamoto, S.; Orihashi, D.; Kurita, N. Natural inhibitors for severe acute respiratory syndrome coronavirus 2 main protease from Moringa oleifera, Aloe vera, and Nyctanthes arbor-tristis: Molecular docking and ab initio fragment molecular orbital calculations. Struct. Chem. 2022, 33, 1771–1788. [Google Scholar] [CrossRef]
- Shaji, D.; Das, A.; Suzuki, R.; Nagura, Y.; Sabishiro, H.; Kurita, N. Proposal of novel ApoE4 inhibitors from the natural spice Cinnamon for the treatment of Alzheimer’s disease: Ab initio molecular simulations. Biophys. Chem. 2023, 296, 106990. [Google Scholar] [CrossRef]
- Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M. Fragment molecular orbital method: An approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313, 701–706. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 2000, 44, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Besler, B.H.; Merz, K.M.; Kollman, P.A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 1990, 11, 431–439. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinform. 2010, 78, 1950–1958. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Laksmiani, N.P.L.; Widiantara, I.W.A.; Pawarrangan, A.B.S. Potency of moringa (Moringa oleifera L.) leaves extract containing quercetin as a depigmentation agent inhibiting the tyrosinase enzyme using in-silico and in-vitro assay. Pharmacia 2022, 69, 85–92. [Google Scholar] [CrossRef]
- Bhagawan, W.S.; Atmaja, R.R.D.; Atiqah, S.N. Optimization and quercetin release test of moringa leaf extract (Moringa oleifera) in gel-microemulsion preparation. J. Islam. Pharm. 2017, 2, 34–42. [Google Scholar] [CrossRef]
- Rode, S.B.; Dadmal, A.; Salankar, H.V. Nature’s Gold (Moringa oleifera): Miracle Properties. Cureus 2022, 14, e26640. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Quispe, C.; Hossain, R.; Islam, M.T.; Al-Harrasi, A.; Al-Rawahi, A.; Martorell, M.; Mamurova, A.; Seilkhan, A.; Altybaeva, N.; et al. Neuropharmacological Effects of Quercetin: A Literature-Based Review. Front. Pharmacol. 2021, 12, 665031. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.A.; El Sayed, A.M. Evaluation of the anti-inflammatory profile of quercetin enhancing its effects by beta-cyclodextrin. J. Drug Res. Egypt. 1998, 22, 293–320. [Google Scholar]
- Zhu, M.; Han, S.; Fink, A.L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta—Gen. Subj. 2013, 1830, 2872–2881. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.-C.; Serrano-Pozo, A.; Hashimoto, T.; Frosch, M.P.; Spires-Jones, T.L.; Hyman, B.T. The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System. Am. J. Pathol. 2012, 181, 1426–1435. [Google Scholar] [CrossRef]
- Jiang, L.; Kundu, S.; Lederman, J.D.; López-Hernández, G.Y.; Ballinger, E.C.; Wang, S.; Talmage, D.A.; Role, L.W. Cholinergic Signaling Controls Conditioned Fear Behaviors and Enhances Plasticity of Cortical-Amygdala Circuits. Neuron 2016, 90, 1057–1070. [Google Scholar] [CrossRef]
- Parsons, C.G.; Danysz, W.; Dekundy, A.; Pulte, I. Memantine and Cholinesterase Inhibitors: Complementary Mechanisms in the Treatment of Alzheimer’s Disease. Neurotox. Res. 2013, 24, 358–369. [Google Scholar] [CrossRef]
- Islam, R.; Zaman, A.; Jahan, I.; Chakravorty, R.; Chakraborty, S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J. Young-Pharm. 2013, 5, 173–179. [Google Scholar] [CrossRef]
- Jung, M.; Park, M. Acetylcholinesterase Inhibition by Flavonoids from Agrimonia pilosa. Molecules 2007, 12, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- Sriraksa, N.; Wattanathorn, J.; Muchimapura, S.; Tiamkao, S.; Brown, K.; Chaisiwamongkol, K. Cognitive-Enhancing Effect of Quercetin in a Rat Model of Parkinson’s Disease Induced by 6-Hydroxydopamine. Evid.-Based Complement. Altern. Med. 2012, 2012, 823206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hu, J.; Zhong, L.; Wang, N.; Yang, L.; Liu, C.-C.; Li, H.; Wang, X.; Zhou, Y.; Zhang, Y.; et al. Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology 2016, 108, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Bayazid, A.B.; Lim, B.O. Quercetin is an active agent in berries against neurodegenerative diseases progression through modulation of Nrf2/HO1. Nutrients 2022, 14, 5132. [Google Scholar] [CrossRef]
- Pop, O.L.; Kerezsi, A.D.; Ciont, C. A Comprehensive Review of Moringa oleifera Bioactive Compounds—Cytotoxicity Evaluation and Their Encapsulation. Foods 2022, 11, 3787. [Google Scholar] [CrossRef] [PubMed]
- Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-Oxidant, Anti-Inflammatory and Anti-Allergic Activities of Luteolin. Planta Medica 2008, 74, 1667–1677. [Google Scholar] [CrossRef]
- Ashaari, Z.; Hadjzadeh, M.-A.; Hassanzadeh, G.; Alizamir, T.; Yousefi, B.; Keshavarzi, Z.; Mokhtari, T. The Flavone Luteolin Improves Central Nervous System Disorders by Different Mechanisms: A Review. J. Mol. Neurosci. 2018, 65, 491–506. [Google Scholar] [CrossRef] [PubMed]
- Taheri, Y.; Sharifi-Rad, J.; Antika, G.; Yılmaz, Y.B.; Tumer, T.B.; Abuhamdah, S.; Chandra, S.; Saklani, S.; Kılıç, C.S.; Sestito, S.; et al. Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. Oxidative Med. Cell. Longev. 2021, 2021, 1987588. [Google Scholar] [CrossRef]
- Burton, M.D.; Rytych, J.L.; Amin, R.; Johnson, R.W. Dietary Luteolin Reduces Proinflammatory Microglia in the Brain of Senescent Mice. Rejuvenation Res. 2016, 19, 286–292. [Google Scholar] [CrossRef]
- Jang, S.; Dilger, R.N.; Johnson, R.W. Luteolin Inhibits Microglia and Alters Hippocampal-Dependent Spatial Working Memory in Aged Mice. J. Nutr. 2010, 140, 1892–1898. [Google Scholar] [CrossRef]
- Theoharides, T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. BioFactors 2020, 46, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Yusri, M.A.A.; Sekar, M.; Gan, S.H.; Rani, N.N.I.M.; Lum, P.T.; Ravi, S.; Subramaniyan, V.; Azad, A.K.; Jeyabalan, S.; et al. Genistein: A Potential Natural Lead Molecule for New Drug Design and Development for Treating Memory Impairment. Molecules 2022, 27, 265. [Google Scholar] [CrossRef] [PubMed]
- Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, K.; Mochizuki, Y.; Iwasawa, Y.; Nakata, K.; Chuman, H.; Nakano, T. VISCANA: Visualized Cluster Analysis of Protein−Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening. J. Chem. Inf. Model. 2006, 46, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, D.G.; Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 2007, 28, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2015, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Petros, A.M.; Korepanova, A.; Jakob, C.G.; Qiu, W.; Panchal, S.C.; Wang, J.; Dietrich, J.D.; Brewer, J.T.; Pohlki, F.; Kling, A.; et al. Fragment-Based Discovery of an Apolipoprotein E4 (apoE4) Stabilizer. J. Med. Chem. 2019, 62, 4120–4130. [Google Scholar] [CrossRef]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Kobayashi, I.; Takeda, R.; Suzuki, R.; Shimamura, K.; Ishimura, H.; Kadoya, R.; Kawai, K.; Takimoto-Kamimura, M.; Kurita, N. Specific interactions between androgen receptor and its ligand: Ab initio molecular orbital calculations in water. J. Mol. Graph. Model. 2017, 75, 383–389. [Google Scholar] [CrossRef]
- Mochizuki, Y.; Yamashita, K.; Nakano, T.; Okiyama, Y.; Fukuzawa, K.; Taguchi, N.; Tanaka, S. Higher-order correlated calculations based on fragment molecular orbital scheme. Theor. Chem. Acc. 2011, 130, 515–530. [Google Scholar] [CrossRef]
Compound | Cluster Rank | BE (kcal/mol) | Poses |
---|---|---|---|
Crystallized ligand | 2 | −5.97 | 165 |
(1) Benzyl amine | 1 | −2.60 | 212 |
(2) Vanillin | 4 | −2.17 | 86 |
(3) Eugenol | 2 | −2.64 | 159 |
(4) Gallic acid | 1 | −2.83 | 133 |
(5) Syringic acid | 1 | −2.70 | 106 |
(6) Ferulic acid | 5 | −2.30 | 52 |
(7) Sinapic acid | 1 | −3.43 | 90 |
(8) Niazirin | 4 | −3.53 | 90 |
(9) Moringin | 1 | −4.68 | 70 |
(10) Daidzein | 1 | −4.13 | 163 |
(11) Genistein | 1 | −4.77 | 78 |
(12) Apigenin | 1 | −3.68 | 91 |
(13) Kaempferol | 3 | −3.54 | 67 |
(14) Luteolin | 3 | −3.86 | 39 |
(15) Quercetin | 1 | −4.02 | 43 |
(16) Aurantiamide acetate | 14 | −2.31 | 19 |
Compounds | Residues Involved in H Bonds | Total IFIE |
---|---|---|
(1) Benzyl amine | Asp130, Gln133 | −28.5 |
(2) Vanillin | Asp130 | −45.7 |
(3) Eugenol | No residue | −33.6 |
(4) Gallic acid | Asp130 | −82.6 |
(5) Syringic acid | Glu4, Gly8, Gln133 | −66.1 |
(6) Ferulic acid | Gln1, Glu4, Asp12 | −51.6 |
(7) Sinapic acid | Glu4, Asp12, Arg15 | −80.6 |
(8) Niazirin | Asp12, Arg15 | −101.5 |
(9) Moringin | Asp12, Arg15 | −102.7 |
(10) Daidzein | Asp12, Ala129 | −82.7 |
(11) Genistein | Asp12, Ala129, Asp130 | −109.1 |
(12) Apigenin | Glu4, Arg15, Asp130 | −73.6 |
(13) Kaempferol | Glu4, Arg15, Asp130 | −76.1 |
(14) Luteolin | Asp12, Arg15, Asp130 | −109.5 |
(15) Quercetin | Trp11, Asp12, Arg15, Asp130 | −136.2 |
(16) Aurantiamide acetate | No residue | −51.5 |
Compounds | Residues Involved in H Bonds | Total IFIE |
---|---|---|
Quercetin | Trp11, Asp12, Arg15, Asp130 | −136.2 |
Qa | Trp11, Asp12, Arg15, Asp130 | −144.1 |
Qb | Trp11, Asp12, Arg15, Asp130 | −133.9 |
Qc | Asp12, Arg15, Asp130 | −149.9 |
Qd | Gln1, Glu4, Asp130 | −110.5 |
Qe | Trp11, Asp12, Arg15, Asp130 | −178.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaji, D.; Nagura, Y.; Sabishiro, H.; Suzuki, R.; Kurita, N. In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations. Molecules 2023, 28, 8035. https://doi.org/10.3390/molecules28248035
Shaji D, Nagura Y, Sabishiro H, Suzuki R, Kurita N. In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations. Molecules. 2023; 28(24):8035. https://doi.org/10.3390/molecules28248035
Chicago/Turabian StyleShaji, Divya, Yoshinobu Nagura, Haruna Sabishiro, Ryo Suzuki, and Noriyuki Kurita. 2023. "In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations" Molecules 28, no. 24: 8035. https://doi.org/10.3390/molecules28248035
APA StyleShaji, D., Nagura, Y., Sabishiro, H., Suzuki, R., & Kurita, N. (2023). In Silico Design of Natural Inhibitors of ApoE4 from the Plant Moringa oleifera: Molecular Docking and Ab Initio Fragment Molecular Orbital Calculations. Molecules, 28(24), 8035. https://doi.org/10.3390/molecules28248035