Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum–Effect Relationship
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Fingerprints Analysis of DH and DS Samples
2.1.1. Optimization of Extraction Condition and HPLC Condition
2.1.2. Method Validation
2.1.3. HPLC Fingerprints and Similarity Analysis
2.2. Chemical Comparison of DH and DS by Chemometric Analysis
2.2.1. Hierarchical Clustering Analysis
2.2.2. Principal Component Analysis and Orthogonal Partial Least Squares Discriminant Analysis
2.3. Xanthine Oxidase Inhibitory Activities of DH and DS Samples
2.4. Identification of Xanthine Oxidase Inhibitors by Spectrum–Effect Relationship Analysis
2.4.1. Pearson Correlation Analysis
2.4.2. Partial Least Squares Regression Analysis
2.4.3. Verification of Xanthine Oxidase Inhibitory Activities
2.5. Molecular Docking Experiments
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Preparation
3.3. HPLC Fingerprints
3.3.1. HPLC and HPLC-Q/TOF-MS Conditions
3.3.2. Standard Solutions Preparation
3.3.3. Method Validation
3.3.4. HPLC Fingerprints Analysis
3.4. Xanthine Oxidase Inhibitory Assay
3.5. Chemometric Analysis
3.6. Spectrum–Effect Relationship Analysis
3.6.1. Pearson Correlation Analysis
3.6.2. Partial Least Squares Regression Analysis
3.7. Molecular Docking Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivastava, A.; Kaze, A.D.; McMullan, C.J.; Isakova, T.; Waikar, S.S. Uric acid and the risks of kidney failure and death in individuals with CKD. Am. J. Kidney Dis. 2018, 71, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Gliozzi, M.; Malara, N.; Muscoli, S.; Mollace, V. The treatment of hyperuricemia. Int. J. Cardiol. 2016, 213, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Joosten, L.A.B.; Crisan, T.O.; Bjornstad, P.; Johnson, R.J. Asymptomatic hyperuricaemia: A silent activator of the innate immune system. Nat. Rev. Rheumatol. 2020, 16, 75–86. [Google Scholar] [CrossRef]
- Flemmig, J.; Kuchta, K.; Arnhold, J.; Rauwald, H.W. Olea europaea leaf (Ph.Eur.) extract as well as several of its isolated phenolics inhibit the gout-related enzyme xanthine oxidase. Phytomedicine 2011, 18, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wang, X.; Luo, J.; Liu, Y.; Pang, J.; Zhang, H.; Xu, Z.; Xie, J.; Jiang, X.; Ling, W. Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food Funct. 2019, 10, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Otani, N.; Ouchi, M.; Kudo, H.; Tsuruoka, S.; Hisatome, I.; Anzai, N. Recent approaches to gout drug discovery: An update. Expert Opin. Drug Discov. 2020, 15, 943–954. [Google Scholar] [CrossRef]
- Pascart, T.; Richette, P. Investigational drugs for hyperuricemia, an update on recent developments. Expert Opin. Investig. Drugs 2018, 27, 437–444. [Google Scholar] [CrossRef]
- Strilchuk, L.; Fogacci, F.; Cicero, A.F. Safety and tolerability of available urate-lowering drugs: A critical review. Expert Opin. Drug Saf. 2019, 18, 261–271. [Google Scholar] [CrossRef]
- Terkeltaub, R. Update on gout: New therapeutic strategies and options. Nat. Rev. Rheumatol. 2010, 6, 30–38. [Google Scholar] [CrossRef]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- Chen, L.; Luo, Z.; Wang, M.; Cheng, J.; Li, F.; Lu, H.; He, Q.; You, Y.; Zhou, X.; Kwan, H.Y.; et al. The Efficacy and mechanism of Chinese herbal medicines in lowering serum uric acid levels: A systematic review. Front. Pharmacol. 2020, 11, 578318. [Google Scholar] [CrossRef]
- Chi, X.; Zhang, H.; Zhang, S.; Ma, K. Chinese herbal medicine for gout: A review of the clinical evidence and pharmacological mechanisms. Chin. Med. 2020, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lin, F.F.; Liu, S.M.; Sui, X.F. Influence of the total saponin fraction from Dioscorea nipponica Makino on TLR2/4-IL1R receptor singnal pathway in rats of gouty arthritis. J. Ethnopharmacol. 2017, 206, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Ding, G.; Huang, W.; Wang, Z.; Meng, Z.; Xiao, W. Total saponin of Dioscoreae hypoglaucae rhizoma ameliorates streptozotocin-induced diabetic nephropathy. Drug Des. Dev. Ther. 2016, 10, 799–810. [Google Scholar]
- Zhao, X.; Tao, X.; Xu, L.; Yin, L.; Qi, Y.; Xu, Y.; Han, X.; Peng, J. Dioscin induces apoptosis in human cervical carcinoma HeLa and SiHa Cells through ROS-mediated DNA damage and the mitochondrial signaling pathway. Molecules 2016, 21, 730. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Liu, P.; Shi, H.; Fan, W.; Feng, X.; Chen, J.; Jing, S.; Wang, L.; Zheng, Y.; Zhang, D.; et al. Identification of anti-inflammatory components in Dioscorea nipponica Makino based on HPLC-MS/MS, quantitative analysis of multiple components by single marker and chemometric methods. J. Chromatogr. B 2022, 1213, 123531. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jiang, W.; Su, M.; Sun, Y.; Liu, H.; Nie, L.; Zang, H. Quality evaluation of traditional Chinese medicines based on fingerprinting. J. Sep. Sci. 2020, 43, 6–17. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Kang, X.; Li, X.; Wu, Y.; Xiao, J.; Ye, Y.; Yang, J.; Yang, Y.; Liu, H. Study on the anti-inflammatory effects of callicarpa nudiflora based on the spectrum-effect relationship. Front. Pharmacol. 2021, 12, 806808. [Google Scholar] [CrossRef]
- Xiao, Y.; Shan, X.; Wang, H.; Hong, B.; Ge, Z.; Ma, J.; Li, Y.; Zhao, Y.; Ma, G.; Zhang, C. Spectrum-effect relationship between HPLC fingerprint and antioxidant of “San-Bai Decoction” extracts. J. Chromatogr. B 2022, 1208, 123380. [Google Scholar] [CrossRef]
- Zhu, C.S.; Lin, Z.J.; Xiao, M.L.; Niu, H.J.; Zhang, B. The spectrum-effect relationship-a rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Q.; Si, Y.; Li, K.; Zhu, J.; Gao, X.; Liu, W. Bioactive structural basis of proteoglycans from Sarcandra glabra based on spectrum-effect relationship. J. Ethnopharmacol. 2020, 259, 112941. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Zhou, L.; Zhong, M.; Zhang, M.; Yang, L.; Yang, Y.; Chen, H.; Yang, W.; Yuan, J. Spectrum-effect relationship between UHPLC-Q-TOF/MS fingerprint and promoting gastrointestinal motility activity of Fructus aurantii based on multivariate statistical analysis. J. Ethnopharmacol. 2021, 279, 114366. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jiang, H.; Wang, S.; Hou, A.; Man, W.; Zhang, J.; Guo, X.; Yang, B.; Kuang, H.; Wang, Q. Discovering the major antitussive, expectorant, and anti-inflammatory bioactive constituents in Tussilago Farfara L. based on the spectrum-effect relationship combined with chemometrics. Molecules 2020, 25, 620. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Zhang, D.; Yang, G.; Zheng, Y.; Guo, L. Screening of anti-lipase components of Artemisia argyi leaves based on spectrum-effect relationships and HPLC-MS/MS. Front. Pharmacol. 2021, 12, 675396. [Google Scholar] [CrossRef]
- Quan, N.V.; Anh, H.; Lam, V.Q.; Takami, A.; Teschke, R.; Khanh, T.D.; Xuan, T.D. Anti-diabetes, anti-gout, and anti-leukemia properties of essential oils from natural spices Clausena indica, Zanthoxylum rhetsa, and Michelia tonkinensis. Molecules 2022, 27, 774. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Z.; Tan, C. Fast discrimination of the geographical origins of notoginseng by near-infrared spectroscopy and chemometrics. J. Pharm. Biomed. Anal. 2018, 161, 239–245. [Google Scholar] [CrossRef]
Common Peaks | Intra-Day Precision (RSD%) | Inter-Day Precision (RSD%) | Repeatability (RSD%) | Stability (RSD%) |
---|---|---|---|---|
P1 | 0.66 | 0.41 | 1.31 | 2.33 |
P2 | 0.71 | 0.50 | 1.23 | 1.70 |
P3 | 0.83 | 0.80 | 2.03 | 2.57 |
P4 | 2.67 | 0.81 | 1.68 | 0.79 |
P5 | 1.24 | 0.72 | 1.98 | 1.40 |
P6 | 1.87 | 2.49 | 2.80 | 2.34 |
P7 | 0.56 | 1.44 | 2.30 | 1.98 |
P8 | 1.40 | 0.63 | 0.69 | 2.46 |
P9 | 2.24 | 1.73 | 2.63 | 2.42 |
NO. | RT | Compound | Chemical Formula | Theoretical Mass (m/z) | Error (ppm) | Measured Mass (m/z) | Fragment Ions (m/z) |
---|---|---|---|---|---|---|---|
P1 | 28.18 | Protodioscin * | C51H84O22 | 1048.5449 | 2.87 | 1031.5450 [M+H−H2O]+ | 1031.5426, 869.49302, 725.3763, 579.3129, 415.3203, 379.2054, 253.1950, 129.0552, 85.0827 |
P2 | 29.183 | Protogracillin * | C57H84O23 | 1064.5398 | 2.94 | 1047.5401 [M+H−H2O]+ | 1047.5350, 885.4866, 723.4337, 579.3179, 415.3211, 379.3009, 253.1957, 129.0549, 85.0284 |
P3 | 32.301 | (25R)-spirost-5-en-3β,7β-diol-3-O-α-L-arabinofuranosyl(1→4)-[α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside | C45H72O18 | 900.4698 | −2.32 | 923.4611 [M+Na]+ | 901.4785, 739.4253, 593.3669, 346.2947 |
P4 | 34.552 | 3β-O-α-L-rhamnopyranosyl-(1→2)- [α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranosyl-16β-O-β-D-glucopyranosyl-12β-hydroxycholest-5-ene | C51H86O21 | 1034.5647 | −1.43 | 1057.5534 [M+Na]+ | 1035.5611, 889.6539, 743.5023, 579.1387 |
P5 | 35.636 | Methyl Protodioscin | C52H86O22 | 1062.5605 | 2.37 | 1031.5449 [M+H−CH3OH]+ | 1031.5445, 869.4905, 725.3745, 577.3735, 415.3212, 253.1234, 129.0547, 85.0286 |
P6 | 35.986 | Pseudoprotodioscin * | C51H82O21 | 1030.5343 | 2.82 | 1031.478 [M+H]+ | 1031.5445, 869.4901, 725.3741, 577.3740, 415.3211, 379.2926, 253.1953, 147.0652, 129.0548, 85.0287 |
P7 | 36.368 | Pseudoprotogtacillin * | C51H82O22 | 1046.5292 | 2.27 | 1047.5392 [M+H]+ | 1047.5379, 885.4804, 723.4314, 577.3744, 415.5212, 397.3085, 309.1188, 147.0656, 129.0538 |
P8 | 57.060 | Dioscin * | C45H72O16 | 868.4815 | 2.92 | 869.4916 [M+H]+ | 869.4917, 723.4308, 577.3734, 415.3218, 293.1428, 253.1954, 129.0545 |
P9 | 57.601 | Gracillin * | C45H72O17 | 884.4764 | 1.9 | 885.4855 [M+H]+ | 885.4845, 723.4328, 577.3854, 415.3214, 397.3103, 253.1954, 85.0285 |
NO. | IC50 (mg/mL) | NO. | IC50 (mg/mL) |
---|---|---|---|
F1 | 11.72 ± 0.21 | M1 | 16.54 ± 0.2 |
F2 | 12.63 ± 0.11 | M2 | 17.25 ± 0.04 |
F3 | 12.41 ± 0.18 | M3 | 18.03 ± 0.12 |
F4 | 11.55 ± 0.10 | M4 | 18.18 ± 0.26 |
F5 | 12.52 ± 0.22 | M5 | 17.32 ± 0.20 |
F6 | 12.53 ± 0.27 | M6 | 17.57 ± 0.26 |
F7 | 13.67 ± 0.07 | M7 | 16.52 ± 0.17 |
F8 | 13.37 ± 0.16 | M8 | 18.73 ± 0.18 |
F9 | 14.83 ± 0.12 | M9 | 18.33 ± 0.23 |
F10 | 14.58 ± 0.12 | M10 | 17.61 ± 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rui, G.; Qin, Z.-Y.; Chang, Y.-Q.; Zheng, Y.-G.; Zhang, D.; Yao, L.-M.; Guo, L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum–Effect Relationship. Molecules 2023, 28, 8116. https://doi.org/10.3390/molecules28248116
Rui G, Qin Z-Y, Chang Y-Q, Zheng Y-G, Zhang D, Yao L-M, Guo L. Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum–Effect Relationship. Molecules. 2023; 28(24):8116. https://doi.org/10.3390/molecules28248116
Chicago/Turabian StyleRui, Guo, Zhang-Yi Qin, Ya-Qing Chang, Yu-Guang Zheng, Dan Zhang, Li-Min Yao, and Long Guo. 2023. "Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum–Effect Relationship" Molecules 28, no. 24: 8116. https://doi.org/10.3390/molecules28248116
APA StyleRui, G., Qin, Z. -Y., Chang, Y. -Q., Zheng, Y. -G., Zhang, D., Yao, L. -M., & Guo, L. (2023). Chemical Comparison and Identification of Xanthine Oxidase Inhibitors of Dioscoreae Hypoglaucae Rhizoma and Dioscoreae Spongiosae Rhizoma by Chemometric Analysis and Spectrum–Effect Relationship. Molecules, 28(24), 8116. https://doi.org/10.3390/molecules28248116