Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication and Characterization of Modified Electrodes
2.2. Electrocatalysis and Electrochemical Sensing of BPA
2.3. Anti-Interference Capacity and Stability of the AuCu-UPD/MWCNTs/GCE
2.4. Practical Water Sample Analysis
3. Materials and Methods
3.1. Instrumentation and Reagents
3.2. Preparation and Characterization of Modified Electrodes
3.3. Electrochemical Measurement of Bisphenol A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity—A review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Widespread occurrence of bisphenol a in paper and paper products: Implications for human exposure. Environ. Sci. Technol. 2011, 45, 9372–9379. [Google Scholar] [CrossRef]
- Braver-Sewradj, S.P.d.; Spronsen, R.v.; Hessel, E.V.S. Substitution of bisphenol A: A review of the carcinogenicity, reproductive toxicity, and endocrine disruption potential of alternative substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef] [PubMed]
- Baumgarten, L.G.; Freitas, A.A.; Santana, E.R.; Winiarski, J.P.; Dreyer, J.P.; Vieira, I.C. Graphene and gold nanoparticle-based bionanocomposite for the voltammetric determination of bisphenol A in (micro)plastics. Chemosphere 2023, 334, 139016. [Google Scholar] [CrossRef] [PubMed]
- Piña, S.; Sepúlveda, P.; García-García, A.; Moreno-Bárcenas, A.; Toledo-Neira, C.; Salazar-González, R. Fast simultaneous electrochemical detection of Bisphenol-A and Bisphenol-S in urban wastewater using a graphene oxide-iron nanoparticles hybrid sensor. Electrochim. Acta 2023, 248, 143164. [Google Scholar] [CrossRef]
- Priya, T.S.; Chen, T.-W.; Chen, S.-M.; Kokulnathan, T.; Lou, B.-S.; Al-onazi, W.A.; Al-Mohaimeed, A.M.; Elshikh, M.S.; Yu, J. Synthesis of perovskite-type potassium niobate using deep eutectic solvents: A promising electrode material for detection of bisphenol A. Chemosphere 2023, 318, 137948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; He, Y.; Zhu, H.; Huang, X.; Bai, X.; Kannan, K.; Zhang, T. Concentrations of bisphenol A and its alternatives in paired maternal–fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environ. Int. 2020, 136, 105407. [Google Scholar] [CrossRef] [PubMed]
- Catron, T.R.; Keely, S.P.; Brinkman, N.E.; Zurlinden, T.J.; Wood, C.E.; Wright, J.R.; Phelps, D.; Wheaton, E.; Kvasnicka, A.; Gaballah, S.; et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol. Sci. 2019, 167, 468–483. [Google Scholar] [CrossRef]
- Bonefeld-Jørgensen, E.C.; Long, M.; Hofmeister, M.V.; Vinggaard, A.M. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: New data and a brief review. Environ. Health Persp. 2007, 115, 69–76. [Google Scholar] [CrossRef]
- Shankar, A.; Teppala, S.; Sabanayagam, C. Bisphenol A and peripheral arterial disease: Results from the NHANES. Environ. Health Persp. 2012, 120, 1297–1300. [Google Scholar] [CrossRef]
- Alnaimat, A.S.; Barciela-Alonso, M.C.; Bermejo-Barrera, P. Determination of bisphenol A in tea samples by solid phase extraction and liquid chromatography coupled to mass spectrometry. Microchem. J. 2019, 147, 598–604. [Google Scholar] [CrossRef]
- Roderick, M.S.; Adcock, J.L.; Terry, J.M.; Smith, Z.M.; Parry, S.; Linton, S.M.; Thornton, M.T.; Barrow, C.J.; Francis, P.S. Chemiluminescence evidence supporting the selective role of ligands in the permanganate oxidation of micropollutants. J. Phys. Chem. A 2013, 117, 10286–10293. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, J.; Wu, C. Determination of endocrine disruption potential of bisphenol a alternatives in food contact materials using in vitro assays: State of the art and future challenges. J. Agric. Food Chem. 2019, 67, 12613–12625. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.U.; Deen, M.J. Bisphenol A electrochemical sensor using graphene oxide and b-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal. Chem. 2020, 92, 5532–5539. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Islam, T.; Imran, A.; Alqahtani, B.; Shah, S.S.; Mahfoz, W.; Karim, M.R.; Alharbi, H.F.; Aziz, M.A.; SalehAhammad, A.J. Mechanistic insights of the oxidation of bisphenol A at ultrasonication assisted polyaniline-Au nanoparticles composite for highly sensitive electrochemical sensor. Electrochim. Acta 2021, 374, 137968. [Google Scholar] [CrossRef]
- Wannapob, R.; Thavarungkul, P.; Limbut, W.; Dawan, S.; Kanatharana, P. A simple and highly stable porous gold-based electrochemical sensor for bisphenol A detection. Electroanalysis 2016, 28, 472–480. [Google Scholar] [CrossRef]
- Zhan, X.; Hu, S.; Wang, J.; Chen, H.; Chen, X.; Yang, J.; Yang, H.; Su, Z. One-pot electrodeposition of metal organic frameworks composite accelerated by gold nanoparticles and electroreduced carbon dots for electroanalysis of bisphenol A in real plastic samples. Sens. Actuat. B Chem. 2021, 346, 130499. [Google Scholar] [CrossRef]
- Su, B.; Shao, H.; Li, N.; Chen, X.; Cai, Z.; Chen, X. A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 2017, 166, 126–132. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Wu, Z.; Wen, W.; Zhang, X.; Wang, S. Electrochemical sensor based on confined synthesis of gold nanoparticles @ covalent organic frameworks for the detection of bisphenol A. Anal. Chim. Acta 2023, 1239, 340743. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, K.; Liu, C.; Yin, L.; Kang, Q.; Li, L.; Li, B. Electrochemical sensing of bisphenol A based on polyglutamic acid/amino-functionalised carbon nanotubes nanocomposite. Electrochim. Acta 2014, 133, 492–500. [Google Scholar] [CrossRef]
- Zheng, Z.; Du, Y.; Wang, Z.; Feng, Q.; Wang, C. Pt/graphene-CNTs nanocomposite based electrochemical sensors for the determination of endocrine disruptor bisphenol A in thermal printing papers. Analyst 2013, 138, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Bui, C.; Flower, G.L.; Paudyal, J. Electrochemical sensing of bisphenol A on single-walled carbon nanotube paper electrodes. Electroanalysis 2023, 35, e202200449. [Google Scholar] [CrossRef]
- Verma, D.; Chauhan, D.; Mukherjee, M.D.; Ranjan, K.R.; Yadav, A.K.; Solanki, P.R. Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J. Appl. Electrochem. 2021, 51, 447–462. [Google Scholar] [CrossRef]
- Cai, B.; Hübner, R.; Sasaki, K.; Zhang, Y.; Su, D.; Ziegler, C.; Vukmirovic, M.B.; Rellinghaus, B.; Adzic, R.R.; Eychmüller, A. Core-shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2018, 57, 2963–2966. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Xie, F.Y.; Fu, Y.C.; He, Y.; Ma, M.; Xie, Q.J.; Yao, S.Z. Au-supported Pt-Au mixed atomic monolayer electrocatalyst with ultrahigh specific activity for oxidation of formic acid in acidic solution. Chem. Commun. 2012, 48, 12106–12108. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Gan, L.; Wei, Y.; Yang, H.; Li, J.; Du, H.; Kang, F. Pt submonolayers on Au nanoparticles: Coverage-dependent atomic structures and electrocatalytic stability on methanol oxidation. J. Phys. Chem. C 2016, 120, 28664–28671. [Google Scholar] [CrossRef]
- Dimitrov, N. Recent advances in the growth of metals, alloys, and multilayers by surface limited redox replacement (SLRR) based approaches. Electrochim. Acta 2016, 209, 599–622. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, Z.; Liua, H.; Yuan, Q.; Xie, Q.; Yao, S. Bi-underpotential/PtAu-bulk coelectrodeposition and subsequent Bi dissolution for electrocatalytic oxidation and amperometric analysis of formaldehyde. Analyst 2020, 145, 7546–7550. [Google Scholar] [CrossRef]
- Trasatti, S.; Petrii, O.A. Real surface area measurements in electrochemistry. Pure Appl. Chem 1991, 63, 711–734. [Google Scholar] [CrossRef]
- Chao, L.; Xiong, X.; Liu, J.; Xu, A.; Huang, T.; He, F.; Xie, Q. Preparation of a porous Au electrode with a sacrificed Prussian blue analogue template for anodic stripping voltammetric analysis of trace arsenic(III). Sens. Actuat. B Chem. 2017, 253, 603–611. [Google Scholar] [CrossRef]
- Messaoud, N.B.; Ghica, M.E.; Dridi, C.; Ali, M.B.; Brett, C.M. Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sens. Actuat. B Chem. 2017, 253, 513–522. [Google Scholar] [CrossRef]
- Lei, X.; Deng, Z.; Zeng, Y.; Huang, S.; Yang, Y.; Wang, H.; Guo, L.; Li, L. A novel composite of conductive metal organic framework and molecularly imprinted poly (ionic liquid) for highly sensitive electrochemical detection of bisphenol A. Sens. Actuat. B Chem. 2021, 339, 129885. [Google Scholar] [CrossRef]
- Zhou, Y.; She, X.; Wu, Q.; Xiao, J.; Peng, T. Monoclinic WO3 nanosheets-carbon nanotubes nanocomposite based electrochemical sensor for sensitive detection of bisphenol A. J. Electroanal. Chem. 2022, 915, 116355. [Google Scholar] [CrossRef]
- Ali, M.Y.; Alama, A.U.; Howlader, M.M.R. Fabrication of highly sensitive bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuat. B Chem. 2020, 320, 128319. [Google Scholar] [CrossRef]
- Rasheed, P.A.; Pandey, R.P.; Jabbar, K.A.; Mahmoud, K.A. Platinum nanoparticles/Ti3C2Tx (MXene) composite for the effectual electrochemical sensing of Bisphenol A in aqueous media. J. Electroanal. Chem. 2021, 880, 114934. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, N.; Sun, X.; Chu, H.; Wang, Y.; Hu, X. Triple-signaling amplification strategy based electrochemical sensor design: Boosting synergistic catalysis in metal-metalloporphyrin-covalent organic frameworks for sensitive bisphenol A detection. Analyst 2021, 146, 4585–4594. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhu, F.; Xiang, J.; Wang, F.; Liu, Q.; Chen, X. In situ growth of ZIF-8 on gold nanoparticles/magnetic carbon nanotubes for the electrochemical detection of bisphenol A. Anal. Methods 2021, 13, 2338–2344. [Google Scholar] [CrossRef]
Modified Electrode | Detection Method | Sensitivity (μA μM −1) | Linear Range (μM) | LOD (nM) | References |
---|---|---|---|---|---|
CMOF-MIPIL sensor | DPV | 0.1589 | 0.005–5.0 | 4.0 | [32] |
AuNPs-ErCDs-MOFs/GCE | DPV | 6.92 1.84 | 0.07–0.5 0.5–1.3 | 32 | [17] |
WO3-CNT/GCE | DPV | 1.45 0.201 | 0.03–3.0 3.0–100 | 16.3 | [33] |
MWCNTs-βCD/SPCE | LSV | 7.1944 2.159 | 0.125–2.0 2.0–3.0 | 13.7 | [34] |
GO-MWCNT-βCD/SPE | DPV | 10.3 0.85 | 0.03–10 10–120 | 5.0 | [14] |
10%Pt@Ti3C2Tx/GCE | DPV | - | 0.05–5.0 | 32 | [35] |
Hemin/TAPB-DMTP-COF/AuNPs | DPV | 0.013 | 0.01–3.0 | 3.5 | [36] |
AuNPs/mCNTs@ZIF-8 | DPV | 0.99 | 1.0–100 | 690 | [37] |
AuPdNPs/GNs-GCE | DPV | 3.97 | 0.05–10 | 8.0 | [18] |
SWCNT/MCE paper | LSV | - | 0.5–10 25–100 | 82 | [22] |
AuCu-UPD/MWCNTs/GCE | DPV | 21.6 1.68 | 0.01–1 1.0–20 | 2.43 | This work |
Sample | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
0.5 | 0.5205 | 104.1 | 3.2 | |
Tap Water | 2 | 2.054 | 102.7 | 4.1 |
5 | 5.195 | 103.9 | 3.7 | |
0.5 | 0.523 | 104.6 | 2.9 | |
Bottled Water | 2 | 1.83 | 91.5 | 3.6 |
5 | 4.94 | 99.8 | 2.7 | |
0.5 | 0.4888 | 97.76 | 4.5 | |
Xiangjiang River Water | 2 | 1.961 | 98.05 | 3.9 |
5 | 5.105 | 92.1 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Chen, Z.; Yan, D.; Jiang, S.; Nie, L.; Tu, X.; Jia, X.; Wågberg, T.; Chao, L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules 2023, 28, 8036. https://doi.org/10.3390/molecules28248036
Huang Z, Chen Z, Yan D, Jiang S, Nie L, Tu X, Jia X, Wågberg T, Chao L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules. 2023; 28(24):8036. https://doi.org/10.3390/molecules28248036
Chicago/Turabian StyleHuang, Zhao, Zihan Chen, Dexuan Yan, Shuo Jiang, Libo Nie, Xinman Tu, Xueen Jia, Thomas Wågberg, and Long Chao. 2023. "Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A" Molecules 28, no. 24: 8036. https://doi.org/10.3390/molecules28248036
APA StyleHuang, Z., Chen, Z., Yan, D., Jiang, S., Nie, L., Tu, X., Jia, X., Wågberg, T., & Chao, L. (2023). Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules, 28(24), 8036. https://doi.org/10.3390/molecules28248036