Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts
Abstract
:1. Introduction
2. Results
2.1. In Vitro Antioxidant Assays
2.2. In Vitro Anti-Aging Activities
2.3. Antibacterial Activities
2.3.1. Minimum Inhibitory Concentration
2.3.2. Effect of C. arizonica Leaf Extracts on Biofilm Production
2.3.3. Effect of C. arizonica Leaf Extracts on the Swimming and Swarming Motilities
2.4. Phytochemical Profiling
3. Discussion
4. Material and Methods
4.1. Plant Material and Extraction
4.2. In Vitro Assays
4.3. Enzymatic Activities
4.3.1. Collagenase Inhibition
4.3.2. Tyrosinase Inhibition
4.3.3. Elastase Inhibition
4.3.4. Hyaluronidase Inhibition
4.4. Antibacterial Activities
4.4.1. Determination of the Minimum Inhibitory Concentration (MIC)
4.4.2. Biofilm Inhibition Using Crystal Violet Assay
4.4.3. Swimming and Swarming Motility Assessments on Plates
4.5. HPLC-PDA-MS/MS Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef] [PubMed]
- Younis, M.M.; Ayoub, I.M.; Mostafa, N.M.; El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Eldahshan, O.A. Gc/Ms Profiling, Anti-Collagenase, Anti-Elastase, Anti-Tyrosinase and Anti-Hyaluronidase Activities of a Stenocarpus Sinuatus Leaves Extract. Plants 2022, 2022, 918. [Google Scholar] [CrossRef]
- Mayuree, K.; Lourith, N. Plants and Natural Products for the Treatment of Skin Hyperpigmentation—A Review. Planta Med. 2018, 84, 988–1006. [Google Scholar]
- Oana, C.; Tolker-Nielsen, T. Tolerance and Resistance of Pseudomonas Aeruginosa Biofilms to Antimicrobial Agents—How P. Aeruginosa Can Escape Antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar]
- Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas Aeruginosa Biofilms in Disease. Microb. Ecol. 2014, 68, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.C.; Chan, W.W.; Metelitsa, A.I.; Fiorillo, L.; Lin, A.N. Pseudomonas Skin Infection. Am. J. Clin. Dermatol. 2011, 12, 157–169. [Google Scholar] [CrossRef]
- Al-Dahmoshi, H.; Al-Obaidi, R.D.; Al-Khafaji, N. Pseudomonas Aeruginosa: Diseases, Biofilm and Antibiotic Resistance. In Pseudomonas Aeruginosa-Biofilm Formation, Infections and Treatments; IntechOpen: London, UK, 2020. [Google Scholar]
- Dolatabadi, S.; Moghadam, H.N.; Mahdavi-Ourtakand, M. Evaluating the Anti-Biofilm and Antibacterial Effects of Juglans Regia L. Extracts against Clinical Isolates of Pseudomonas aeruginosa. Microb. Pathog. 2018, 118, 285–289. [Google Scholar] [CrossRef]
- Mashhady, M.A.; Abkhoo, J.; Jahani, S.; Abyar, S.; Khosravani, F. Inhibitory Effects of Plant Extracts on Pseudomonas Aeruginosa Biofilm Formation. Int. J. Infect. 2016, 3, e38199. [Google Scholar] [CrossRef]
- Zameer, F.; Rukmangada, M.S.; Chauhan, J.B.; Khanum, S.A.; Kumar, P.; Devi, A.T.; Prasad, N.; Dhananjaya, B.L. Evaluation of Adhesive and Anti-Adhesive Properties of Pseudomonas Aeruginosa Biofilms and Their Inhibition by Herbal Plants. Iran. J. Microbiol. 2016, 8, 108. [Google Scholar]
- Schulz, C.; Knopf, P.; Stützel, T.H. Identification Key to the Cypress Family (Cupressaceae). Feddes Repert. Z. Für Bot. Taxon. Und Geobot. 2005, 116, 96–146. [Google Scholar] [CrossRef]
- Homayoun, F. The Genus Cupressus L. Mythology to Biotechnology with Emphasis on Mediterranean Cypress (Cupressus Sempervirens L.). Hortic. Rev. 2020, 47, 213–287. [Google Scholar]
- Bartel, J.A. Cupressaceae Cypress Family. J. Ariz.-Nev. Acad. Sci. 1994, 27, 195–200. [Google Scholar]
- Frezza, C.; De Vita, D.; Sciubba, F.; Toniolo, C.; Tomassini, L.; Nicoletti, M.; Franceschin, M.; Guiso, M.; Bianco, A.; Serafini, M.; et al. There Is Not Only Cupressus Sempervirens L.: A Review on the Phytochemistry and Bioactivities of the Other Cupressus L. Species. Appl. Sci. 2022, 12, 7353. [Google Scholar] [CrossRef]
- Khan, M.F.; Ahamad, T.; Rawat, P. Biomedicinal and Chemical Profile of Cupressus Sempervirens: A Mini Review. Insights Biomed. 2017, 2, 16. [Google Scholar]
- Griffith, M.P.; Bartel, S.C. A Cypress (Cupressus Arizonica, Cupressaceae) in Jeff Davis County, Texas? SIDA Contrib. Bot. 2002, 20, 585–592. [Google Scholar]
- Shafaie, F.; Aramideh, S.; Valizadegan, O.; Safaralizadeh, M.H.; Pesyan, N.N. Gc/Ms Analysis of the Essential Oils of Cupressus Arizonica Greene, Juniperus Communis L. And Mentha Longifolia L. Bull. Chem. Soc. Ethiop. 2019, 33, 389–400. [Google Scholar] [CrossRef]
- Mannai, Y.; Dhahri, S.; Jama, M.L.B.; Hamrouni, L. Insecticidal Activity of Essential Oils of Cupressus Arizonica Greene and C. Sempervirens L. On Tortrix Viridana (Lepidotera, Tortricidae). World J. Biol. Biotechnol. 2021, 6. [Google Scholar] [CrossRef]
- Khouaja, W.; Oliveira, R.; Raïes, A.; Dias, A.C.P. Antifungal Activity of the Essential Oils from Cupressus Arizonica Var. Arizonica and Var. Glabra. Ind. Crops Prod. 2015, 77, 614–623. [Google Scholar] [CrossRef]
- Sedaghat, M.M.; Dehkordi, A.S.; Khanavi, M.; Abai, M.R.; Mohtarami, F.; Vatandoost, H. Chemical Composition and Larvicidal Activity of Essential Oil of Cupressus Arizonica El Greene against Malaria Vector Anopheles Stephensi Liston (Diptera: Culicidae). Pharmacogn. Res. 2011, 3, 135–139. [Google Scholar]
- Abdulkhani, A.; Sedaghat, A.; Alizadeh, P.; Tabil, L.G. Extraction of Bioactive Moieties of Cupressus Arizonica. Can. Biosyst. Eng. 2020, 62, 8.1–8.10. [Google Scholar]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Świerczek-Zięba, G. Structure and Antioxidant Activity of Polyphenols Derived from Propolis. Molecules 2013, 19, 78–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Chandrasekara, A. Hydroxycinnamates and Their in Vitro and in Vivo Antioxidant Activities. Phytochem. Rev. 2010, 9, 147–170. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.; Cheng, H.; El-Shazly, A.M.; Wink, M. A Proanthocyanidin-Rich Extract from Cassia Abbreviata Exhibits Antioxidant and Hepatoprotective Activities in Vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Silva dos Santos, J.; Goncalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front. Pharmacol. 2021, 11, 565700. [Google Scholar] [CrossRef] [PubMed]
- Elgamal, A.M.; El Raey, M.A.; Gaara, A.; Abdelfattah, M.A.; Sobeh, M. Phytochemical Profiling and Anti-Aging Activities of Euphorbia Retusa Extract: In Silico and in Vitro Studies. Arab. J. Chem. 2021, 14, 103159. [Google Scholar] [CrossRef]
- Abdelfattah, M.A.; Dmirieh, M.; Bakrim, W.B.; Mouhtady, O.; Ghareeb, M.A.; Wink, M.; Sobeh, M. Antioxidant and Anti-Aging Effects of Warburgia Salutaris Bark Aqueous Extract: Evidences from in Silico, in Vitro and in Vivo Studies. J. Ethnopharmacol. 2022, 292, 115187. [Google Scholar] [CrossRef]
- Szewczyk, K.; Pietrzak, W.; Klimek, K.; Miazga-Karska, M.; Firlej, A.; Flisiński, M.; Grzywa-Celińska, A. Flavonoid and Phenolic Acids Content and in Vitro Study of the Potential Anti-Aging Properties of Eutrema Japonicum (Miq.) Koidz Cultivated in Wasabi Farm Poland. Int. J. Mol. Sci. 2021, 22, 6219. [Google Scholar] [CrossRef]
- Mostafa, I.; Abbas, H.A.; Ashour, M.L.; Yasri, A.; El-Shazly, A.M.; Wink, M.; Sobeh, M. Polyphenols from Salix Tetrasperma Impair Virulence and Inhibit Quorum Sensing of Pseudomonas aeruginosa. Molecules 2020, 25, 1341. [Google Scholar] [CrossRef]
- Mahdi, I.; Fahsi, N.; Hafidi, M.; Benjelloun, S.; Allaoui, A.; Biskri, L. Rhizospheric Phosphate Solubilizing Bacillus Atrophaeus Gqjk17 S8 Increases Quinoa Seedling, Withstands Heavy Metals, and Mitigates Salt Stress. Sustainability 2021, 13, 3307. [Google Scholar] [CrossRef]
- Emam, M.; Abdel-Haleem, D.R.; Salem, M.M.; Abdel-Hafez, L.J.M.; Latif, R.R.A.; Farag, S.M.; Sobeh, M.; El Raey, M.A. Phytochemical Profiling of Lavandula Coronopifolia Poir. Aerial Parts Extract and Its Larvicidal, Antibacterial, and Antibiofilm Activity against Pseudomonas Aeruginosa. Molecules 2021, 26, 1710. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Du, B.; Xu, B. Oxygen Radical Absorbance Capacity (Orac) and Ferric Reducing Antioxidant Power (Frap) of Β-Glucans from Different Sources with Various Molecular Weight. Bioact. Carbohydr. Diet. Fibre 2014, 3, 11–16. [Google Scholar] [CrossRef]
- Ghareeb, M.A.; Mohamed, T.; Saad, A.M.; Refahy, L.A.G.; Sobeh, M.; Wink, M. Hplc-Dad-Esi-Ms/Ms Analysis of Fruits from Firmiana Simplex (L.) and Evaluation of Their Antioxidant and Antigenotoxic Properties. J. Pharm. Pharmacol. 2018, 70, 133–142. [Google Scholar] [CrossRef]
- Abbas, H.A.; Elsherbini, A.M.; Shaldam, M.A. Repurposing Metformin as a Quorum Sensing Inhibitor in Pseudomonas Aeruginosa. Afr. Health Sci. 2017, 17, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Bakrim, W.B.; Nurcahyanti, A.D.R.; Dmirieh, M.; Mahdi, I.; Elgamal, A.M.; El Raey, M.A.; Wink, M.; Sobeh, M. Phytochemical Profiling of the Leaf Extract of Ximenia Americana Var. Caffra and Its Antioxidant, Antibacterial, and Antiaging Activities in Vitro and in Caenorhabditis Elegans: A Cosmeceutical and Dermatological Approach. Oxidative Med. Cell. Longev. 2022, 2022, 3486257. [Google Scholar] [CrossRef]
- Yeung, A.T.; Torfs, E.C.; Jamshidi, F.; Bains, M.; Wiegand, I.; Hancock, R.E.; Overhage, J. Swarming of Pseudomonas Aeruginosa Is Controlled by a Broad Spectrum of Transcriptional Regulators, Including Metr. J. Bacteriol. 2009, 191, 5592–5602. [Google Scholar] [CrossRef]
Plant Organ | Extract | DPPH | FRAP | TPC | TFC |
---|---|---|---|---|---|
IC50, µg/mL | mM of FeSO4/g Extract | mg GA/g Extract | mg QE/g Extract | ||
Leaf | Aqueous | 55.45 ± 0.51 | 15.1 ± 0.04 | 139.99 ± 0.04 | 1.54 ± 0.05 |
Ethanolic | 61.89 ± 0.11 | 11.56 ± 0.01 | 88.86 ± 0.08 | 1.12 ± 0.16 | |
Reference compound | Quercetin | 0.23 ± 0.01 | 24.04 ± 1.23 | - | - |
BHT | 4.21 ± 0.08 | - | - | - |
Plant Organ | Extract | Parameters IC50 (µg/mL) | |||
---|---|---|---|---|---|
Elastase | Tyrosinase | Collagenase | Hyaluronidase | ||
Leaf | Aqueous | 37.36 ± 4.01 | 32.45 ± 5.1 | 41.5 ± 1.1 | 38.15 ± 0.1 |
Ethanolic | 50.01 ± 1.24 | 54.4 ± 6.34 | 45.6 ± 3.23 | 52.6 ± 2.45 | |
Reference compound | Kojic acid | 21.60 ± 0.9 | 9.00 ± 0.9 | - | 14.46 ± 0.6 |
Quercetin | - | - | 24.83 ± 1.8 | - |
No. | Rt | M-H | MS/MS | Proposed compounds | Extracts | |
---|---|---|---|---|---|---|
Aqueous | Ethanol | |||||
1. | 1.64 | 191 | 146 | Quinic acid | ++ | ++ |
2. | 1.68 | 133 | 114 | Malic acid | ++ | ++ |
3. | 1.98 | 191 | 111 | Citric acid | ++ | + |
4. | 2.01 | 289 | 111 | Quinic acid malate | ++ | + |
5. | 2.67 | 237 | 115 | Benzoyl malic acid | ++ | + |
6. | 3.65 | 609 | 305 | (epi)Gallocatechin-(epi)gallocatechin | ++ | + |
7. | 3.66 | 331 | 169 | Galloyl glucose | ++ | + |
8. | 4.20 | 609 | 305 | (epi)Gallocatechin-(epi)gallocatechin | ++ | + |
9. | 4.59 | 865 | 289 | Proanthocyanidin trimer | ++ | + |
10. | 4.86 | 593 | 289 | (epi)Catechin-(epi)gallocatechin | ++ | + |
11. | 4.92 | 315 | 153 | Dihydroxybenzoic acid glucoside | ++ | + |
12. | 5.10 | 329 | 167 | Vanillic acid glucoside | ++ | + |
13. | 5.73 | 305 | 179 | (epi)Gallocatechin | ++ | + |
14. | 5.83 | 897 | 289 | (epi)catechin-O-gallate-(epi)gallocatechin-O-gallate | ++ | + |
15. | 5.85 | 345 | 169 | Gallic acid glucuronide | ++ | + |
16. | 6.25 | 315 | 153 | Dihydroxybenzoic acid glucoside | ++ | + |
17. | 6.67 | 593 | 305 | (epi)Catechin-(epi)gallocatechin | ++ | + |
18. | 7.21 | 593 | 289 | (epi)Catechin-(epi)gallocatechin | ++ | + |
19. | 7.66 | 325 | 163 | Hydroxycinnamic acid glucoside | ++ | + |
20. | 7.18 | 897 | 289 | (epi)Catechin gallate-(epi)gallocatechin-O-gallate | ++ | + |
21. | 8.47 | 447 | 169 | Gallic acid glucosyl malate | ++ | + |
22. | 8.50 | 881 | 289 | (epi)Catechin-O-gallate-(epi)catechin-O-gallate | ++ | + |
23. | 8.86 | 337 | 191 | Coumaroylquinic acid | + | + |
24. | 9.19 | 577 | 289 | (epi)Catechin-(epi)catechin | ++ | + |
25. | 9.37 | 593 | 289 | (epi)Catechin-(epi)gallocatechin | ++ | + |
26. | 10.03 | 337 | 191 | Coumaroylquinic acid | ++ | + |
27. | 10.84 | 881 | 289 | (epi)Catechin-O-gallate-(epi)catechin-O-gallate | ++ | + |
28. | 11.20 | 289 | 245 | (epi)Catechin | ++ | + |
29. | 12.04 | 865 | 289 | Proanthocyanidin trimer | ++ | + |
30. | 12.86 | 577 | 289 | (epi)Catechin-(epi)catechin | ++ | + |
31. | 14.42 | 431 | 153 | Dihydroxybenzoic acid derivative | ++ | ++ |
32. | 15.75 | 337 | 191 | Coumaroylquinic acid | ++ | + |
33. | 16.83 | 341 | 179 | Caffeoyl glucose | ++ | + |
34. | 17.37 | 327 | 165 | Phloretic acid glucoside | ++ | + |
35. | 18.48 | 507 | 153 | Dihydroxybenzoic acid derivative | ++ | + |
36. | 18.87 | 577 | 289 | (epi)Catechin-(epi)catechin | ++ | + |
37. | 19.90 | 625 | 317 | Myricetin rutinoside | ++ | + |
38. | 20.13 | 507 | 269 | Apigenin derivative | + | + |
39. | 21.22 | 523 | 361 | Acetoxyisocupressic acid glucoside | ++ | + |
40. | 22.36 | 345 | 165 | Phloretic acid glucoside | ++ | + |
41. | 21.76 | 521 | 359 | Caffeoyl rosmarinic acid | + | + |
42. | 23.61 | 609 | 301 | Rutin | ++ | + |
43. | 24.04 | 463 | 301 | Quercetin glucoside | ++ | + |
44. | 24.25 | 593 | 285 | Kaempferol rutinoside | ++ | + |
45. | 24.37 | 551 | 315 | Isorhamnetin glyceryl glucoside | + | + |
46. | 24.67 | 463 | 301 | Quercetin glucoside | ++ | + |
47. | 25.54 | 523 | 361 | Acetoxyisocupressic acid glucoside | ++ | + |
48. | 27.07 | 593 | 285 | Kaempferol pentosyl glucoside | ++ | + |
49. | 28.37 | 447 | 285 | Kaempferol glucoside | ++ | + |
50. | 28.49 | 699 | 315 | Isorhamnetin derivative | ++ | + |
51. | 29.21 | 477 | 315 | Isorhamnetin glucoside | ++ | + |
52. | 30.26 | 461 | 315 | Isorhamnetin rhamnoside | ++ | + |
53. | 49.07 | 537 | 375 | Biapigenin | + | ++ |
54. | 49.36 | 553 | 391 | Dihydro-biapigenin methyl ether | + | ++ |
55. | 50.51 | 553 | 391 | Dihydro-biapigenin methyl ether | + | ++ |
56. | 50.69 | 537 | 375 | Biapigenin | + | ++ |
57. | 51.41 | 565 | 223 | Isoginkgetin | + | ++ |
58. | 51.65 | 537 | 375 | Biapigenin | + | ++ |
59. | 51.99 | 553 | 391 | Dihydro-biapigenin methyl ether | + | ++ |
60. | 52.68 | 539 | 295 | Chrysocauloflavone I | + | + |
61. | 54.87 | 551 | 375 | Bilobetin | ++ | |
62. | 55.92 | 537 | 375 | Biapigenin | + | ++ |
63. | 56.10 | 553 | 377 | Dihydroisocryptomerin | + | ++ |
64. | 59.76 | 551 | 283 | Methyl-amentoflavone | ++ | |
65. | 62.35 | 579 | 335 | Trimethylamentoflavone | + | ++ |
66. | 65.46 | 379 | 253 | Octanedioic acid | ++ | |
67. | 67.40 | 311 | 183 | Dioxooctadecanoic acid | + | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawfeek, N.; Fikry, E.; Mahdi, I.; Ochieng, M.A.; Bakrim, W.B.; Taarji, N.; Mahmoud, M.F.; Sobeh, M. Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules 2023, 28, 1036. https://doi.org/10.3390/molecules28031036
Tawfeek N, Fikry E, Mahdi I, Ochieng MA, Bakrim WB, Taarji N, Mahmoud MF, Sobeh M. Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules. 2023; 28(3):1036. https://doi.org/10.3390/molecules28031036
Chicago/Turabian StyleTawfeek, Nora, Eman Fikry, Ismail Mahdi, Melvin Adhiambo Ochieng, Widad Ben Bakrim, Noamane Taarji, Mona F. Mahmoud, and Mansour Sobeh. 2023. "Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts" Molecules 28, no. 3: 1036. https://doi.org/10.3390/molecules28031036
APA StyleTawfeek, N., Fikry, E., Mahdi, I., Ochieng, M. A., Bakrim, W. B., Taarji, N., Mahmoud, M. F., & Sobeh, M. (2023). Cupressus arizonica Greene: Phytochemical Profile and Cosmeceutical and Dermatological Properties of Its Leaf Extracts. Molecules, 28(3), 1036. https://doi.org/10.3390/molecules28031036