Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations
Abstract
:1. Introduction
2. Contextual Relationship of Vitis vinifera L.
Nutritional Phytochemical Composition of Vitis vinifera L. Seed Oil
3. Medicinal Properties of Vitis vinifera L. Seed Oil
4. Antioxidant and Anti-Inflammatory Effects of Grape Seed Oil
5. Effects of Vitis vinifera L. Seeds on Obesity and Metabolic Alterations
Reference | Effects | Related Compounds | Main Results |
---|---|---|---|
[59] | Antioxidant Anti-inflammatory | - Total antioxidant content - Flavonoids - Vitamin E - Vitamin C | - TEAC: 0.14 and 1.16 mg/g - DPPH: 31.0 and 45.3%. - Total phenolic content: 48–360 mg GAE/kg - Phytosterols: β-sitosterol: 83.5–91.9 mg/100 g Stigmasterol: 30.5–32.6 mg/100 g Campesterol: 12.7–13.7 mg/100 g - Vitamin E: 223 mg α (5,7,8-trimetyltocol) β (5,8-dimetyltocol) γ (7,8-dimetyltocol) δ (8-metyltocol) - Carotenoids: 56.7 ppm β-carotene β-cryptoxanthine α-carotene |
[58] | Antioxidant | Polyphenols Total antioxidant content | Polyphenols: 0.24–1.13, e.g., GAE/g Total antioxidants: 0.12 and 0.78 mg TEAC/g |
[39] | Antioxidant Anti-inflammatory | Polyphenols Total antioxidant content | - Inhibit enzymes α-glycosidase, α-amylase, α-tirosinase and cholenisterase - Stimulate liberation of macrophages - Polyphenols: 199.31 mg GAE/g - Antioxidant content: 1036.98 mg TE/g |
[57] | Antioxidant Anti-inflammatory | - Anthocyanins - Flavones - Flavanols - Stilbenes (resveratrol) | - 70% linoleic acid - Total cinnamic acid derivates: 89.2 µg/g - Total hydroxybenzoic acid: 31.9 µg/g - Total flavan-3-ols: 33.6 µg/g - Total flavanols: 85.6 µg/g - Total flavones: 19.7 µg/g - Total stilbenes (resveratrol): 13.9 µg/g - Total anthocyanins: 190.9 µg/g |
Reference | Effects | Object/ Population | Period | Study Design | Main Results |
---|---|---|---|---|---|
[14] | - Cardioprotective - Antioxidant - Anti-inflammatory | Wistar rats | 14 days | Group 1: Saline solution 0.4 mL/100 g Group 2: Saline solution 0.4 mL/100 g Group 3: Nigella sativa seed oil 0.4 mL/100 g Group 4: Vitis vinifera seed oil 0.4 mL/100 g | ↓ ventricular conduction ↓ IL-6, IL-1 β and TNF-α ↓ CK-Mb Prevented cardiotoxic effect of ISO |
[43] | - Anti-inflammatory - Antioxidant - Anticarcinogenic | In vitro | 8 days | Evaluated inhibitory effect of 150 mg Vitis vinifera seed oil on growth of MCF-7 breast cancer cells | ↑ apoptosis ↓ inflammation ↓ redox potential (E h) ↓ CD44 cells |
[61] | - Anti-inflammatory - Antioxidant | Newborn human monocytes | 24 h | Newborn human monocytes used to analyze effects of unsaponifiable fraction of Vitis vinifera seed oil (10–100 µg/mL) on oxidative and inflammatory responses using FACS, RT-qPCR and ELISA | ↓ CD14 ↑ surface expression of CD16 in human primary monocytes treated with LPS ↓ gene expression and secretion of TNF-α, IL-1β and IL-6 |
[62] | - Anti-obesogenic - Anti-inflammatory | In vitro | 12 days | Trunk cells derived from primary human adipose tissue treated with 200 μM Vitis vinifera seed oil | ↓ expression of mRNA ↓ adipogenic proteins (PPARγ and aP2) |
[69] | - Anti-obesogenic - Anti-inflammatory | Swiss mice | 12 weeks | Group 1: Diet A04-10 with 3% of energy as soybean oil Group 2: High-fat diet with 21% additional energy in milk cream fat Group 3: Diet + Vitis vinifera seed oil Group 4: Diet + Vitis vinifera seed oil enriched with 200 mg/kg/day resveratrol | ↓ expression of marker M1 ↓ expression of macrophagss F4/80 in white adipose tissue ↓ pro-inflammatory adipokines of soro ↓ levels of mRNA from inflammatory adipokines in white adipose tissue ↑ gene expression of uncoupling protein 1 (UCP1) |
[70] | - Glycemic control - Lipid control | Wistar rats | 40 days | Group 1: Diabetic rats treated with 25 mg/kg Vitis vinifera seed oil Group 2: Diabetic rats treated with saline solution | ↓ serum glucose ↓ triglycerides ↓ low-density liproprotein (LDL-c) ↓ very-low-density liproprotein (VLDL-c) |
[71] | - Anti-obesogenic - Antioxidant - Anti-inflammatory - Glycemic control | C57BL/6J mice | 15 weeks | Group 1: Control group Group 2: Diet rich in lard (25.93%) Group 2: Diet rich in corn oil (25.93%) Group 3: Diet rich in Vitis vinífera seed oil (25.93%) | ↑ energy rate ↓ insulin resistance ↓ fasting glucose ↓ serum insulin ↓ glucagon concentration ↓ leptin resistance |
[72] | - Anti-obesogenic - Antioxidant - Anti-inflammatory | Swiss mice | 8 weeks | Group 1: control diet Group 2: High-fat diet (HFD) with 100% of lipidic content as lard Group 3: HFD with 50% of lipidic content as grape seed oil (HG) Group 4: HFD with 50% of lipidic content as SLs containing capric acid produced from grape seed oil (HG-MCT) | ↓ body weight gain ↓ adiposity ↓ serum glucose ↓ total cholesterol ↓ plasma TBARS ↓ production of IL-6 and IL-10 |
[73] | - Anti-inflammatory - Antioxidant | Wistar rats | 2 h before colitis induction, after 4 consecutive days | Group 1: Sham (normal) oral physiological serum/without colitis induction Group 2: Induced colitis (negative control), saline solution/colitis induction Groups 3, 4 and 5: Three doses (50, 100 and 200 mg/kg) of Vitis vinifera seed extract with colitis induction Groups 6, 7 and 8: Three doses (2, 4 and 8 mL/kg) of Vitis vinifera seed oil with colitis induction Groups 9 and 10: Reference (positive control), prednisone (4 mg/kg) or masalamine (100 mg/kg) with colitis induction | ↓ colon weight ↓ ulcer index ↓ total colitis index ↓ oxidative stress ↓ inflammation |
[74] | - Antioxidant - Antiproliferative | In vitro | Human HT-29 colorectal adenocarcinoma cells, 24 h incubation, using 2 g Vitis vinifera seed oil | ↓ proliferation of human colon cancer cells (HT-29) | |
[75] | - Cardioprotective - Anti-inflammatory - Antidiabetic | Wistar rats | 24 weeks | Group 1: Control diet Group 2: Experimental model of MetS Group 3: Diet-induced MetS treated with Grape-derived stilbene concentrate (GDSC) (from the 14th to the 24th week) Group 4: induced MS treated with GDSC (from the 19th to the 24th week) | ↓ abdominal fat ↓ average glucose level ↓ triglycerides ↑ GLUT4 ↑ PPAR-γ (GDSC treatment from the 14th week of the experiment) ↓ PPAR-γ (GDSC treatment from the 24th week of the experiment) ↓ TLR4 concentration ↓ CRP level |
[76] | - Cardioprotective - Antioxidant | Wistar rats | 7 days | Group 1: Control diet Group 2: aqueous solution of cobalt chloride (CoCL2) Group 3: Aqueous solution of cobalt chloride (CoCL2) + 0.25 mL/kg of the extract of grape polyphenols together with 0.5 mL/kg of water Group 4: Aqueous solution of cobalt chloride (CoCL2) + 2.5 mL/kg of red wine “health” | ↓ free radical oxidation of lipids (TBA-AP) ↑ Catalase (CLA) ↑ Peroxidase (PLA) ↑ Enzyme superoxide dismutase (SOD) |
[76] | - Cardioprotective - Antioxidant | rats | Group 1: Control diet Group 2: Metabolic syndrome + 0.5 g/L wine diluted with water Group 3: Metabolic syndrome + 1.0 g/L wine diluted with water Group 4: Metabolic syndrome + 2.5 g/L wine diluted with water | ↓ free radical oxidation of lipids (TBA-AP) ↑ Enzyme superoxide dismutase (SOD) ↑ Peroxidase (PLA) ↑ Catalase (CLA) | |
[76] | - Cardioprotective - Antioxidant | Wistar rats | 2 weeks | Group 1: Control diet Group 2: Standard food and drinking water and were undergo bloodletting within the first week of the experiment Group 3: Undergo bloodletting within the first week of the experiment and received sparkling red wine (0.5 mL/100 g of body weight) diluted with water Group 4: Did not undergo bloodletting and received sparkling red wine (0.5 mL/100 g of body weight) diluted with water | ↑ free radical oxidation of lipids (TBA-AP) ↑ Enzyme superoxide dismutase (SOD) ↑ Peroxidase (PLA) |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Migicovsky, Z.; Sawler, J.; Gardner, K.M.; Aradhya, M.K.; Prins, B.H.; Schwaninger, H.R.; Bustamante, C.D.; Buckler, E.S.; Zhong, G.Y.; Brown, P.J.; et al. Patterns of genomic and phenomic diversity in wine and table grapes. Hortic. Res. 2017, 4, 17035. [Google Scholar] [CrossRef]
- Parihar, S.; Sharma, D. A brief overview on Vitis vinifera. Sch. Acad. J. Pharm. 2021, 12, 231–239. [Google Scholar] [CrossRef]
- Ramos-Madrigal, J.; Runge, A.K.W.; Bouby, L.; Lacombe, T.; Samaniego Castruita, J.A.; Adam-Blondon, A.F.; Figueiral, I.; Hallavant, C.; Martínez-Zapater, J.M.; Schaal, C.; et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 2019, 5, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-García, R.; Ruiz-García, L.; Bolling, L.; Ocete, R.; López, M.A.; Arnold, C.; Ergul, A.; Söylemezoğlu, G.; Uzun, H.I.; Cabello, F.; et al. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol. Ecol. 2006, 15, 3707–3714. [Google Scholar] [CrossRef] [PubMed]
- Radulescu, C.; Buruleanu, L.C.; Nicolescu, C.M.; Olteanu, R.L.; Bumbac, M.; Holban, G.C.; Simal-Gandara, J. Phytochemical Profiles, Antioxidant and Antibacterial Activities of Grape (Vitis vinifera L.) Seeds and Skin from Organic and Conventional Vineyards. Plants 2020, 9, 1470. [Google Scholar] [CrossRef] [PubMed]
- Marrano, A.; Micheletti, D.; Lorenzi, S.; Neale, D.; Grando, M.S. Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Hortic. Res. 2018, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhosa, E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int. 2013, 50, 161–166. [Google Scholar] [CrossRef]
- Lachman, J.; Hejtmánková, A.; Táborský, J.; Kotíková, Z.; Pivec, V.; Střalková, R.; Vollmannová, A.; Bojňanská, T.; Dědina, M. Evaluation of oil content and fatty acid composition in the seed of grapevine varieties. LWT Food Sci. Technol. 2015, 63, 620–625. [Google Scholar] [CrossRef]
- Mota, A.; Pinto, J.; Fartouche, I.; Correia, M.J.; Costa, R.; Carvalho, R.; Aires, A.; Oliveira, A.A. Chemical profile and antioxidante potential of four table grape (Vitis vinifera) cultivars grown in Doura region, Portugal. Chemistry 2018, 33, 125–135. [Google Scholar] [CrossRef]
- Guaita, M.; Bosso, A. Caracterização polifenólica de peles de uva e sementes de quatro cultivares vermelhas italianas na colheita e após maceração fermentativa. Foods 2019, 8, 395. [Google Scholar] [CrossRef]
- Mahanna, M.; Millan-Linares, M.C.; Grao-Cruces, E.; Claro, C.; Toscano, R.; Rodriguez-Martin, N.M.; Montserrat-de la Paz, S. Resveratrol-enriched grape seed oil (Vitis vinifera L.) protects from white fat dysfunction in obese mice. J. Funct. Foods 2019, 62, 103546. [Google Scholar] [CrossRef]
- Bocsan, I.C.; Pop, R.M.; Sabin, O.; Sarkandy, E.; Boarescu, P.M.; Rosian, S.H.; Leru, P.M.; Chedea, V.S.; Socaci, S.A.; Buzoianu, A.D. Comparative protective effect of Nigella sativa oil and Vitis vinífera seed oil in na experimenral modelo isoproterenol-induced acute myocardial ischemia in rats. Molecules 2021, 26, 3321. [Google Scholar] [CrossRef] [PubMed]
- Dordevski, N.; Stojkovic, D.; Zivkovic, J.; Pljevljakusic, D.; Ristanovic, E.; Nikolic, B.; Ciric, A. Tamjanika, a Balkan native variety of Vitis vinifera L.: Chemical characterization, antibacterial, and anti-dermatomycosis potential of seed oil. Food Sci. Nutr. 2022, 10, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Sargin, S.A.; Selvi, S.; López, V. Ethnomedicinal plants of Sarigöl district (Manisa), Turkey. J. Ethnopharmacol. 2015, 2, 64–84. [Google Scholar] [CrossRef]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.) Roots, Woods, Canes, Stems, and Leaves. Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines—Anatomy and Physiology; Elsevier: Prosser, WA, USA, 2020. [Google Scholar]
- Lima, R.M.M.; Felgueiras, M.L.; Cunh, A.; Chicau, G.; Ferreres, F.; Dias, C.P.A. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease. Plant Physiol. Biochem. 2017, 112, 45–52. [Google Scholar] [CrossRef]
- Gorena, T.; Saez, V.; Mardones, C.; Vergara, C.; Winterhalter, P.; Von Baer, D. Influence of post-pruning storage on stil benoid levels in Vitis vinifera. L. canes. Food Chem. 2014, 155, 256–263. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; De Santana, F.C.; Torres, L.R.O.; Mancini-Filho, J. Óleo de semente de uva: Um potencial alimento funcional? Rev. Nutr. 2015, 35, 399–406. [Google Scholar] [CrossRef]
- Handoussa, H.; Hanafi, R.; El-Khatib, A.; Linscheid, M.; Mahran, L.; Ayoub, N. Computer-assisted HPLC method development using DryLab for determination of major phenolic components in Corchorus olitorius and Vitis vinifera by using HPLC-PDA-ESI-TOF-MSn. Res. Rev. J. Bot. Sci. 2017, 6, 9–16. [Google Scholar]
- Unterkofler, J.; Muhlack, R.A.; Muhlack, J.W. Processes and purposes of extraction of grape components during winemaking: Current state and perspectives. Appl. Microbiol. Biotechnol. 2020, 104, 4737–4755. [Google Scholar] [CrossRef] [PubMed]
- Karaman, S.; Karasu, S.; Tornuk, F.; Toker, O.S.; Gecgel, U.; Sagdic, O.; Ozcan, N.; Gul, O. Recovery potential of cold press by products obtained from the edible oil industry: Physicochemical, bioactive, and antimicrobial properties. J. Agric. Food Chem. 2015, 63, 2305–2313. [Google Scholar] [CrossRef] [PubMed]
- Santi, A.C.; Simon, K.M.; Silva, A.J.M.; Balbi, M.E.; Monteiro, C.S. Characteristics of chemical composition and nutritional seed grape (Vitis vinifera, Vitaceae) cv. Cabernet sauvignon. Visão Académica 2015, 16, 98–107. [Google Scholar] [CrossRef]
- Averilla, J.N.; Oh, J.; Kim, H.J.; Kim, J.S.; Kim, J.S. Potential health benefits of phenolic compounds in grape processing by-products. Food Sci. Biotechnol. 2019, 28, 1607–1615. [Google Scholar] [CrossRef]
- Ali, S.M.; Imran, A.; Arshad, M.U.; Ahmed, R.S.; Imran, M. Physicochemical, antioxidant and enzymes activities of grape fruit peel and pomace enriched functional drinks. Cell. Mol. Biol. 2021, 67, 125–131. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Geçgel, Ü.; Gülcü, M.; Hamurcu, M.; Özcan, M.M. Bioactive properties, fatty acid composition and mineral contents of grape seed and oils. S. Afr. J. Enol. Vitic. 2017, 38, 103–108. [Google Scholar] [CrossRef]
- Katsarou, A.I.; Kaliora, A.C.; Chiou, A.; Kalogeropoulos, N.; Papalois, A.; Agrogiannis, G.; Andrikopoulos, N.K. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components. Eur. J. Nutr. 2016, 55, 1283–1296. [Google Scholar] [CrossRef]
- Böger, B.R.; Salviato, A.; Valezi, D.F.; Di Mauro, E.; Georgetti, S.R.; Kurozawa, L.E. Optimization of ultrasound-assisted extraction of grape-seed oil to enhance process yield and minimize free radical formation. J. Sci. Food Agric. 2018, 98, 5019–5026. [Google Scholar] [CrossRef]
- Castejón, N.; Luna, P.; Señoráns, F.J. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem. 2018, 244, 75–88. [Google Scholar] [CrossRef]
- Luo, L.; Bai, R.; Zhao, Y.; Li, J.; Wei, Z.; Wang, F.; Sun, B. Protective Effect of Grape Seed Procyanidins against H2O2-Induced Oxidative Stress in PC-12 Neuroblastoma Cells: Structure-Activity Relationships. J. Food Sci. 2018, 83, 2622–2628. [Google Scholar] [CrossRef]
- Harbeoui, H.; Dakhlaoui, S.; Wannes, W.A.; Bourgou, S.; Hammami, M.; Khan, N.A.; Tounsi, M.S. Does unsaponifiable fraction of grape seed oil attenuate nitric oxide production, oxidant and cytotoxicity activities. J. Food Biochem. 2019, 43, e12940. [Google Scholar] [CrossRef] [PubMed]
- Keskin, N.; Bilir Ekbic, H.; Kaya, O.; Keskin, S. Antioxidant activity and biochemical compounds of Vitis vinifera L. (cv.’Katıkara’) and Vitis labrusca L. (cv.’Isabella’) grown in Black Sea Coast of Turkey. Erwerbs-Obstbau 2021, 63, 115–122. [Google Scholar] [CrossRef]
- Pinna, C.; Morazzoni, P.; Sala, A. Proanthocyanidins from Vitis vinifera inhibit oxidative stress-induced vascular impairment in pulmonary arteries from diabetic rats. Phytomedicine 2017, 25, 39–44. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; de Santana, F.C.; Araujo, E.S.; Purgatto, E.; Mancini-Filho, J. Chemical composition of cold pressed Brazilian grape seed oil. Food Sci. Technol. 2018, 38, 164–171. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.; Costa, A.S.; Alves, R.C.; Oliveira, M.B.P. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Chedea, V.S.; Pop, R.M. Total polyphenols content and antioxidant DPPH assays on biological samples. In Polyphenols in Plants; Academic Press: Cambridge, MA, USA, 2019; Volume 12, pp. 169–183. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Mollica, A.; Scioli, G.; Della Valle, A.; Cichelli, A.; Novellino, E.; Bauer, M.; Kamysz, W.; Llorent-Martínez, E.J.; Fernández-de Córdova, M.L.; Castillo-López, R.; et al. Phenolic Analysis and In Vitro Biological Activity of Red Wine, Pomace and Grape Seeds Oil Derived from Vitis vinifera L. cv. Montepulciano d’Abruzzo. Antioxidants 2021, 10, 1704. [Google Scholar] [CrossRef]
- Simonetti, G.; D’auria, F.D.; Mulinacci, N.; Innocenti, M.; Antonacci, D.; Angiolella, L.; Santamaria, A.R.; Valletta, A.; Donati, L.; Pasqua, G. Anti-dermatophyte and anti-malassezia activity of extracts rich in polymeric flavan-3-ols obtained from vitis vinifera seeds. Phytother. Res. 2017, 31, 124–131. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Nowicka, P.; Turkiewicz, I.; Golis, T. Characterization in vitro potency of biological active fractions of seeds, skins and flesh from selected Vitis vinifera L. cultivars and interspecific hybrids. J. Funct. Foods 2019, 56, 353–363. [Google Scholar] [CrossRef]
- Rasines-Perea, Z.; Teissedre, P.L. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 2017, 22, 68. [Google Scholar] [CrossRef]
- Niknami, E.; Sajjadi, S.E.; Talebi, A.; Minaiyan, M. Protective Effect of Vitis vinifera (Black Grape) Seed Extract and Oil on Acetic Acid-Induced Colitis in Rats. Int. J. Prev. Med. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Raj, P.; Zieroth, S.; Netticadan, T. An overview of the efficacy of resveratrol in the management of ischemic heart disease. Ann. N. Y. Acad. Sci. 2015, 1348, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insight 2016, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. 2021, 12, 100149. [Google Scholar] [CrossRef]
- Bordiga, M.; Meudec, E.; Williams, P.; Montella, R.; Travaglia, F.; Arlorio, M.; Coïsson, J.D.; Doco, T. The impact of distillation process on the chemical composition and potential prebiotic activity of different oligosaccharidic fractions extracted from grape seeds. Food Chem. 2019, 285, 423–430. [Google Scholar] [CrossRef]
- Carvalho, É.L.S.; Bomfim, E.M.S.; da Costa Silva, M.; Lima, L.C.; de Jesus Marques, E.; Vale, V.L.C. Antibacterial Activity, Antioxidant and Phenolic Compounds of Honeys Produced by Nannotrigona testaceicornis Lepeletier (Apidae, Meliponini). Res. Soc. Dev. 2021, 10, e48101018424. [Google Scholar] [CrossRef]
- Bashir Dar, K.; Hussain Bhat, A.; Amin, S.; Masood, A.; Afzal Zargar, M.; Ahmad Ganie, S. Inflammation: A multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr. Med. Chem. 2016, 23, 3775–3800. [Google Scholar] [CrossRef]
- Alkadi, H. A review on free radicals andantioxidants. Infect. Disord.-Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Khomich, O.A.; Kochetkov, S.N.; Bartosch, B.; Ivanov, A.V. Redox biology of respiratory viral infections. Viruses 2018, 10, 392. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: Eustress and distress in redox homeostasis. In: Stress: Physiology, biochemistry, and pathology. Annu. Rev. Biochem. 2017, 86, 153–163. [Google Scholar] [CrossRef]
- Nascimento-Gavioli, M.C.A.; Rockenbach, M.F.; Welter, L.J.; Guerra, M.P. Histopathological study of resistant (Vitis labrusca L.) and susceptible (Vitis vinifera L.) cultivars of grapevine to the infection by downy mildew. J. Hortic. Sci. Biotechnol. 2020, 95, 521–531. [Google Scholar] [CrossRef]
- Brassea-Pérez, E.; Hernández-Camacho, C.J.; Labrada-Martagón, V.; Vázquez-Medina, J.P.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress inducedbyphthalates in mammals: State of the art and potential biomarkers. Environ. Res. 2022, 206, 112636. [Google Scholar] [CrossRef] [PubMed]
- Aghasafari, P.; George, U.; Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res. 2019, 68, 59–74. [Google Scholar] [CrossRef]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef]
- Wijekoon, C.; Netticadan, T.; Siow, Y.L.; Sabra, A.; Yu, L.; Raj, P.; Prashar, S. Potential associations among bioactive molecules, antioxidant activity and resveratrol production in Vitis vinifera fruits of North America. Molecules 2022, 27, 336. [Google Scholar] [CrossRef] [PubMed]
- Kapcsándi, V.; Lakatos, E.H.; Sik, B.; Linka, L.Á.; Székelyhidi, R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL 2021, 28, 30. [Google Scholar] [CrossRef]
- Argon, Z.U.; Celenk, V.U.; Gumus, Z.P. Cold pressed grape (Vitis vinifera) seed oil. In Cold Pressed Oils; Academic Press: Cambridge, MA, USA, 2020; Volume 12, pp. 39–52. [Google Scholar] [CrossRef]
- Shaban, N.Z.; El-Faham, A.A.; Abu-Serie, M.M.; Habashy, N.H. Targeting apoptosis in MCF-7 and Ehrlich ascites carcinoma cells by saponifiable fractions from green and black Vitis vinifera seed oil. Biomed. Pharmacother. 2023, 157, 114017. [Google Scholar] [CrossRef] [PubMed]
- Millan-Linares, M.C.; Bermudez, B.; Martin, M.E.; Muñoz, E.; Abia, R.; Millan, F.; Montserrat-de la Paz, S. Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food Funct. 2018, 9, 2517–2523. [Google Scholar] [CrossRef]
- Zhao, L.; Yagiz, Y.; Xu, C.; Lu, J.; Chung, S.; Marshall, M.R. Muscadine grape seed oil as a novel source of tocotrienols to reduce adipogenesis and adipocyte inflammation. Food Funct. 2015, 6, 2293–2302. [Google Scholar] [CrossRef]
- Noh, D.; Choi, J.G.; Huh, E.; Oh, M.S. Tectorigenin, a flavonoid-based compound of leopard lily rhizome, attenuates UV-B-induced apoptosis and collagen degradation by inhibiting oxidative stress in human keratinocytes. Nutrients 2018, 10, 1998. [Google Scholar] [CrossRef]
- Chin, S.O.; Keum, C.; Woo, J.; Park, J.; Choi, H.J.; Woo, J.T.; Rhee, S.Y. Successful weight reduction and maintenance by using a smartphone application in those with overweight and obesity. Sci. Rep. 2016, 6, 34563. [Google Scholar] [CrossRef] [PubMed]
- Sarapio, E.; De Souza, S.K.; Model, J.F.; Trapp, M.; Da Silva, R.S. Stanniocalcin-1 and-2 effects on glucose and lipid metabolism in white adipose tissue from fed and fasted rats. Can. J. Physiol. Pharmacol. 2019, 97, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, S.E.; Grijalva, A.; Xu, X.; Ables, E.; Nomani, A.; Ferrante Jr, A.W. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 2019, 363, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.C.; Blondin, D.P.; Virtanen, K.A.; Richard, D.; Haman, F.; Turcotte, É.E. Brown adipose tissue energy metabolism in humans. Front. Endocrinol. 2018, 9, 447. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.M.G.; De Assis Costa, J.; Alfenas, R.D.C.G. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metab. Clin. Exp. 2017, 68, 133–144. [Google Scholar] [CrossRef]
- Filip, A.; Clichici, S.; Daicoviciu, D.; Catoi, C.; Bolfa, P.; Postescu, I.D.; Gal, A.; Baldea, I.; Gherman, C.; Muresan, A. Chemopreventive effects of Calluna vulgaris and Vitis vinifera extracts on UVB-induced skin damage in SKH-1 hairless mice. J Physiol. Pharmacol. 2011, 62, 385–392. [Google Scholar]
- Shiri-Shahsavar, M.R.; Alijani, S.; Parsamanesh, N.; Nazari, S.S.; Moazzen, S.; Majnouni, A.; Rasouli, A. The effect of grape-seed oil on diabetes-related hyperglycemia, dyslipidemia, and inflammation in streptozotocin-induced diabetic rats. Obes. Med. 2023, 37, 100476. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Zhu, J.; Xiao, J.; Cong, R.; Zhang, H.; Qi, X. Virgin Grape Seed Oil Alleviates Insulin Resistance and Energy Metabolism Disorder in Mice Fed a High-Fat Diet. Eur. J. Lipid Sci. Technol. 2020, 122, 1900158. [Google Scholar] [CrossRef]
- Martínez-Galán, J.P.; Ontibón-Echeverri, C.M.; Costa, M.C.; Batista-Duharte, A.; Batista, V.G.; Mesa, V.; Baviera, A.M. Enzymatic synthesis of capric acid-rich structured lipids and their effects on mice with high-fat diet-induced obesity. Food Res. Int. 2021, 148, 110602. [Google Scholar] [CrossRef]
- Montserrat-de la Paz, S.; Fernández-Arche, M.A.; Ángel-Martín, M.; García-Giménez, M.D. Phytochemical characterization of potential nutraceutical ingredients from Evening Primrose oil (Oenothera biennis L.). Phytochem. Lett. 2014, 8, 158–162. [Google Scholar] [CrossRef]
- Alves, E.; Simoes, A.; Domingues, M.R. Fruit seeds and their oils as promising sources of value-added lipids from agro-industrial byproducts: Oil content, lipid composition, lipid analysis, biological activity and potential biotechnological applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 1305–1339. [Google Scholar] [CrossRef] [PubMed]
- Kubyshkin, A.; Shevandova, A.; Petrenko, V.; Fomochkina, I.; Sorokina, L.; Kucherenko, A.; Gordienko, A.; Khimich, N.; Zyablitskaya, E.; Makalish, T.; et al. Anti-inflammatory and antidiabetic effects of grape-derived stilbene concentrate in the experimental metabolic syndrome. J. Diabetes Metab. Disord. 2020, 19, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Kubyshkin, A.; Ogai, Y.; Fomochkina, I.; Chernousova, I.; Zaitsev, G.; Shramko, Y. Polyphenols of red grape wines and alcohol-free food concentrates in rehabilitation technologies. In Polyphenols; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
Component | Quantity per 100 g |
---|---|
Carbohydrates (g) | 18.2–19.8 |
Proteins (g) | 8.7–9.8 |
Lipids (g) | 10.6–16.7 |
Monounsaturated fatty acids (g) | 8.8–22.1 |
Polyunsaturated fatty acids (g) | 67.2–78.2 |
Saturated fatty acids (g) | 7.0–12.8 |
Fiber (g) | 40.2–43.7 |
Energy (Kcal/100 g) | 216.8–237.4 |
Fatty Acids | Percentage (%) |
---|---|
C8:0 (Caprilic acid) | 0.01 |
C12:0 (Lauric acid) | 0.01 |
C14:0 (Myristic acid) | 0.05 |
C15:0 (Pentadecilic acid) | 0.01 |
C16:0 (Palmitic acid) | 6.7 |
C17:0 (Heptadecanoic acid) | 0.06 |
C18:0 (Estearic acid) | 3.8 |
C20:0 (Arachidic acid) | 0.16 |
C16:1 (n-7) (Palmitoleic acid) | 0.2 |
C18:1 cis (n-9) (Oleic acid) | 14.8 |
C20:1(n-9) (Gadoleic acid) | 0.40 |
C18:2 cis (n-6) (Linolenic acid) | 74.2 |
C18:3 (n-3) (α-Linolenic acid) | 0.11 |
Saturated fatty acids (SFAs) | 10.6 |
Monounsaturated fatty acids (MUFAs) | 14.9 |
Polyunsaturated fatty acids (PUFAs) | 74.3 |
n-3 PUFAs (ω-3) | 0.2 |
n-6 PUFAs (ω-6) | 74.7 |
Component | mg/1000 g |
---|---|
Potassium | 4347.8–9492.6 |
Iron | 29.9–73.8 |
Phosphorus | 2277.6–3232.4 |
Calcium | 1249.1–2073.9 |
Magnesium | 249.1–2073.9 |
Zinc | 8.2–15.9 |
Manganese | 2.0–11.5 |
Sulphur | 8.6–15.2 |
Components | Quantity per 100 g |
---|---|
Flavonoids (mg) [10] | 59.7 |
Epicatechin (mg) [10] | 130.4 |
Catechins (mg) [11] | 414.0 |
Procyanidins (mg) [11] | 2.5 |
Phenolics (µg) [13] | 73.0 |
Gallic acid (µg) [10] | 77.0 |
Condensed tannins (mg CE) [14] | 14.0 |
Vitamin E | |
α-Tocopherols (mg) | 86–244 |
β-Tocopherols (mg) | 38–48 |
γ-Tocopherols (mg) | 17–29 |
α-Tocotrienols (mg) | 216–319 |
β-Tocotrienols (mg) | 4–18 |
γ-Tocotrienols (mg) | 499–1575 |
Vitamin C | 46.0–179.2 |
Vitamin A | |
Carotenoids (mg) | 27.0–48.0 |
β-carotene (ppm) | 33.9–59.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pietro Fernandes, C.; Santana, L.F.; dos Santos, J.R.; Fernandes, D.S.; Hiane, P.A.; Pott, A.; Freitas, K.d.C.; Bogo, D.; do Nascimento, V.A.; Filiú, W.F.d.O.; et al. Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations. Molecules 2023, 28, 7811. https://doi.org/10.3390/molecules28237811
Di Pietro Fernandes C, Santana LF, dos Santos JR, Fernandes DS, Hiane PA, Pott A, Freitas KdC, Bogo D, do Nascimento VA, Filiú WFdO, et al. Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations. Molecules. 2023; 28(23):7811. https://doi.org/10.3390/molecules28237811
Chicago/Turabian StyleDi Pietro Fernandes, Carolina, Lidiani Figueiredo Santana, Jair Rosa dos Santos, Dayane Stéphanie Fernandes, Priscila Aiko Hiane, Arnildo Pott, Karine de Cássia Freitas, Danielle Bogo, Valter Aragão do Nascimento, Wander Fernando de Oliveira Filiú, and et al. 2023. "Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations" Molecules 28, no. 23: 7811. https://doi.org/10.3390/molecules28237811
APA StyleDi Pietro Fernandes, C., Santana, L. F., dos Santos, J. R., Fernandes, D. S., Hiane, P. A., Pott, A., Freitas, K. d. C., Bogo, D., do Nascimento, V. A., Filiú, W. F. d. O., Asato, M. A., & Guimarães, R. d. C. A. (2023). Nutraceutical Potential of Grape (Vitis vinifera L.) Seed Oil in Oxidative Stress, Inflammation, Obesity and Metabolic Alterations. Molecules, 28(23), 7811. https://doi.org/10.3390/molecules28237811