Structure–Activity Studies on Bis-Sulfonamide SHIP1 Activators
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General Experimental Information
3.2. General Procedure for the Synthesis of Sulfonamides 3–11
- 2-Methyl-5-thiomorpholine-4-sulfonyl)thiophen-3-amine (3). Dark orange powder (0.230 g, 52%). mp = 140–146 °C; TLC Rf = 0.12 (30% EA/hexanes); IR (ATR) 3361 (NH2), 2913 (CH), 2852 (CH), 1565 (C=C), 1327 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 7.54 (s, 1H, ArH), 3.72 (br s, 2H, NH2), 3.64 (t, J = 4.6 Hz, 4H, O2SN-CH2), 3.01 (t, J = 4.8, 4H, S-CH2-), 2.54 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 140.0, 130.5, 125.6, 122.0, 48.0 (O2SN-CH2), 27.3 (S-CH2-), 11.8 (CH3). Anal. Calcd for C9H14N2O2S3: C, 38.83; H, 5.09; N, 10.06. Found: C, 39.17; H, 4.73; N, 9.84.
- 4-[(4-Amino-5-methylthiophen-2-yl)sulfonyl]-1-thiomorpholin-1-one (4). Yellow solid (0.161 g, 99%). mp = 151–154 °C; TLC Rf = 0.54 (50% DCM/50% MeOH); IR (ATR) 3386 (NH), 3322 (NH), 2917 (CH), 2858 (CH), 1334 (SO2), 1017 (S=O) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.11 (s, 1H, ArH), 3.69–3.73 (m, 2H), 3.28–3.34 (m, 2H), 2.97–3.00 (m, 4H), 2.27 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 142.8, 128.7, 126.3, 120.7, 44.0 (CH2), 36.7 (CH2), 10.2 (CH3); Anal. Calcd for C9H14N2O3S3: C, 36.72; H, 4.79; N, 9.52. Found: C, 36.43; H, 4.73; N, 9.32.
- 4-[(4-Amino-5-methylthiophen-2-yl)sulfonyl]-1-thiomorpholine-1,1-dione (5). Yellow solid (0.237, 19%). mp = 194–199 °C; TLC Rf = 0.11 (50% EA/hexanes); IR (ATR) 3448 (NH), 3371 (NH), 3071(ArH), 2930 (CH), 2852 (CH), 1351 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.13 (s, 1H, ArH), 3.59–3.61 (m, 4H), 3.22 (t, J = 5.4 Hz, 4H), 2.29 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 142.8, 129.3, 126.4, 121.0, 50.4 (CH2), 45.1 (CH2), 10.2 (CH3); Anal. Calcd for C9H14N2O4S3: C, 34.83; H, 4.55; N, 9.03. Found: C, 34.99; H, 4.19; N, 8.86.
- 2-Methyl-5-(morpholine-4-sulfonyl)thiophen-3-amine (6). Orange solid (0.80 g, 89%). TLC Rf = 0.22 (3% MeOH/CHCl3); 1H NMR (CDCl3, 400 MHz) δ 7.00 (s, 1H, ArH), 3.76 (t, J = 4.7 Hz 4H, CH2), 3.45 (bs, 2H, NH2), 3.04 (t, J = 4.8 Hz, 4H, CH2), 2.27 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 141.2, 128.5, 126.0, 121.1, 66.1 (CH2), 46.0 (CH2), 11.7 (CH3).
- 2-Methyl-5-(pyrrolidine-1-sulfonyl)thiophen-3-amine (7). Tan solid (0.41 g, 58%). mp = 152–155 °C; TLC Rf = 0.22 (50% EA/hexanes); IR (ATR) 3452 (NH), 3367 (NH), 2980 (CH), 2863 (CH), 1326 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.09 (s, 3H, ArH), 3.24 (t, J = 6.6 Hz, 4H, N-CH2-), 2.27 (s, 3H, CH3), 1.77 (t, J = 6.8 Hz, 4H, CH2); 13C NMR (CDCl3, 100 MHz) δ 136.2, 131.4, 129.2, 126.0, 48.2 (CH2), 25.4 (CH2), 12.1 (CH3); Anal. Calcd for C9H14N2O2S2: C, 43.88; H, 5.73; N, 11.34. Found: C, 43.60; H, 5.36; N, 11.20.
- 2-Methyl-5-(piperidine-1-sulfonyl)thiophen-3-amine (8). Tan solid (0.63 g, 70%). mp = 96–101 °C; TLC Rf = 0.30 (50% EA/hexanes); IR (ATR) 3426 (NH), 3349 (NH), 2979 (CH), 2949 (CH), 1618 (C=C), 1334 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 7.02 (s, 1H, ArH), 3.75 (bs, 2H, NH), 3.01 (t, J = 5.5 Hz, 4H, N-CH2-), 2.29 (s, 3H, CH3), 1.67 (p, J = 5.8 Hz, 4H, CH2), 1.45 (p, J = 6.0 Hz, 2H, CH2); 13C NMR (CDCl3, 100 MHz) δ 139.5, 130.3, 125.6, 121.9, 47.0, 25.1, 23.5, 11.8; Anal. Calcd for C10H16N2O2S2: C, 46.13; H, 6.19; N, 10.76. Found: C, 46.00; H, 6.45; N, 10.66.
- 4-Amino-N,N,5-trimethylthiophene-2-sulfonamide (9). Yellow solid (0.240 g, 39%). mp = 144–146 °C; TLC Rf = 0.46 (50% EA/hexanes); IR (ATR) 3454 (NH), 3372 (NH), 3063 (ArH), 2975 (CH), 2908 (CH), 1630 (C=C), 1324 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.06 (s, 1H, ArH), 2.69 (s, 6H, N(CH3)2), 2.27 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 142.3, 127.8, 126.2, 120.1, 37.0 (N(CH3)2), 10.1 (CH3); Anal. Calcd for C7H12N2O2S2: C, 38.16; H, 5.49; N, 12.72. Found: C, 38.09; H, 5.76; N, 12.85.
- 4-Amino-N,N-diethyl-5-methylthiophene-2-sulfonamide (10). Orange solid (0.150 g, 30%). mp = 72–74 °C; TLC Rf = 0.26 (50% EA/hexanes); IR (ATR) 3434 (NH), 3356 (NH), 2982 (CH), 2937 (CH), 1320 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 6.98 (s, 1H, ArH), 3.52 (bs, 2H, NH2), 3.16 (q, J = 7.2 Hz, 4H, N-CH2-), 2.20 (s, 3H, CH3), 1.13 (t, J = 7.2 Hz, 6H, CH3); 13C NMR (CDCl3, 100 MHz) δ 140.8, 133.7, 125.1, 119.5, 42.7 (N-CH2-), 14.3 (CH3), 11.6 (CH3); Anal. Calcd for C9H16N2O2S2: C, 43.53; H, 6.49; N, 11.28. Found: C, 43.18; H, 6.19; N, 11.48.
- 4-Amino-N-butyl-5-methylthiophene-2-sulfonamide (11). Off-white solid (0.384 g, 51%). mp = 65–67 °C; TLC Rf = 0.32 (50% EA/hexanes); IR (ATR) 3371 (NH), 3313 (NH), 3094 (ArH), 2967 (CH), 2869 (CH), 1316 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 7.06 (s, 1H, ArH), 4.86 (t, J = 5.9 Hz, 1H, RNHSO2Ar), 3.65 (bs, 2H, NH2), 2.96 (q, J = 6.8 Hz, 2H, N-CH2-), 2.23 (s, 3H, CH3), 1.45 (p, J = 7.1 Hz, 2H, CH2-CH2-CH2), 1.29 (sextet, J = 7.2 Hz, 2H, CH2-CH2-CH3), 0.86 (t, J = 7.4 Hz, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 140.8, 133.9, 125.6, 120.3, 43.2 (N-CH2-), 31.4 (CH2), 19.8 (CH2), 13.6 (CH3), 11.7 (CH3); Anal. Calcd for C9H16N2O2S2: C, 43.53; H, 6.49; N, 11.28. Found: C, 43.63; H, 6.79; N, 11.04.
3.3. General Procedure for the Synthesis of Amides 12–20
- tert-Butyl N-(([2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]carbamoyl)methyl) carbamate (12). Yellow oil (0.250 g, 76%). TLC Rf = 0.31 (50% EA/hexanes); IR (ATR) 3254 (NH), 2980 (CH), 2971 (CH), 1665 (C=O), 1350 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.55 (br s, 1H, ArNHCO2R), 7.78 (s, 1H, ArNHR), 5.60 (t, J = 5.7 Hz, 1H, NHBoc), 3.89 (d, J = 5.6 Hz, 2H, CH2), 3.32 (t, J = 4.0 Hz, 4H, NCH2), 2.68 (t, J = 5.2 Hz, 4H, S-CH2-), 2.32 (s, 3H, CH3), 1.43 (s, 9H, OtBu); 13C NMR (CDCl3, 100 MHz) δ 168.0 (C=O), 156.9 (C=O), 132.8, 132.2, 130.9, 128.6, 80.9 (OC(Me)3), 47.9 (CH2), 45.1 (CH2), 28.3 (C(CH3)3), 27.2 (CH2), 12.4 (CH3). This compound has been previously reported [14].
- tert-Butyl-N-[({2-methyl-5-[(1-oxo-1-thiomorpholin-4-yl)sulfonyl]thiophen-3-yl}carbamoyl)methyl] carbamate (13). Clear oil (0.200 g, 73%). TLC Rf = 0.17 (100% EA); IR (ATR) 3283 (NH), 2979 (CH), 2929 (CH), 1683 (C=O), 1350 (SO2), 1150 (SO) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.55 (bs, 1H, NH), 8.04 (s, 1H, ArH), 5.25 (bs, 1H, NH), 3.89 (d, J = 4.5 Hz, 2H), 3.80 (d, J = 13.3 Hz, 2H), 3.45 (t, J = 11.5 Hz, 2H), 2.94 (d, J = 13.9 Hz, 2H), 2.79–2.86 (m, 2H), 2.38 (s, 3H, ArCH3), 1.49 (s, 9H, OtBu); 13C NMR (CD3OD, 100 MHz) δ 171.2 (C=O), 169.6 (C=O), 136.0, 132.5, 130.3, 130.1, 79.4 (OC(Me)3), 44.0, 43.3, 36.7, 27.3 (C(CH3)3), 11.2 (CH3); Anal. Calcd for C16H25N3O6S3: C, 42.56; H, 5.58; N, 9.34. Found: C, 42.28; H, 5.63 N, 9.70.
- tert-Butyl-N-[({5-[(1,1-dioxo-1-thiomorpholine-4-yl)sulfonyl]-2-methylthiophen-3-yl}carbamoyl) methyl] carbamate (14). Light-yellow powder (0.140 g, 39%). mp = 187–190 °C; TLC Rf = 0.51 (30% EA/hexanes); IR (ATR) 3273 (NH), 2987 (CH), 2928 (CH), 1689 (C=O), 1670 (C=O), 1308 (SO2), 1150 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.74 (s, 1H, ArH), 3.88 (s, 2H, CH2NBoc), 3.65 (bs, 4H, O2SCH2-), 3.23 (t, J = 5.4 Hz, 4H, N-CH2-), 2.42 (s, 3H, CH3), 1.47 (s, 9H, OtBu); 13C NMR (CD3OD, 100 MHz) δ 169.8 (C=O), 157.2 (C=O), 136.5, 132.5, 130.8, 130.4, 79.4 (OC(Me)3), 50.5, 45.1, 43.3, 27.3 (C(CH3)3), 11.2 (CH3); Anal. Calcd for C16H25N3O7S3: C, 41.10; H, 5.39; N, 8.99. Found: C, 39.89; H, 5.30; N, 9.34.
- tert-Butyl-N-[({2-methyl-5-(morpholine-4-sulfonyl)thiophen-3-yl}carbamoyl)methyl] carbamate (15). Off-white solid (0.370 g, 86%). mp = 124–128 °C; TLC Rf = 0.21 (50% EA/hexanes); IR (ATR) 3623 (NH), 3313 (NH), 2976 (CH), 2859 CH), 1681 (C=O), 1348 (SO2), 1152 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.48 (bs, 1H, NH), 7.92 (s, 1H, ArH), 5.27 (bs, 1H, NH), 3.91 (d, J = 4.2 Hz, 2H), 3.77 (t, J = 4.2 Hz, 4H, O-CH2-), 3.06 (t, J = 4.2 Hz, 4H, N-CH2-), 2.38 (s, 3H, CH3), 1.49 (s, 9H, OtBu); 13C NMR (CDCl3, 100 MHz) δ 167.9 (C=O), 156.8 (C=O), 132.7, 132.1, 130.8, 128.5, 80.8 (OC(Me)3), 47.8, 45.0, 28.2 (C(CH3)3), 27.1, 12.3 (CH3); Anal. Calcd for C16H25N3O6S2: C, 45.81; H, 6.01; N, 10.02. Found: C, 45.61; H, 6.04; N, 9.73.
- tert-Butyl-N-[({2-methyl-5-(pyrrolidine-1-sulfonyl)thiophen-3-yl}carbamoyl)methyl] carbamate (16). Tan solid (0.280 g, 64%). mp = 63–67 °C; TLC Rf = 0.24 (50% EA/hexanes); IR (ATR) 3317 (NH), 2975 (CH), 2873 (CH), 1679 (C=O), 1344 (SO2), 1147 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.67 (s, 1H, ArH), 3.87 (s, 2H, -CH2NBoc), 3.24–3.28 (m, 4H, N-CH2-), 2.39 (s, 3H, CH3), 1.77–1.80 (m, 4H, CH2), 1.47 (s, 9H, OtBu); 13C NMR (CDCl3, 100 MHz) δ 171.1 (C=O), 158.6 (C=O), 136.0, 135.8, 133.2, 130.3, 80.8 (OC(Me)3), 44.7, 44.0, 28.7 (C(CH3)3), 14.8, 12.5 (CH3); Anal. Calcd for C16H25N3O5S2: C, 47.63; H, 6.25; N, 10.41. Found: C, 47.30; H, 5.93; N, 10.14.
- tert-butyl-N-[({2-methyl-5-(piperidine-1-sulfonyl)thiophen-3-yl}carbamoyl) methyl]carbamate (17). Yellow solid (0.220 g, 47%). mp = 156–160 °C; TLC Rf = 0.30 (50% EA/hexanes); IR (ATR) 3321 (NH), 2935 (CH), 2856 (CH), 1685 (C=O), 1676 (C=O), 1359 (SO2), 1142 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.01 (s, 1H, NH), 7.82 (s, 1H, ArH), 6.37 (s, 1H, NH), 3.90 (d, J = 5.8 Hz, 2H, -CH2NBoc), 3.00 (t, J = 5.4 Hz, 4H, N-CH2-), 2.40 (s, 3H, CH3), 1.65 (m, 4H), 1.44–1.49 (m, 11H); 13C NMR (acetone-d6, 100 MHz) δ 167.8 (C=O), 156.3 (C=O), 133.1, 132.0, 130.5, 128.8, 78.7 (OC(Me)3), 46.9, 44.1, 27.7, 25.0, 23.1, 11.6 (CH3); Anal. Calcd for C17H27N3O5S2: C, 48.90; H, 6.52; N, 10.06. Found: C, 48.63; H, 6.29; N, 10.03.
- tert-Butyl-N-[({5-(dimethylsulfamoyl)-2-methylthiophen-3-yl}carbamoyl)methyl] carbamate (18). Orange powder (0.230 g, 67%). mp = 88–93 °C; TLC Rf = 0.20 (50% EA/hexanes); IR (ATR) 3314 (NH), 2974 (CH), 2928 (CH), 1677 (C=O), 1341 (SO2), 1142 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.64 (s, 1H, ArH), 3.87 (bs, 2H, -CH2NBoc), 2.72 (s, 6H, N(CH3)2), 2.40 (s, 3H, CH3), 1.47 (s, 9H, OtBu); 13C NMR (CD3OD, 100 MHz) δ 169.7 (C=O), 165.3 (C=O), 135.6, 132.2, 129.8, 129.3, 78.1 (OC(Me)3), 43.3, 36.9, 27.3 (C(CH3)3), 11.2 (CH3); Anal. Calcd for C14H23N3O5S2: C, 44.55; H, 6.14; N, 11.13. Found: C, 44.67; H, 6.31; N, 10.88.
- tert-Butyl-N-[({5-(diethylsulfamoyl)-2-methylthiophen-3-yl}carbamoyl)methyl]carbamate (19). The crude oil was purified via silica gel column chromatography using a 50% EA/hexanes eluent, yielding an orange solid (0.120 g, 49%). mp = 47–49 °C; TLC Rf = 0.31 (50% EA/hexanes); IR (ATR) 3309 (NH), 2978 (CH), 2935 (CH), 1679 (C=O), 1340 (SO2), 1115 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.64 (s, 1H, ArH), 3.86 (bs, 2H, -CH2NBoc), 3.22 (q, J = 7.4 Hz, 4H, O2SNCH2-), 2.38 (s, 3H, ArCH3), 1.47 (s, 9H, OtBu), 1.17 (t, J = 7.2 Hz, 6H, CH3); 13C NMR (CD3OD, 100 MHz) δ 169.7 (C=O), 157.2 (C=O), 134.6, 134.4, 131.8, 128.9, 79.4 (OC(Me)3), 43.3, 42.6, 27.3 (C(CH3)3), 13.4 (ArCH3), 11.1 (CH3); Anal. Calcd for C16H27N3O5S2: C, 47.39; H, 6.71; N, 10.36. Found: C, 47.58; H, 6.42; N, 10.34.
- tert-Butyl-N-[({5-(butylsulfamoyl)-2-methylthiophen-3-yl}carbamoyl)methyl]carbamate (20). Off-white foam (0.320 g, 70%). mp = 65–67 °C; TLC Rf = 0.33 (50% EA/hexanes); IR (ATR) 3657 (NH), 3217 (NH), 2980 (CH), 1676 (C=O), 1305 (SO2), 1146 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.44 (bs, 1H, NH), 7.83 (bs, 1H, ArH), 5.44 (bs, 1H, NH), 4.97 (bs, 1H, NH), 3.91 (s, 2H, -CH2NBoc), 3.01 (t, J = 6.6 Hz, 2H, O2SNCH2-), 2.33 (s, 3H, ArH), 1.43–1.53 (m, 11H), 1.32 (sext, J = 7.0 Hz, 2H), 0.88 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 167.9 (C=O), 156.9 (C=O), 135.2, 131.7, 128.0, 128.0, 81.0 (OC(Me)3), 45.3, 43.3, 31.5, 28.3 (C(CH3)3), 19.7, 13.6 (ArCH3), 12.4 (CH3); Anal. Calcd for C9H27N3O5S2: C, 47.39; H, 6.71; N, 10.36. Found: C, 47.43; H, 6.40; N, 10.49.
- 2-Aminotrifluoroacetate-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophene-3-yl]acetamide (21). Boc-protected amine 12 was dissolved in TFA and stirred at rt for 0.5 h. The solvent was then removed in vacuo to provide 21 as an off-white solid that was recovered (1.57 g, 96%). mp = 190 °C (dec); IR (ATR) 3255 (NH), 2980 (CH), 2915 (CH), 1665 (C=O), 1350 (SO2), 1153 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.79 (s, 1H, ArH), 3.93 (s, 2H, -CH2N), 3.37 (t, J = 5.0 Hz, 4H, O2SNCH2-), 2.74 (t, J = 5.2, 4H, SCH2-), 2.45 (s, 3H, ArCH3); 13C NMR (CD3OD, 100 MHz) δ 164.5 (C=O), 134.7, 131.7, 131.4, 128.9, 40.4, 26.7, 11.1 (ArCH3). Anal. Calcd for C13H18F3N3O5S3: C, 34.74; H, 4.04; N, 9.35. Found: C, 34.97; H, 4.16; N, 8.96.
- 2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]acetamide K306 (1). Amine salt 21 (0.600 g, 1.384 mmol) was dissolved in dry DCM (2.15 mL) and dry TEA (0.425 mL, 3.045 mmol) and stirred at rt. 4-Fluorobenzenesulfonyl chloride (0.296 g, 1.523 mmol) was added and the mixture was stirred at rt for 24 h. The mixture was washed with water (3 × 5 mL) followed by a 5% HCl solution. The organics were collected, dried over MgSO4, filtered, and concentrated. The crude mixture was purified by precipitation from DCM, yielding 1 as a white powder (0.213 g, 31%). mp = 177–180 °C; TLC Rf = 0.37 (1% MeOH/DCM); IR (ATR) 3301 (NH), 3259 (NH), 2959 (CH), 2915 (CH), 1665 (C=O), 1352 (SO2), 1141 (SO2) cm−1; 1H NMR (DMSO, 400 MHz) δ 7.82 (dd, J = 8.5, 5.0 Hz, 2H, ArH), 7.60 (s, 1H, thiophene ArH), 7.36 (t, J = 8.7 Hz, 2H, ArH), 3.63 (s, 2H, O=C-CH2N), 3.19 (t, J = 4.4 Hz, 4H, O2SNCH2-), 2.68 (t, J = 4.4 Hz, 4H, SCH2-), 2.31 (s, 3H, ArCH3); 13C NMR (DMSO, 100 MHz) δ 167.7 (C=O), 163.8 (d, J = 247.9 Hz, ArC-F), 138.5, 133.4, 133.2, 130.1, 130.0, 129.9 (d, J = 9.2 Hz, ArC-C-C-F), 116.4 (d, J = 22.5, ArC-C-F), 48.3, 46.5, 26.8, 12.8 (CH3); Anal. Calcd for C17H20FN3O5S4: C, 41.37; H, 4.08; N, 8.51. Found: C, 41.66; H, 3.80; N, 8.87. HRMS calcd for C17H20FN3O5S4K (M+K+): 531.9901. Found: 531.9903.
3.4. General Procedure for the Synthesis of Sulfonamides 22–29
- 2-(4-Fluorobenzenesulfonamido)-N-{2-methyl-5-[1-oxo-1-thiomorpholin-4-yl)sulfonyl]thiophen-3-yl} acetamide (22). The crude oil was purified via trituration from DCM, yielding a white solid (0.021 g, 13%). mp = 210–212 °C; TLC Rf = 0.49 (95% DCM/5% MeOH); IR (ATR) 3360 (NH), 3267 (NH), 3106 (ArH), 2927 (CH), 2858 (CH), 1685 (C=O), 1670 (C=O), 1352, 1328 (SO2), 1154 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.77 (s, 1H, NH), 8.17 (bs, 1H, NH), 7.89 (m, 2H, ArH), 7.65 (s, 1H, thiophene ArH), 7.44 (t, J = 8.4 Hz, 2H, ArH), 3.73 (d, J = 4.8 Hz, 2H), 3.60 (d, J = 12.4 Hz, 2H), 3.05–3.10 (m, 2H), 2.90–2.99 (m, 4H), 2.35 (s, 3H, CH3); 13C NMR (DMSO-d6, 100 MHz) δ 166.8 (C=O), 161.6 (d, J = 364 Hz, ArC-F), 137.2 (d, J = 3.0 Hz, ArC-C-C-F), 134.5, 133.3, 130.1 (d, J = 9.7 Hz, ArC-C-C-F), 129.9, 129.2, 116.7 (d, J =23.2 Hz, ArC-C-F), 45.6, 43.9, 36.9, 12.9 (CH3); Anal. Calcd for C17H20FN3O6S4: C, 40.07; H, 3.96; N, 8.25. Found: C, 39.93; H, 4.24; N, 8.08.
- 2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(morpholine-4-sulfonyl)thiophen-3-yl]acetamide (24). White powder (0.104 g, 30%). mp = 173–177 °C; TLC Rf = 0.28 (50% EA/hexanes); IR (ATR) 3395 (NH), 3233 (NH), 2980 (CH), 2890 (Ch), 1673 (C=O), 1345 (SO2), 1153 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 8.19 (s, 1H, NH), 7.91–7.94 (m, 2H, ArH), 7.77 (s, 1H, thiophene ArH), 7.23–7.28 (m, 2H, ArH), 5.45 (t, J = 5.9 Hz, 1H, NH), 3.72–3.78 (m, 6H), 3.02–3.06 (m, 4H, O2SNCH2-), 2.40 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 165.6 (d, J = 255.0 Hz, ArC-F), 165.5, 134.2, 133.9, 131.5, 130.1 (d, J = 9.9 Hz, ArC-C-C-F), 129.8, 128.8, 116.8 (d, J = 23.1 Hz, ArC-C-F), 66.0, 46.3, 46.0, 12.5 (CH3); Anal. Calcd for C17H20FN3O6S3: C, 42.76; H, 4.22; N, 8.80. Found: C, 42.82; H, 4.24; N, 8.52.
- 2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(pyrrolidine-1-sulfonyl)thiophen-3-yl]acetamide (25). White foam (0.020 g, 10%). mp = 159–163 °C; TLC Rf = 0.18 (50% EA/hexanes); IR (ATR) 3360 (NH), 3239 (NH), 3099 (CH), 2885 (CH), 1676 (C=O), 1328 (SO2), 1151 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.94–7.97 (m, 2H, ArH), 7.55 (s, 1H thiophene ArH), 7.31 (t, J = 8.5 Hz, 2H, ArH), 3.77 (s, 2H), 3.25 (m, 3H), 2.35 (s, 3H, ArCH3), 1.79 (m, 4H); 13C NMR (CD3OD, 100 MHz) δ 167.8 (C=O), 165.2 (d, J = 251.6, ArC-F), 136.2 (d, J = 2.7 Hz, ArC-C-C-F), 135.2, 131.7, 130.7, 129.9 (d, J = 9.5 Hz, ArC-C-C-F), 129.3, 115.8 (d, J = 23.4 Hz, ArC-C-F), 47.8, 45.1, 24.9, 11.1 (CH3); Anal. Calcd for C17H20FN3O5S3: C, 44.24; H, 4.37; N, 9.10. Found: C, 44.21; H, 4.44; N, 8.97.
- 2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(piperidine-1-sulfonyl)thiophen-3-yl]acetamide (26). The crude oil was purified via silica gel column chromatography using a 50% EA/hexanes eluent, yielding a white solid (0.092 g, 37%). mp = 79–84 °C; TLC Rf = 0.21 (50% EA/hexanes); IR (ATR) 3300 (NH), 2939 (CH), 2853 (CH), 1686 (C=O), 1589 (C=C), 1335 (SO2), 1154 (SO2), 1143 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.95 (m, 2H, ArH), 7.48 (s, 1H, thiophene ArH), 7.31 (t, J = 8.7 Hz, 2H, ArH), 3.77 (s, 2H, OC-CH2-N), 3.00 (t, J = 5.2 Hz, 4H, N-CH2-), 2.35 (s, 3H, CH3), 1.62–1.69 (m, 4H), 1.47–1.50 (m, 2H); 13C NMR (CD3OD, 100 MHz) δ 166.7 (C=O), 164.6 (d, J = 250.4 Hz, ArC-F), 137.3 (d, J = 2.9 Hz, ArC-C-C-F), 133.5, 133.1, 130.1 (d, J = 9.4 Hz, ArC-C-C-F), 129.7, 129.4, 116.6 (d, J = 23.1 Hz, ArC-C-F), 47.1, 45.6, 25.0, 23.2, 12.9 (CH3); Anal. Calcd for C18H22FN3O5S3: C, 45.46; H, 4.66; N, 8.84. Found: C, 45.47; H, 4.92; N, 8.99.
- N-[5-(Dimethylsulfamoyl)-2-methylthiophen-3-yl]-2-(4-fluorobenzenesulfonamido)acetamide (27). White powder (0.120 g, 51%). mp = 123–128 °C; TLC Rf = 0.21 (50% EA/hexanes); IR (ATR) 3321 (NH), 3278 (NH), 3107 (ArCH), 2928 (CH), 1658 (C=O), 1590 (C=C), 1342 (SO2), 1155 (SO2), 1137 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.93–7.97 (m, 2H, ArH), 7.52 (s, 1H thiophene ArH), 7.31 (t, J = 8.1 Hz, 2H, ArH), 3.77 (s, 2H, OC-CH2-N), 2.71 (s, 6H, N(CH3)2), 2.36 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 167.8 (C=O), 165.2 (d, J = 251.5), 136.2 (d, J = 3.1 Hz, ArC-C-C-F), 135.6, 131.8, 129.9 (d, J = 9.4 Hz, ArC-C-C-F), 129.6, 129.4, 115.8 (d, J = 24.3 Hz, ArC-C-F), 45.1, 36.9, 11.1 (CH3); Anal. Calcd for C15H18FN3O5S3: C, 41.37; H, 4.17; N, 9.65. Found: C, 41.24; H, 4.28; N, 9.36.
- N-[5-(Diethylsulfamoyl)-2-methylthiophen-3-yl]-2-(4-fluorobenzenesulfonamido)acetamide (28). Orange wax (0.108 g, 80%). mp = 44–48 °C; TLC Rf = 0.18 (50% EA/hexanes); IR (ATR) 3309 (NH), 2977 (CH), 2934 (CH), 1685 (C=O), 1590 (C=C), 1327 (SO2), 1141 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.95 (m, 2H, ArH), 7.52 (s, 1H thiophene ArH), 7.30 (t, J = 8.6 Hz, 2H, ArH), 3.76 (s, 2H, OC-CH2-N), 3.20 (m, 4H, NCH2-), 2.33 (s, 3H), 1.16 (t, J = 7.2 Hz, 6H, CH3); 13C NMR (CD3OD, 100 MHz) δ 167.7, 165.0 (d, J = 250.1 Hz, ArC-F), 136.2 (d, J = 2.5 Hz, ArC-C-C-F), 134.6, 134.5, 131.5, 129.9 (d, J = 9.4 Hz, ArC-C-C-F), 128.6, 115.8 (d, J = 23.8 Hz, ArC-C-F), 45.1, 42.6, 13.4 (CH3), 11.1 (CH3); Anal. Calcd for C17H22FN3O5S3: C, 44.05; H, 4.78; N, 9.06. Found: C, 44.12; H, 4.99; N, 8.79.
- N-[5-(Butylsulfamoyl)-2-methylthiophen-3-yl]-2-(4-fluorobenzenesulfonamido)acetamide (29). White powder (0.185 g, 13%). mp = 161–164 °C; TLC Rf = 0.19 (50% EA/50% hexane); IR (ATR) 3247, 2964, 2934, 2876, 1652, 1325 (SO2), 1151 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.94–8.00 (m, 2H, ArH), 7.56 (s, 1H, thiophene ArH), 7.30–7.35 (m, 2H, ArH), 3.78 (s, 2H, OC-CH2-N), 2.93 (t, J = 7.0 Hz, 2H, N-CH2), 2.36 (s, 3H, CH3), 1.48 (pent, J = 6.9 Hz, 2H), 1.35 (sext, J = 7.0 Hz, 2H), 0.91 (t, J = 7.2, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 167.8, 165.2 (d, J = 251.4 Hz, ArC-F), 136.2 (d, J = 3.4 Hz, ArC-C-C-F), 135.8, 134.6, 131.2, 129.8 (d, J = 9.3 Hz, ArC-C-C-F), 128.6, 115.8 (d, J = 23.1 Hz, ArC-C-F), 45.1, 42.6, 31.2, 19.4, 12.5 (CH3), 11.1 (CH3); Anal. Calcd for C17H22FN3O5S3: C, 44.05; H, 4.78; N, 9.06. Found: C, 44.10; H, 4.70; N, 9.05.
- 2-Chloro-5-(1,4-thiazinan-4-ylsulfonyl)thien-3-ylamine (31). Thiomorpholine (0.086 mL, 0.859 mmol) and DIPEA (0.149 mL, 0.859 mmol) were dissolved in dry DCM (11.8 mL, 0.08M) and cooled to 0 °C. 2-Chloro-3-nitrothiophene-5-sulfonyl chloride (0.250 g, 0.954 mmol) was added dropwise and the mixture was heated to rt and stirred for 1hr until TLC indicated reaction was completed. The mixture was diluted in DCM and washed with sat. NaHCO3 followed by brine and the organics were dried over Na2SO4, filtered, and concentrated. The crude mixture was purified via silica gel chromatography using a 20% EA/hexanes eluent to yield 4-[(5-chloro-4-nitrothiophen-2-yl)sulfonyl]thiomorpholine (0.157 g, 50%). mp = 139–143 °C; TLC Rf = 0.50 (20% EA/hexanes); IR (ATR) 3106 (NH), 2972 (CH), 2906 (CH), 1531 (C=C), 1358 (SO2), 1152 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 8.06 (s, 1H, ArH), 3.50 (t, J = 4.0 Hz, 4H, O2SNCH2-), 2.79 (t, J = 5.1 Hz, 4H, S-CH2-); 13C NMR (DMSO-d6, 100 MHz) δ 143.9, 137.4, 133.2, 128.2, 48.2 (O2SNCH2-), 26.8 (S-CH2-); Anal. Calcd for C8H9ClN2O4S3: C, 29.22; H, 2.76; N, 8.52. Found: C, 29.42; H, 2.40; N, 8.35. 4-[(5-chloro-4-nitrothiophen-2-yl)sulfonyl]thiomorpholine (0.67 g, 2.04 mmol) was dissolved in acetic acid (6.8 mL, 0.3M) and iron powder (0.57 g, 10.19 mmol) was added. The mixture was heated to 60 °C and stirred for 1 h, after which the acetic acid was removed in vacuo. The residue was dissolved in EA and washed with saturated aq. NaHCO3. The organic layer was then washed with brine, dried over MgSO4, filtered, and concentrated. The residue was purified via silica gel chromatography using a 50% EA/hexanes eluent, yielding 31 (0.420 g, 69%) as a yellow powder. (31) mp = 138–140 °C; TLC Rf = 0.58 (50% EA/hexanes); IR (ATR) 3448 (NH), 3360 (NH), 2903 (CH), 2852 (CH), 1611 (C=C), 1334 (SO2), 1149 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 7.16 (s, 1H, ArH), 5.00 (bs, 2H, NH2), 3.36 (t, J = 4.9 Hz, 4H, O2SNCH2-), 2.77 (t, J = 5.3 Hz, 4H, S-CH2-); 13C NMR (DMSO-d6, 100 MHz) δ 143.9, 131.6, 124.5, 106.7, 48.1 (O2SNCH2-), 26.8 (S-CH2-); Anal. Calcd for C8H11ClN2O2S3: C, 32.16; H, 3.71; N, 9.37. Found: C, 32.31; H, 3.40; N, 9.11.
- tert-Butyl-N-({[2-chloro-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]carbamoyl}methyl) carbamate (32). Boc-Glycine (0.300 g, 1.69 mmol), aminothiophene 31 (0.420 g, 1.41 mmol), HATU (1.069 g, 2.81 mmol), and DIPEA (0.49 mL, 2.81) were dissolved in 7 mL of dry DMA under argon. The mixture was stirred for 24 h at rt. The reaction was then diluted with EA and washed with sat aq. NH4Cl (3×) and 5 % aq. LiCl (3 × 15 mL). The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified via silica gel chromatography using 50% EA/hexanes, yielding 32, a yellow solid (0.400g, 63%). mp = 143–148 °C; TLC Rf = 0.36 (50% EA/hexanes); IR (ATR) 3297 (NH), 2982 (CH), 2915 (CH), 1693 (C=O), 1147 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 10.01 (s, 1H, NH), 7.93 (s, 1H, ArH), 7.12 (t, J = 6.1 Hz, 1H, NH), 3.80 (d, J = 5.7 Hz, 2H, OC-CH2-N), 3.29 (t, J = 4.4 Hz, 4H, O2SNCH2-), 2.72 (t, J = 5.0, 4H, S-CH2-), 1.40 (s, 9H, C(CH3)3); 13C NMR (DMSO-d6, 100 MHz) δ 169.2 (C=O), 156.4 (C=O), 134.8, 131.9, 128.4, 120.8, 78.7 (OC(Me)3), 48.3, 43.7, 28.7 (C(CH3)3), 26.8. Anal. Calcd for C15H22ClN3O5S3: C, 39.51; H, 4.86; N, 9.22. Found: C, 39.73; H, 4.62; N, 9.07.
- N-[2-Chloro-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(4-fluorobenzenesulfonamido) acetamide (33). Carbamate 32 (0.250 g, 0.532 mmol) was dissolved in 2 mL of TFA and stirred at rt for 0.5 h. The solvent was removed in vacuo and the resulting off-white solid was dissolved in dry DCM (0.829 mL, 0.6M). Dry TEA (0.163 mL, 1.170 mmol) was added followed by 4-fluorobenzenesulfonyl chloride (0.114 g, 0.585 mmol). After 24 h at rt, the reaction mixture was diluted with EA and washed with water (3 × 5 mL) and 5% aq. HCl solution. The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified by precipitation from DCM, yielding 33 as a white powder (0.032 g, 12%). mp = 173–178 °C; TLC Rf = 0.24 (50% EA/hexanes); IR (ATR) 3274 (NH), 2917 (CH), 1664 (C=O), 1576 (C=C), 1332 (SO2), 1141 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.93–7.96 (m, 2H, ArH), 7.80 (s, 1H, thiophene ArH), 7.27–7.32 (m, 2H, ArH), 3.84 (s, 2H, OC-CH2-N), 3.36 (t, J = 4.9, 4H, O2SNCH2-), 2.73 (t, J = 4.9 Hz, 4H, S-CH2-); 13C NMR (CD3OD, 100 MHz) δ 167.4 (C=O), 165.2 (d, J =252.9 Hz, ArC-F), 136.3 (d, J = 3.1 Hz, ArC-C-C-F), 133.3, 132.7, 129.9 (d, J = 10.7 Hz, ArC-C-F), 127.3, 121.7, 115.8 (d, J = 21.4 Hz, ArC-C-F), 45.0, 29.3, 26.7; Anal. Calcd for C16H17FN3O5S4: C, 37.39; H, 3.33; N, 8.18. Found: C, 37.51; H, 3.02; N, 8.12.
- 3-(1,4-Thiazinan-4-ylsulfonyl)aniline (35). Thiomorpholine (2.00 mL, 19.85 mmol) and 3-nitrobenzenesulfonyl chloride (2.00 g, 9.02 mmol) were dissolved in 8.75 mL of 1,4-dioxane and heated to 60 °C. The mixture was stirred for 1 h at 60 °C, after which the reaction was cooled to rt and 20 mL of water was added. The mixture was extracted with DCM (3 × 20 mL), and the organics were dried over MgSO4, filtered, and concentrated. The residue was purified via silica gel chromatography with 20% EA/hexanes, yielding 4-(3-nitrophenylsulfonyl)-1,4-thiazinane as an off-white solid (1.21g, 47%). mp = 151–155 °C; TLC Rf = 0.33 (20% EA/hexanes); IR (ATR) 3104 (NH), 3073 (CH), 2918 (CH), 2860 (CH), 1531 (C=C), 1356 (SO2), 1341 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.58 (t, J = 1.8 Hz, 1H, ArH), 8.47 (ddd, J = 8.3, 2.0, 0.8 Hz, 1H, ArH), 8.07 (dt, J = 7.8, 0.8 Hz, 1H, ArH), 7.78 (t, J = 8.1 Hz, 1H, ArH), 3.42 (t, J = 4.5 Hz, 4H, O2SNCH2-), 2.74 (t, J = 4.8, 4H, S-CH2-); 13C NMR (CDCl3, 100 MHz) δ 148.5, 139.5, 132.8, 130.7, 127.4, 122.4, 47.9, 27.3. Anal. Calcd for C10H12N2O4S2: C, 41.66; H, 4.20; N, 9.72. Found: C, 41.68; H, 4.46; N, 9.54. The 4-(3-nitrophenylsulfonyl)-1,4-thiazinane (1.20 g, 4.16 mmol) was dissolved in acetic acid (13.9 mL, 0.3M) and iron powder (1.16 g, 20.81 mmol) was added. The mixture was heated to 60 °C and stirred for 1 h, after which the acetic acid was removed in vacuo. The residue was dissolved in EA and washed with saturated NaHCO3 until a pH of 8 was reached. The organics were washed with brine, dried over MgSO4, filtered, and concentrated. This gave 3-(1,4-thiazinan-4-ylsulfonyl)aniline (35) as an off-white solid (0.750 g, 69%). (35) mp = 150–152 °C; TLC Rf = 0.43 (20% EA/hexanes); IR (ATR) 3467 (NH), 3375 (NH), 2907 (CH), 2859 (CH), 1619 (C=C), 1313 (SO2), 1151 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 7.25 (t, J = 7.9 Hz, 1H, ArH), 6.91 (t, J = 1.9 Hz, 1H, ArH), 6.82–6.84 (m, 1H, ArH), 6.78–6.81 (m, 1H, ArH), 5.65 (bs, 2H, NH2), 3.17 (t, J = 4.9 Hz, 4H, O2SNCH2-), 2.67 (t, J = 5.1, 4H, S-CH2-); 13C NMR (DMSO-d6, 100 MHz) δ 150.1, 136.9, 130.3, 118.4, 114.2, 111.8, 48.3, 26.9. Anal. Calcd for C10H14N2O2S2: C, 46.49; H, 5.46; N, 10.84. Found: C, 46.63; H, 5.17; N, 10.96.
- tert-Butyl-N-([{3-(thiomorpholine-4-sulfonyl)phenyl]carbamoyl}methyl)carbamate (36). Boc-Glycine (0.244 g, 1.39 mmol), aniline 35 (0.300 g, 1.16 mmol), HATU (0.883 g, 2.32 mmol) and DIPEA (0.59 mL, 2.32) were dissolved in 7 mL of dry DMA under argon. The mixture was stirred for 24 h at rt. The reaction was diluted with EA and washed with sat aq. NH4Cl solution (3x) followed by washing with 5% aq. LiCl (3 × 15 mL). The organic layer was dried (MgSO4), filtered, and concentrated. The residue was purified via silica gel chromatography (50% EA/hexanes), yielding amide 36, a white solid (0.230 g, 48%). mp = 169–173 °C; TLC Rf = 0.44 (50% EA/hexanes); IR (ATR) 3436 (NH), 3267 (NH), 2980 (CH), 1702 (C=O), 1673 (C=O), 1349 (SO2), 1163 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 8.14 (bs, 1H, ArH), 7.77 (d, J = 8.0 Hz, 1H, ArH), 7.55 (t, J = 8.0 Hz, 1H, ArH), 7.48 (d, J = 7.9 Hz, 1H, ArH), 3.88 (s, 2H, OC-CH2-N), 3.32–3.35 (m, 4H, O2SNCH2-), 2.68 (t, J = 5.1 Hz, 4H, S-CH2-), 1.47 (s, 9H, OtBu); 13C NMR (CD3OD, 100 MHz) δ 169.4 (C=O), 156.4 (C=O), 140.3, 137.1, 130.6, 123.7, 122.1, 117.6, 78.6 (OC(Me)3), 48.3, 44.3, 28.7, 26.8. Anal. Calcd for C17H25N3O5S2: C, 49.14; H, 6.06; N, 10.11. Found: C, 49.06; H, 6.35; N, 9.76.
- 2-(4-Fluorobenzenesulfonamido)-N-[3-(thiomorpholine-4-sulfonyl)phenyl]acetamide (37). Carbamate 36 (0.20 g, 0.466 mmol) was dissolved in 2 mL of TFA and stirred at rt for 0.5 h. The solvent was then removed in vacuo and the resulting off-white solid was dissolved in dry DCM (0.700 mL, 0.6 M). Dry TEA (0.143 mL, 1.025 mmol) and 4-fluorobenzenesulfonyl chloride (0.100 g, 0.513 mmol) were added and the mixture was stirred at rt for 24 h. The reaction mixture was then diluted with EA and washed with water (3 × 5 mL) and 5% aq. HCl. The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified by precipitation from DCM, yielding 37 as a white powder (0.059 g, 27%). mp = 143–148 °C; TLC Rf = 0.44 (50% EA/hexanes); IR (ATR) 3318 (NH), 3221 (NH), 3137 (CH), 2918 (CH), 1697 (C=O), 1590 (C=C), 1314 (SO2), 1148 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.57 (s, 1H, NH), 8.11 (s, 1H, ArH), 7.97–8.01 (m, 2H, ArH), 7.83 (dd, J = 8.2, 0.9 Hz, 1H, ArH), 7.57 (t, J = 7.8 Hz, 1H, ArH), 7.47 (d, J = 7.8 Hz, 1H, ArH), 7.33–7.37 (m, 2H, ArH), 6.99 (bs, 1H, NH), 3.86 (d, J = 5.9 Hz, 2H, OC-CH2-N), 3.30 (t, J = 4.9 Hz, 4H, O2SNCH2-), 2.70 (t, J = 4.0, 4H, S-CH2-); 13C NMR (acetone-d6, 100 MHz) δ 166.7 (C=O), 165.0 (d, J = 250.0 Hz, ArC-F), 139.4, 137.7, 136.6 (d, J = 3.1 Hz, ArC-C-C-F), 130.1 (d, J = 10.7 Hz, ArC-C-F), 129.8, 123.4, 122.4, 118.0, 116.1 (d, J = 23.1 Hz, ArC-C-F), 48.1, 46.3, 26.8 (S-CH2-). Anal. Calcd for C18H20FN3O5S3: C, 45.65; H, 4.26; N, 8.87. Found: C, 45.43; H, 4.30; N, 8.80.
- 4-(1,4-Thiazinan-4-ylsulfonyl)aniline (39). Thiomorpholine (2.00 mL, 19.85 mmol) and 4-nitrobenzenesulfonyl chloride (2.00 g, 9.02 mmol) were dissolved in 8.75 mL of 1,4-dioxane and heated to 60 °C. The mixture was stirred for 1 h at 60 °C, after which the reaction was cooled to rt and 20 mL of water was added. The mixture was extracted with DCM (3 × 20 mL), and the organics were dried over MgSO4, filtered, and concentrated. The crude mixture was purified via precipitation from DCM and yielded 4-(4-nitrophenylsulfonyl)-1,4-thiazinane, a white solid (1.72 g, 66%). mp = 146–150 °C; TLC Rf = 0.41 (20% EA/hexanes); IR (ATR) 3103 (CH), 2924 (CH), 2871 (CH), 1527 (C=C), 1348 (SO2), 1160 (SO2) cm−1; 1H NMR (CDCl3, 400 MHz) δ 8.39 (d, J = 8.6 Hz, 2H, ArH), 7.93 (d, J = 8.8 Hz, 2H, ArH), 3.31 (t, J = 4.6 Hz, 4H, O2SNCH2-), 2.72 (t, J = 4.6, 4H, S-CH2-); 13C NMR (CDCl3, 100 MHz) δ 150.2, 143.1, 128.5, 124.5, 47.9 (O2SNCH2-), 27.3 (S-CH2-). Anal. Calcd for C10H12N2O4S2: C, 41.66; H, 4.20; N, 9.72. Found: C, 41.92; H, 4.01; N, 9.86. The 4-(4-nitrophenylsulfonyl)-1,4-thiazinane (1.70 g, 5.90 mmol) was dissolved in acetic acid (19.7 mL, 0.3 M) and iron powder (1.65 g, 29.48 mmol) was added. The mixture was heated to 60 °C and stirred for 1 h, after which the acetic acid was removed via vacuo. The residue was dissolved in EA and washed with saturated NaHCO3 until a pH of 8 was reached. The organics were washed with brine, dried over MgSO4, filtered, and concentrated. This gave aniline 39 as an off-white solid that was used without further purification (1.17g, 77%). (39) mp = 176–179 °C; TLC Rf = 0.53 (20% EA/hexanes); IR (ATR) 3445 (NH), 3358 (NH), 3144 (CH), 2844 (CH), 1594 (C=C), 1313 (SO2), 1148 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 7.74 (d, J = 8.8 Hz, 2H, ArH), 6.79 (d, J = 8.8 Hz, 2H, ArH), 5.55 (bs, 2H, NH2), 3.21 (t, J = 5.0 Hz, 4H, O2SNCH2-), 2.68 (t, J = 5.0, 4H, S-CH2-); 13C NMR (acetone-d6, 100 MHz) δ 152.9, 129.5, 122.8, 113.2, 48.1 (O2SNCH2-), 26.9 (S-CH2-). Anal. Calcd for C10H14N2O2S2: C, 46.49; H, 5.46; N, 10.84. Found: C, 46.73; H, 5.64; N, 10.68.
- tert-Butyl-N-([{4-(thiomorpholine-4-sulfonyl)phenyl]carbamoyl}methyl)carbamate (40). Boc-Glycine (0.408 g, 2.32 mmol), aniline 39 (0.500 g, 1.94 mmol), HATU (1.472 g, 3.87 mmol) and DIPEA (0.99 mL, 3.87) were dissolved in 9.7 mL of dry DMA under argon. The mixture was stirred for 24 h at rt. The reaction mixture was then diluted with EA and washed with sat aq. NH4Cl solution (3×) and 5% aq. LiCl (3 × 15 mL). The organic layer was then dried over MgSO4, filtered, and concentrated. The residue was purified via silica gel chromatography using 50% EA/hexanes, yielding carbamate 40 as a white powder (0.170 g, 21%). mp = 180–182 °C; TLC Rf = 0.31 (50% EA/hexanes); IR (ATR) 3369 (NH), 3280 (NH), 3114 (CH), 2977 (CH), 2853 (CH), 1675 (C=O), 1305 (SO2), 1158 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 7.84 (d, J = 8.5 Hz, 2H, ArH), 7.73 (d, J = 8.5 Hz, 2H, ArH), 3.91 (s, 2H, OC-CH2-NBoc), 3.29–3.33 (m, 4H, O2SNCH2-), 2.70 (t, J = 5.0, 4H, S-CH2-), 1.49 (s, 9H, OtBu); 13C NMR (DMSO-d6, 100 MHz) δ 169.6 (C=O), 156.4 (C=O), 143.6, 130.1, 129.0, 119.4, 78.6 (OC(Me)3), 48.2, 44.4, 28.7, 26.8. Anal. Calcd for C17H25N3O5S2: C, 49.14; H, 6.06; N, 10.11. Found: C, 49.38; H, 6.32; N, 10.48.
- 2-(4-Fluorobenzenesulfonamido)-N-[4-(thiomorpholine-4-sulfonyl)phenyl]acetamide (41). Carbamate 40 (0.170g, 0.396 mmol) was dissolved in 2 mL of TFA and stirred at rt for 0.5 h. The solvent was then removed in vacuo and the resulting off-white solid was dissolved in dry DCM (0.595 mL, 0.6M). Dry TEA (0.121 mL, 0.871 mmol) and 4-fluorobenzenesulfonyl chloride (0.085 g, 0.436 mmol) were added and the mixture was stirred at rt for 24 h. The reaction was then diluted with EA and washed with water (3 × 5 mL) and 5% aq. HCl. The organic layer was dried over MgSO4, filtered, and concentrated. The residue was purified by precipitation from DCM, yielding 41 as an off-white solid (0.068 g, 36%). mp = 168–173 °C; TLC Rf = 0.39 (50% EA/hexanes); IR (ATR) 3326 (NH), 3288 (NH), 3109 (CH), 2980 (CH), 2888 (CH), 1700 (C=O), 1540 (C=C), 1317 (SO2), 1090 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.61 (s, 1H, NH), 7.97–8.00 (m, 2H, ArH), 7.83 (d, J = 8.6 Hz, 2H, ArH), 7.70 (d, J = 8.6 Hz, 2H, ArH), 7.32–7.37 (m, 2H, ArH), 6.99 (bs, 1H, NH), 3.88 (d, J = 5.6 Hz, 2H, OC-CH2-N), 3.28 (t, J = 4.7 Hz, 4H, O2SNCH2-), 2.69 (t, J = 5.0, 4H, S-CH2-); 13C NMR (acetone-d6, 100 MHz) δ 166.8 (C=O), 165.0 (d, J = 254.8 Hz, ArC-F), 142.6, 136.7 (d, J = 3.4 Hz), 131.5, 130.1 (d, J = 10.0 Hz, ArC-C-C-F), 128.6, 119.2, 116.1 (d, J = 23.1 Hz, ArC-C-C-F), 48.1, 46.3, 26.8 (S-CH2-). Anal. Calcd for C18H20FN3O5S3: C, 45.65; H, 4.26; N, 8.87. Found: C, 45.34; H, 4.23; N, 8.66.
3.5. General Procedure for the Synthesis of Sulfonamides 48–53
- (2S)-2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl] propanamide (48). White powder (0.118 g, 21% over 3 steps); mp = 178–181 °C; TLC Rf = 0.35 (50% EA/hexanes); IR (ATR) 3296 (NH), 3247 (NH), 3102 (CH), 3066 (CH), 2912 (CH), 1654 (C=O), 1336 (SO2) cm−1; 1H NMR (400 MHz, CD3OD) δ 7.93–7.98 (m, 2H, ArH), 7.43 (s, 1H, thiophene ArH), 7.30 (t, J = 8.7 Hz, 2H, ArH), 4.03 (q, J = 7.0 Hz, 1H, OC-CH-N), 3.35–3.31 (m, 4H, O2SNCH2-), 2.74 (t, J = 5.4 Hz, 4H, S-CH2-), 2.36 (s, 3H, ArCH3), 1.35 (d, J = 7.0 Hz, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 170.4 (C=O), 164.5 (d, J = 249.4 Hz, ArC-F), 137.7 (d, J = 3.0 Hz, ArC-C-C-F), 134.2, 133.0, 130.2, 130.0 (d, J = 12.8 Hz, ArC-C-F), 129.6, 116.5 (d, J = 22.6 Hz, ArC-C-F), 52.2, 48.2, 26.8, 19.6 (CH3), 12.8 (CH3); Anal calcd for C18H22FN3O5S4: C, 42.59; H, 4.37; N, 8.28. Found: C, 42.55; H, 4.08; N, 8.20.
- (2R)-2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl] propanamide (49). White foam (0.124 g, 21% over 3 steps); mp = 178–181 °C; TLC Rf = 0.35 (50% EA/hexanes); IR (ATR) 3297 (NH), 3247 (NH), 3101 (CH), 3066 (CH), 2958 (CH), 2952 (CH), 1654 (C=O), 1289 (SO2) cm−1; 1H NMR (400 MHz, CD3OD) δ 7.93–7.98 (m, 2H, ArH), 7.43 (s, 1H, thiophene ArH), 7.29 (t, J = 8.6 Hz, 2H, ArH), 4.04 (q, J = 7.2 Hz, 1H, OC-CH-N), 3.34 (t, J = 5.0 Hz, 4H, O2SNCH2-), 2.74 (t, J = 5.3 Hz, 4H, S-CH2-), 2.36 (s, 3H, ArCH3), 1.35 (d, J = 7.1 Hz, 3H, CH3); 13C NMR (100 MHz, CD3OD) δ 170.4 (C=O), 164.5 (d, J = 249.4 Hz, ArC-F), 137.7 (d, J = 3.0 Hz, ArC-C-C-F), 134.2, 133.0, 130.2, 130.0 (d, J = 12.8 Hz, ArC-C-F), 129.6, 116.5 (d, J = 22.6 Hz, ArC-C-F), 52.2, 48.2, 26.8, 19.6 (CH3), 12.8 (CH3); Anal Calcd for C18H22FN3O5S4, C, 42.59, H, 3.37, N, 8.28. Found: C, 42.88, H, 4.14, N, 8.38.
- (2S)-2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-3-phenylpropanamide (50). White powder (62 mg, 15% over 3 steps); mp = 197–202 °C; TLC Rf = 0.38 (40% EtOAc/hexanes); IR (ATR) 3246 (NH), 2922 (CH), 2854 (CH), 1652 (C=O), 1336 (SO2), 1157 (SO2), 1139 (SO2) cm−1; 1H NMR (400 MHz, acetone-d6) δ 9.02 (bs, 1H, NH), 7.82–7.81 (m, 2H, ArH), 7.55 (s, 1H, thiophene ArH), 7.23–7.18 (m, 7H, ArH), 7.14 (bs, 1H, NH), 4.31 (t, J = 6.7 Hz, 1H, OC-CH-N), 3.33–3.30 (m, 4H, O2SNCH2-), 3.13–3.08 (m, 1H, ArCH2), 2.99–2.94 (m, 1H, ArCH2), 2.77–2.75 (m, 4H, S-CH2-), 2.23 (s, 3H, ArCH3); 13C NMR (100 MHz, acetone-d6) δ 169.6 (C=O), 165.6 (d, J = 253.1 Hz, ArC-F), 138.0 (d, J = 3.9 Hz, ArC-C-C-F), 137.4, 134.3, 133.2, 131.8, 130.8 (d, J = 9.2 Hz, ArC-C-F), 130.3, 129.8, 129.2, 127.6, 116.8 (d, J = 23.2 Hz, ArC-C-F), 59.2, 49.0, 39.9, 27.7, 12.4 (CH3); Anal. Calcd for C24H26FN3O5S4: C, 49.38; H, 4.49; N, 7.20. Found: C, 49.47; H, 4.31; N, 7.03.
- (2R)-2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-3-phenylpropanamide (51). White powder (86 mg, 18% over 3 steps); mp = 199–204 °C; TLC Rf = 0.33 (40% EA/hexanes); IR (ATR) 3262 (NH), 2913 (CH), 2850 (CH), 1676 (C=O), 1333 (SO2), 1150 (SO2) cm−1; 1H NMR (400 MHz, CD3CN) δ 8.14 (s, 1H, NH), 7.77–7.73 (m, 2H, ArH), 7.36 (s, 1H, thiophene ArH), 7.27–7.12 (m, 7H, ArH), 6.29 (d, J = 9.2 Hz, 1H, NH), 4.19–4.13 (m, 1H, OC-CH-N), 3.29–3.26 (m, 4H, O2SNCH2-), 3.06–3.01 (m, 1H, ArCH2), 2.92–2.86 (m, 1H, ArCH2), 2.73–2.70 (m, 4H, S-CH2-), 2.17 (s, 3H, ArCH3); 13C NMR (100 MHz, acetone-d6) δ 169.6, 165.7 (d, J = 252.2 Hz, ArC-F), 138.1 (d, J = 3.3 Hz, ArC-C-C-F), 137.4, 134.3, 133.3, 131.8, 130.8 (d, J = 9.4 Hz, ArC-C-F), 130.3, 129.8, 129.2, 127.6, 116.8 (d, J = 22.9 Hz, ArC-C-F), 59.3, 49.0, 40.0, 27.7, 12.4 (CH3); Anal. Calcd for C24H26FN3O5S4: C, 49.38; H, 4.49; N, 7.20. Found: C, 49.47; H, 4.35; N, 7.23.
- (2S)-2-(4-Fluorobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-phenylacetamide (52). White foam (0.135 g, 43% over 3 steps); mp = 80–84 °C; TLC Rf = 0.53 (50% EA/hexanes); IR (ATR) 3265 (NH), 2980 (CH), 2888 (CH), 1676 (C=O), 1336 (SO2) cm−1; 1H NMR (400 MHz, DMSO-d6) δ 10.08 (s, 1H, NH), 8.87 (d, J = 9.8 Hz, 1H, NH), 7.81 (q, J = 7.8 Hz, 2H, ArH), 7.38–7.42 (m, 3H, ArH), 7.23–7.33 (m, 5H, ArH), 5.29 (d, J = 9.7 Hz, 1H, OC-CH-N), 3.19 (t, J = 4.5 Hz, 4H, O2SNCH2-), 2.70 (t, J = 4.9 Hz, 4H, S-CH2-), 2.24 (s, 3H, CH3); 13C NMR (DMSO-d6, 100 MHz) δ 168.0 (C=O), 164.5 (d, J = 249.2 Hz, ArC-F), 137.6 (d, J = 2.9 Hz, ArC-C-C-F), 137.2, 134.3, 132.7, 130.2, 130.2, 130.1, 128.9, 128.8 (d, J = 83.8 Hz, ArC-C-F), 127.5, 116.3 (d, J = 22.5 Hz, ArC-C-F), 55.4, 48.2, 26.8, 12.8 (CH3); Anal calcd for C23H24FN3O5S4: C, 48.49; H, 4.25; N, 7.38. Found: C, 48.12; H, 4.06; N, 7.74.
- (2S)-1-(4-Fluorobenzenesulfonyl)-N-[2-methyl-5-thiomorpholine-4-sulfonyl)thiophen-3-yl]pyrrolidine-2-carboxamide (53). White power (0.160 g, 54% over 3 steps); mp = 119–123 °C; TLC Rf = 0.34 (50% EA/hexanes); IR (ATR) 3342 (NH), 2980 (CH), 1684 (C=O), 1338 (SO2) cm−1; 1H NMR (400 MHz, DMSO-d6) δ 9.81 (s, 1H, NH), 7.96 (m, 2H, ArH), 7.63 (s, 1H, thiophene ArH), 7.50 (m, 2H, ArH), 4.25 (t, J = 6.7 Hz, 1H, OC-CH-N), 3.46–3.53 (m, 1H), 3.24 (t, J = 4.9 Hz, 4H, O2SNCH2-), 2.72 (t, J = 4.9 Hz, 4H, S-CH2-), 2.40 (s, 3H, ArCH3), 1.87–1.96 (m, 3H), 1.56–1.65 (m, 1H), 1.26–1.20 (m, 1H); 13C NMR (100 MHz, DMSO-d6) δ 170.5 (C=O), 165.2 (d, J = 250.4 Hz, ArC-F), 135.3, 133.9, 133.3, 130.8, 130.5 (d, J = 90.9 Hz, ArC-C-F), 130.2, 117.1 (d, J = 22.5 Hz, ArC-C-F), 61.7, 49.6, 48.3, 31.5, 26.8, 24.7, 13.0 (CH3); Anal calcd for C20H24FN3O5S4: C, 45.01; H, 4.53; N, 7.87. Found: C, 45.38; H, 4.73; N, 7.53.
3.6. General Procedure for the Synthesis of 64–73
- 2-Benzenesulfonamido-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]acetamide (64). White powder (0.074 g, 27%); mp = 172–176 °C; TLC Rf = 0.26 (50% EA/hexanes); IR (ATR) 3352 (NH), 3160 (CH), 2980 (CH), 2889 (CH), 1682 (C=O), 1587 (C=C), 1329 (SO2), 1156 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.72 (s, 1H, NH), 8.12 (t, J = 6.4 Hz, 1H, ArH), 7.82 (d, J = 7.5 Hz, 2H, ArH), 7.55–7.65 (m, 4H, ArH), 3.70 (d, J = 6.2 Hz, 2H, OC-CH2-N), 3.20 (t, J = 4.8 Hz, 4H, O2SNCH2-), 2.71 (t, J = 4.5 Hz, 4H, S-CH2-), 2.32 (s, 3H, CH3); 13C NMR (DMSO-d6, 100 MHz) δ 166.9 (C=O), 140.8, 134.0, 133.2, 133.0, 130.0, 129.6, 129.6, 127.1, 48.3, 45.7 (O2SNCH2-), 26.8 (S-CH2-), 12.9 (CH3); Anal. Calcd for C17H21N3O5S4: C, 42.93; H, 4.45; N, 8.84. Found: C, 42.65; H, 4.06; N, 8.50.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-{[(4-methylbenzenesulfonyl) carbamoyl] amino}acetamide (65). White powder (0.037g, 12%); mp = 192–195 °C; TLC Rf = 0.39 (10% MeOH/DCM); IR (ATR) 3329 (NH), 3107 (CH), 2980 (CH), 2889 (CH), 1708 (C=O), 1655 (C=C), 1333 (SO2), 1148 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.08 (s, 1H, NH), 7.92 (d, J = 8.3 Hz, 2H, ArH), 7.83 (s, 1H, thiophene ArH), 7.41 (d, J = 8.4 Hz, 2H, ArH), 6.97 (bs, 1H, NH), 3.78 (d, J = 5.0 Hz, 2H, OC-CH2-N), 3.33 (t, J = 5.0 Hz, 4H, O2SNCH2-), 2.75 (t, J = 5.0 Hz, 4H, S-CH2-), 2.43 (s, 3H, CH3), 2.37 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 167.1 (C=O), 151.4, 144.3, 137.7, 132.9, 132.8, 130.9, 129.5, 129.0, 127.5, 48.2, 43.2, 26.8, 20.6 (CH3), 11.6 (CH3); Anal. Calcd for C19H24N4O6S4: C, 48.60; H, 4.94; N, 8.95. Found: C, 48.85; H, 4.64; N, 9.07.
- 2-(4-Iodobenzenesulfonamido)-N-[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl] acetamide (66). White powder (0.094 g, 27%); mp = 198–202 °C; TLC Rf = 0.51 (50% EA/hexane); IR (ATR) 3381 (NH), 3156 (CH), 2979 (CH), 2907 (CH), 2865 (CH), 1655 (C=O), 1335 (SO2), 1327 (SO2), 1164 (SO2), 1148 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.73 (s, 1H, NH), 8.20 (t, J = 5.9 Hz, 1H, NH), 7.97 (d, J = 8.1 Hz, 2H, ArH), 7.59 (d, J = 5.0 Hz, 2H, ArH), 7.57 (s, 1H, thiophene ArH), 3.71 (d, J = 6.2 Hz, 2H, OC-CH2-N), 3.22 (t, J = 4.6 Hz, 4H, O2SNCH2-), 2.71 (t, J = 4.6 Hz, 4H, S-CH2-), 2.32 (s, 3H , CH3); 13C NMR (DMSO-d6, 100 MHz) δ 166.8 (C=O), 140.5, 138.5, 134.1, 133.2, 130.1, 129.6, 128.8, 101.0, 48.3, 45.6 (O2SNCH2-), 26.8 (S-CH2-), 12.9 (CH3); Anal. Calcd for C17H20IN3O5S4: C, 33.95; H, 3.35; N, 6.99. Found: C, 33.93; H, 3.42; N, 6.65.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(4-nitrobenzenesulfonamido) acetamide (67). White powder (0.059 g, 20%); mp = 209–212 °C; TLC Rf = 0.19 (50% EA/hexanes); IR (ATR) 3380 (NH), 3247 (NH), 3105 (CH), 3063 (CH), 2980 (CH), 2914 (CH), 2853 (CH), 1668 (C=O), 1531 (C=C), 1349 (SO2), 1332 (SO2), 1150 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.73 (s, 1H, NH), 8.21 (t, J = 5.6 Hz, 1H, NH), 7.98 (d, J = 7.5 Hz, 2H, ArH), 7.60 (d, J = 5.7 Hz, 2H, ArH), 7.57 (s, 1H, thiophene ArH), 3.72 (d, J = 5.3 Hz, 2H, OC-CH2-N), 3.22 (t, J = 4.1 Hz, 4H, O2SNCH2-), 2.71 (t, J = 4.7 Hz, 4H, S-CH2-), 2.32 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 166.8 (C=O), 140.5, 138.5, 134.1, 133.2, 130.1, 129.5, 128.8, 101.0, 48.3, 45.6 (O2SNCH2-), 26.8 (S-CH2-), 12.9 (CH3); Anal. Calcd for C17H20N4O7S4: C, 39.22; H, 3.87; N, 10.76. Found: C, 39.14; H, 3.84; N, 11.14.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(3-nitrobenzenesulfonamido) acetamide (68). White powder (0.16 g, 53%); mp = 141–144 °C; TLC Rf = 0.19 (50% EA/hexanes); IR (ATR) 3365 (NH), 3104 (CH), 2927 (CH), 2851 (CH), 1677 (C=O), 1528 (C=C), 1349 (SO2), 1337 (SO2), 1161 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.13 (s, 1H, NH), 8.68 (t, J = 1.8 Hz, 1H, ArH), 8.50 (dd, J = 1.3, 8.3 Hz, 1H, ArH), 8.32 (d, J = 7.8 Hz, 1H, ArH), 7.93 (t, J = 7.9 Hz, 1H, ArH), 7.63 (s, 1H, thiophene ArH), 7.37 (bs, 1H, ArH), 4.00 (d, J = 5.5 Hz, 2H, OC-CH2-N), 3.29 (t, J = 4.9 Hz, 4H, O2SNCH2-), 2.75 (t, J = 4.9 Hz, 4H, S-CH2-), 2.37 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 165.8 (C=O), 148.3, 142.4, 133.1, 133.0, 132.6, 131.0, 130.9, 128.8, 127.1, 122.1, 48.1, 45.6, 26.8 (S-CH2-), 11.6 (CH3); Anal. Calcd for C17H20N4O7S4: C, 39.22; H, 3.87; N, 10.76. Found: C, 39.23; H, 3.91; N, 10.94.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(2-nitrobenzenesulfonamido) acetamide (69). Orange powder (0.140 g, 47%); mp = 101–104 °C; TLC Rf = 0.19 (50% EA/hexanes); IR (ATR) 3325 (NH), 3097 (CH), 2917 (CH), 1686 (C=O), 1336 (SO2), 1149 (SO2) cm−1; 1H NMR (CD3OD, 400 MHz) δ 8.11–8.15 (m, 1H, ArH), 7.90–7.93 (m, 1H, ArH), 7.79 (s, 1H, thiophene ArH), 4.03 (s, 2H, OC-CH2-N), 3.31–3.33 (m, 4H, O2SNCH2-), 2.72 (t, J = 5.2 Hz, 4H, S-CH2-), 2.36 (s, 3H, CH3); 13C NMR (CD3OD, 100 MHz) δ 167.8 (C=O), 148.0, 135.4, 133.8, 133.4, 132.4, 131.9, 131.0, 130.3, 129.3, 124.8, 48.0, 45.4, 26.7 (S-CH2-), 11.2 (CH3); Anal. Calcd for C17H20N4O7S4: C, 39.22; H, 3.87; N, 10.76. Found: C, 39.60; H, 4.11; N, 10.48.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(2-trifluoromethylbenzene sulfonamido)acetamide (70). Off-white foam (0.030 g, 24%); mp = 89–93 °C; TLC Rf = 0.32 (50% EA/50% hexanes); IR (ATR) 3329 (NH), 2980 (CH), 1685 (C=O), 1581 (C=C), 1307 (SO2), 1143 (SO2), 1116 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 8.93 (s, 1H, NH), 8.13 (dd, J = 3.7, 5.0 Hz, 1H, ArH), 7.87 (dd, J = 3.7, 5.5 Hz, 1H, ArH), 7.74 (dd, J = 6.0, 3.7 Hz, 2H, ArH), 7.51 (s, 1H, thiophene ArH), 6.75 (bs, 1H, NH), 3.85 (d, J = 6.0 Hz, 2H, OC-CH2-N), 3.17 (t, J = 4.6 Hz, 4H, O2SNCH2-), 2.61 (t, J = 5.0 Hz, 4H, S-CH2-), 2.23 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 166.0 (C=O), 138.9 (q, J =1.1 Hz, C-C-CF3), 133.2, 133.1, 132.8, 131.2, 130.0, 128.9, 128.5 (q, J = 6.3 Hz, C-C-CF3), 127.3, 127.2 (q, J = 32.8 Hz, C-CF3), 123.3 (q, J = 271.6 Hz, CF3), 48.1, 45.7, 26.8 (S-CH2-), 11.7 (CH3); Anal. Calcd for C18H20F3N3O5S4: C, 39.77; H, 3.71; N, 7.73. Found: C, 39.74; H, 3.95; N, 7.42.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(1,1,3-trioxo-2,3-dihydro-1-benzothiazol-2-yl)acetamide (71). White powder (0.041g, 36%); mp = 234–237 °C; TLC Rf = 0.28 (50% EA/hexanes); IR (ATR) 3264 (NH), 2980 (CH), 2918 (CH), 1743 (C=O), 1671 (C=O), 1335 (SO2), 1150 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.32 (s, 1H, NH), 8.22 (d, J = 7.7 Hz, 1H, ArH), 8.05–8.17 (m, 3H, ArH), 7.80 (s, 1H, thiophene ArH), 4.64 (s, 2H, OC-CH2-N), 3.31 (bs, 4H, O2SNCH2-), 2.74 (t, J = 5.0 Hz, 4H, S-CH2-), 2.44 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 163.4 (C=O), 158.9 (C=O), 137.9, 135.7, 135.0, 133.8, 132.6, 131.1, 129.0, 127.2, 125.1, 121.3, 48.2, 40.4, 26.8 (S-CH2-), 11.7 (CH3); Anal. Calcd for C18H19N3O6S4: C, 43.10; H, 3.82; N, 8.38. Found: C, 43.35; H, 3.98; N, 8.17.
- N-[2-Methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]-2-(phenylformamido)acetamide (72). White powder (0.079 g, 31%); mp = 189–193 °C; TLC Rf = 0.53 (5% MeOH/DCM); IR (ATR) 3309 (NH), 3098 (CH), 3066 (CH), 2907 (CH), 2860 (CH), 1675 (C=O), 1636 (C=C), 1337 (SO2), 1172 (SO2) cm−1; 1H NMR (acetone-d6, 400 MHz) δ 9.70 (s, 1H, NH), 8.65 (s, 1H, NH), 8.41 (d, J = 7.5 Hz, 2H, ArH), 8.30 (s, 1H, thiophene ArH), 8.01 (t, J = 7.5 Hz, 1H, ArH), 7.94 (t, J = 7.1 Hz, 2H, ArH), 4.68 (d, J = 5.2 Hz, 2H, OC-CH2-N), 3.77 (t, J = 4.9 Hz, 4H, O2SNCH2-), 3.19 (t, J = 4.9 Hz, 4H, S-CH2-), 2.87 (s, 3H, CH3); 13C NMR (acetone-d6, 100 MHz) δ 167.5 (C=O), 167.3 (C=O), 134.2, 133.2, 132.7, 131.5, 130.9, 129.0, 128.4, 127.3, 48.2, 43.6, 26.8 (S-CH2-), 11.7 (CH3); Anal. Calcd for C18H21N3O4S3: C, 49.18; H, 4.82; N, 9.56. Found: C, 49.00; H, 5.02; N, 9.22.
- Benzyl N-({[2-methyl-5-(thiomorpholine-4-sulfonyl)thiophen-3-yl]carbamoyl}methyl)carbamate (73). White powder (0.079 g, 31%); mp = 69–74 °C; TLC Rf = 0.21 (50% EA/hexanes); IR (ATR) 3309 (NH), 3098 (CH), 3066 (CH), 2962 (CH), 2907 (CH), 2860 (CH), 2466 (CH), 1676 (C=O), 1636 (C=C), 1350 (SO2), 1333 (SO2), 1137 (SO2) cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 9.78 (s, 1H, NH), 7.74 (s, 1H, NH), 7.58 (t, J = 5.9 Hz, 1H, ArH), 7.31–7.38 (m, 5H, ArH), 5.06 (s, 2H, OCH2Ph), 3.85 (d, J = 5.8 Hz, 2H, OC-CH2-N), 3.23 (t, J = 4.6 Hz, 4H, O2SNCH2-), 2.71 (t, J = 4.6 Hz, 4H, S-CH2-), 2.39 (s, 3H, CH3); 13C NMR (DMSO-d6, 100 MHz) δ 168.5 (C=O), 157.1 (C=O), 137.5, 133.7, 133.5, 129.9, 129.7, 128.8, 128.3, 128.2, 66.0 (OCH2Ph), 48.3, 44.0, 26.8 (S-CH2-), 13.0 (CH3); Anal. Calcd for C18H21N3O4S3: C, 49.18; H, 4.82; N, 9.56. Found: C, 49.00; H, 5.02; N, 9.22.
3.7. Evaluation of SHIP1 Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Catimel, B.; Yin, M.-X.; Schieber, C.; Condron, M.; Patsiouras, H.; Catimel, J.; Robinson, D.E.J.E.; Wong, L.S.-M.; Nice, E.C.; Holmes, A.B.; et al. PI(3,4,5)P3 Interactome. J. Proteome Res. 2009, 8, 3712–3726. [Google Scholar] [CrossRef] [PubMed]
- Garces, A.E.; Stocks, M.J. Class 1 PI3K Clinical Candidates and Recent Inhibitor Design Strategies: A Medicinal Chemistry Perspective. J. Med. Chem. 2019, 62, 4815–4850. [Google Scholar] [CrossRef] [PubMed]
- Hillmann, P.; Fabbro, D. PI3K/mTOR pathway inhibition: Opportunities in oncology and rare genetic diseases. Int. J. Mol. Sci. 2019, 20, 5792. [Google Scholar] [CrossRef] [PubMed]
- Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Phosphatidylinositol 3 kinase (PI3K) inhibitors as new weapon to combat cancer. Eur. J. Med. Chem. 2019, 183, 111718. [Google Scholar] [CrossRef]
- Blunt, M.D.; Ward, S.G. Targeting PI3K isoforms and SHIP in the immune system: New therapeutics for inflammation and leukemia. Curr. Opin. Pharmacol. 2012, 12, 444–451. [Google Scholar] [CrossRef]
- Hawkins, P.T.; Stephens, L.R. PI3K signalling in inflammation. Biochim. Biophys. Acta 2015, 1851, 882–897. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr Pharm Design 2018, 24, 1449–1484. [Google Scholar] [CrossRef]
- Cantley, L.C. The phosphoinositide-3-kinase pathway. Science 2002, 296, 1655–1657. [Google Scholar] [CrossRef]
- Kerr, W.G.; Pedicone, C.; Dormann, S.; Pacherille, A.; Chisholm, J.D. Small Molecule Targeting of SHIP1 and SHIP2. Biochem. Soc. Trans. 2020, 48, 291–300. [Google Scholar] [CrossRef]
- Mishra, R.; Patel, H.; Alanazi, S.; Kilroy, M.K.; Garrett, J.T. PI3K inhibitors in cancer: Clinical implications and adverse effects. Int. J. Mol. Sci. 2021, 22, 3464. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Marshall, A.J. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: A distinct branch of PI3K signaling. Cell. Signal. 2015, 27, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Dungan, O.M.; Dormann, S.; Fernandes, S.; Duffy, B.C.; Effiong, D.G.; Kerr, W.G.; Chisholm, J.D. Synthetic studies on the indane SHIP1 agonist AQX-1125. Org. Biomol. Chem. 2022, 20, 4016–4020. [Google Scholar] [CrossRef] [PubMed]
- Pedicone, C.; Fernandes, S.; Matera, A.; Meyer, S.T.; Loh, S.; Ha, J.-H.; Bernard, D.; Chisholm, J.D.; Paolicelli, R.C.; Kerr, W.G. Discovery of a novel SHIP1 agonist that promotes degradation of lipid-laden phagocytic cargo by microglia. iScience 2022, 25, 104170. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Heilmann, S.; Becker, T.; Hernández, I.; Wagner, H.; Thelen, M.; Mauleón, A.; Rosende-Roca, M.; Bellenguez, C.; Bis, J.C.; et al. Follow-up of loci from the International Genomics of Alzheimer’s Disease Project identifies TRIP4 as a novel susceptibility gene. Transl. Psychiatry 2014, 4, e358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Schmitt-Ulms, G.; Sato, C.; Xi, Z.; Zhang, Y.; Zhou, Y.; St George-Hyslop, P.; Rogaeva, E. Drug Repositioning for Alzheimer’s Disease Based on Systematic ‘omics’ Data Mining. PLoS ONE 2016, 11, e0168812. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.-C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham, G.W.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, Y.; Yamazaki, K.; Ozaki, Y.; Sao, T.; Yoshida, T.; Mori, T.; Mori, Y.; Ochi, S.; Iga, J.-I.; Ueno, S.-I. INPP5D mRNA Expression and Cognitive Decline in Japanese Alzheimer’s Disease Subjects. J. Alzheimer’s Dis. 2017, 58, 687–694. [Google Scholar] [CrossRef]
- Pedicone, C.; Fernandes, S.; Dungan, O.M.; Dormann, S.M.; Viernes, D.R.; Adhikari, A.A.; Choi, L.B.; De Jong, E.P.; Chisholm, J.D.; Kerr, W.G. Pan-SHIP1/2 inhibitors promote microglia effector functions essential for CNS homeostasis. J. Cell Sci. 2020, 133, jcs238030. [Google Scholar] [CrossRef]
- Tsai, A.P.; Lin, P.B.-C.; Dong, C.; Moutinho, M.; Casali, B.T.; Liu, Y.; Lamb, B.T.; Landreth, G.E.; Oblak, A.L.; Nho, K. INPP5D expression is associated with risk for Alzheimer’s disease and induced by plaque-associated microglia. Neurobiol. Dis. 2021, 153, 105303. [Google Scholar] [CrossRef]
- Sierksma, A.; Lu, A.; Mancuso, R.; Fattorelli, N.; Thrupp, N.; Salta, E.; Zoco, J.; Blum, D.; Buée, L.; De Strooper, B.; et al. Novel Alzheimer risk genes determine the microglia response to amyloid-β but not to TAU pathology. EMBO Mol. Med. 2020, 12, e10606. [Google Scholar] [CrossRef]
- Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.-T.; Woodbury, M.E.; Srivastava, G.; et al. The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques. Cell Rep. 2019, 27, 1293–1306.e6. [Google Scholar] [CrossRef] [PubMed]
- Razani, E.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Zoghi, A.; Shanaki-Bavarsad, M.; Bashash, D. The PI3K/Akt signaling axis in Alzheimer’s disease: A valuable target to stimulate or suppress? Cell Stress Chaperones 2021, 26, 871–887. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.B.-C.; Tsai, A.P.-Y.; Soni, D.; Lee-Gosselin, A.; Moutinho, M.; Puntambekar, S.S.; Landreth, G.E.; Lamb, B.T.; Oblak, A.L. INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer’s disease. Alzheimer’s Dement. 2022, 19, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Castranio, E.L.; Hasel, P.; Haure-Mirande, J.-V.; Ramirez Jimenez, A.V.; Hamilton, B.W.; Kim, R.D.; Glabe, C.G.; Wang, M.; Zhang, B.; Gandy, S.; et al. Microglial INPP5D limits plaque formation and glial reactivity in the PSAPP mouse model of Alzheimer’s disease. Alzheimer’s Dement. 2022, 19, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Williams, D.E.; Mui, A.; Ong, C.; Krystal, G.; Van Soest, R.; Andersen, R.J. Synthesis of pelorol and analogues: Activators of the inositol 5-phosphatase SHIP. Org. Lett. 2005, 7, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Meimetis, L.G.; Nodwell, M.; Yang, L.; Wang, X.; Wu, J.; Harwig, C.; Stenton, G.R.; MacKenzie, L.F.; MacRury, T.; Patrick, B.O.; et al. Synthesis of SHIP1-Activating Analogs of the Sponge Meroterpenoid Pelorol. Eur. J. Org. Chem. 2012, 2012, 5195–5207. [Google Scholar] [CrossRef]
- Stenton, G.R.; MacKenzie, L.F.; Tam, P.; Cross, J.L.; Harwig, C.; Raymond, J.; Toews, J.; Wu, J.; Ogden, N.; MacRury, T.; et al. Characterization of AQX-1125, a small-molecule SHIP1 activator. Part 1. Effects on inflammatory cell activation and chemotaxis in vitro and pharmacokinetic characterization in vivo. Br. J. Pharmacol. 2013, 168, 1506–1518. [Google Scholar] [CrossRef]
- Stenton, G.R.; Mackenzie, L.F.; Tam, P.; Cross, J.L.; Harwig, C.; Raymond, J.; Toews, J.; Chernoff, D.; MacRury, T.; Szabo, C. Characterization of AQX-1125, a small-molecule SHIP1 activator. Part 2. Efficacy studies in allergic and pulmonary inflammation models in vivo. Br. J. Pharmacol. 2013, 168, 1519–1529. [Google Scholar] [CrossRef]
- Pedicone, C.; Meyer, S.T.; Chisholm, J.D.; Kerr, W.G. Targeting SHIP1 and SHIP2 in cancer. Cancers 2021, 13, 890. [Google Scholar] [CrossRef]
- Andersen, R.J. Sponging off nature for new drug leads. Biochem. Pharmacol. 2017, 139, 3–14. [Google Scholar] [CrossRef]
- Chamberlain, T.C.; Cheung, S.T.; Yoon, J.S.J.; Ming-Lum, A.; Gardill, B.R.; Shakibakho, S.; Dzananovic, E.; Ban, F.; Samiea, A.; Jawanda, K.; et al. Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. iScience 2020, 23, 101433. [Google Scholar] [CrossRef] [PubMed]
- Goodman, K.B.; Bury, M.J.; Cheung, M.; Cichy-Knight, M.A.; Dowdell, S.E.; Dunn, A.K.; Lee, D.; Lieby, J.A.; Moore, M.L.; Scherzer, D.A.; et al. Discovery of potent, selective sulfonylfuran urea endothelial lipase inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.S.; Slowey, A.; Ye, Y.; Conway, S.J. The use of phosphate bioisosteres in medicinal chemistry and chemical biology. MedChemComm 2012, 3, 735–751. [Google Scholar] [CrossRef]
- Zhang, Y.; Borrel, A.; Ghemtio, L.; Regad, L.; Boije af Gennas, G.; Camproux, A.-C.; Yli-Kauhaluoma, J.; Xhaard, H. Structural Isosteres of Phosphate Groups in the Protein Data Bank. J. Chem. Inf. Model. 2017, 57, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.J.; Ming-Lum, A.; Nodwell, M.; Ghanipour, A.; Yang, L.; Williams, D.E.; Kim, J.; Demirjian, L.; Qasimi, P.; Ruschmann, J.; et al. Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 2007, 110, 1942–1949. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Matsui, T.; Ozaki, S.-I.; Watanabe, Y.; Fukuzumi, S. Mechanisms of Sulfoxidation Catalyzed by High-Valent Intermediates of Heme Enzymes: Electron-Transfer vs. Oxygen-Transfer Mechanism. J. Am. Chem. Soc. 1999, 121, 9497–9502. [Google Scholar] [CrossRef]
- Meunier, B.; de Visser, S.P.; Shaik, S. Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chem. Rev. 2004, 104, 3947–3980. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V.; Michielin, O.; Michielin, O. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Jaladanki, C.K.; Taxak, N.; Varikoti, R.A.; Bharatam, P.V. Toxicity Originating from Thiophene Containing Drugs: Exploring the Mechanism using Quantum Chemical Methods. Chem. Res. Toxicol. 2015, 28, 2364–2376. [Google Scholar] [CrossRef]
- Orr, S.T.M.; Ripp, S.L.; Ballard, T.E.; Henderson, J.L.; Scott, D.O.; Obach, R.S.; Sun, H.; Kalgutkar, A.S. Mechanism-Based Inactivation (MBI) of Cytochrome P450 Enzymes: Structure-Activity Relationships and Discovery Strategies To Mitigate Drug-Drug Interaction Risks. J. Med. Chem. 2012, 55, 4896–4933. [Google Scholar] [CrossRef] [PubMed]
- Gronowitz, S.; Ander, I. Base-catalyzed reaction of some methyl nitrothiophenes with aldehydes. Unexpected cyclobutane formation. Acta Chem. Scand. Ser. B 1975, B29, 513. [Google Scholar] [CrossRef]
- Cogan, E.B.; Birrell, G.B.; Griffith, O.H. A Robotics-Based Automated Assay for Inorganic and Organic Phosphates. Anal. Biochem. 1999, 271, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Drees, B.E.; Weipert, A.; Hudson, H.; Ferguson, C.G.; Chakravarty, L.; Prestwich, G.D. Competitive fluorescence polarization assays for the detection of phosphoinositide kinase and phosphatase activity. Comb. Chem. High Throughput Screen. 2003, 6, 321–330. [Google Scholar] [CrossRef]
- Nepali, K.; Lee, H.-Y.; Liou, J.-P. Nitro-Group-Containing Drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Baillie, G.; Donvito, G.; Mustafa, M.A.; Juola, S.E.; Zanato, C.; Massarenti, C.; Dall’Angelo, S.; Harrison, W.T.A.; Lichtman, A.H.; et al. The Trifluoromethyl Group as a Bioisosteric Replacement of the Aliphatic Nitro Group in CB1 Receptor Positive Allosteric Modulators. J. Med. Chem. 2019, 62, 5049–5062. [Google Scholar] [CrossRef]
- Tang, H.; Walsh, S.P.; Yan, Y.; de Jesus, R.K.; Shahripour, A.; Teumelsan, N.; Zhu, Y.; Ha, S.; Owens, K.A.; Thomas-Fowlkes, B.S.; et al. Discovery of Selective Small Molecule ROMK Inhibitors as Potential New Mechanism Diuretics. ACS Med. Chem. Lett. 2012, 3, 367–372. [Google Scholar] [CrossRef]
- Brooks, R.; Iyer, S.; Akada, H.; Neelam, S.; Russo, C.M.; Chisholm, J.D.; Kerr, W.G. Coordinate Expansion of Murine Hematopoietic and Mesenchymal Stem Cell Compartments by SHIPi. Stem Cells 2015, 33, 848–858. [Google Scholar] [CrossRef]
Entry | Aminothiophene | Amide | Bis-Sulfonamide Analog |
---|---|---|---|
1 | |||
2 | − | − | |
2 | |||
3 | |||
4 | |||
5 | |||
6 | |||
7 | |||
8 | |||
9 |
Entry | Amino Acid | Product | Yield a |
---|---|---|---|
1 | 21% | ||
2 | 21% | ||
3 | 15% | ||
4 | 18% | ||
5 | 43% | ||
6 | 54% |
Entry | Electrophile | Product | Yield |
---|---|---|---|
1 | 27% | ||
2 | 12% | ||
3 | 27% | ||
4 | 20% | ||
5 | 53% | ||
6 | 47% | ||
7 | 24% | ||
8 | 36% | ||
9 | 31% | ||
10 | 31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meyer, S.T.; Fernandes, S.; Anderson, R.E.; Pacherille, A.; Toms, B.; Kerr, W.G.; Chisholm, J.D. Structure–Activity Studies on Bis-Sulfonamide SHIP1 Activators. Molecules 2023, 28, 8048. https://doi.org/10.3390/molecules28248048
Meyer ST, Fernandes S, Anderson RE, Pacherille A, Toms B, Kerr WG, Chisholm JD. Structure–Activity Studies on Bis-Sulfonamide SHIP1 Activators. Molecules. 2023; 28(24):8048. https://doi.org/10.3390/molecules28248048
Chicago/Turabian StyleMeyer, Shea T., Sandra Fernandes, Robert E. Anderson, Angela Pacherille, Bonnie Toms, William G. Kerr, and John D. Chisholm. 2023. "Structure–Activity Studies on Bis-Sulfonamide SHIP1 Activators" Molecules 28, no. 24: 8048. https://doi.org/10.3390/molecules28248048
APA StyleMeyer, S. T., Fernandes, S., Anderson, R. E., Pacherille, A., Toms, B., Kerr, W. G., & Chisholm, J. D. (2023). Structure–Activity Studies on Bis-Sulfonamide SHIP1 Activators. Molecules, 28(24), 8048. https://doi.org/10.3390/molecules28248048