A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials
Abstract
:1. Introduction
1.1. Dyes
1.2. Nitro-Compounds
2. Dye Adsorption and Kinetics
2.1. Materials Used for Dye Adsorption
2.2. Pure Polymeric Materials for Dye Adsorption
2.3. Carbon-Based Composite Materials and Biochar for Dye Adsorption
2.4. Clay-Based Composite Materials for Dye Adsorption
2.5. Layered Double Hydroxide-Based Materials for Dye Adsorption
2.6. MOF-Based Composite Materials for Dye Adsorption
2.7. Biosorbents
Biosorbent | Dye | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|
Bagasse | Acid blue 80 | 391 mg/g | [138] |
Modified corn stalk | Methylene blue | 328.46 mg/g | [131] |
Coconut shell | Methylene blue | 50.6 | [139] |
Straw waste | Rhodamine B | 1.9 | [139] |
Wood powder | Methylene blue | 850.9 | [126] |
Typha Latifolia | Methyl orange | 50.34 | [133] |
Rice husk | Direct Red-31 | 74.074 | [140] |
Banana peel powder | Reactive Black 5 | 49.2 | [127] |
Hickory wood | Congo red | 221.8 | [141] |
Lemongrass leaf | Crystal violet | 36.10 | [130] |
Sunflower stem-pith | Methylene blue | 346.32 | [142] |
Fish scale | Ponceau S | 35 | [129] |
Loofah | Methylene blue | 409.67 | [143] |
Moringa oleifera Lam. seeds | Acid Blue 9 | 329.5 | [144] |
Soybean husk | Basic Red 9 | 46.1 | [145] |
2.8. Factors Affecting Dye Adsorption
3. Photocatalytic Degradation and Its Mechanisms
- Charge-injection dye sensitization;
- Oxidation/reduction dye degradation (indirect degradation route);
- Photolysis of dye (direct degradation route).
3.1. Materials Used for the Photocatalytic Degradation of Water-Soluble Organic Dyes
3.2. Carbon Materials for Photocatalytic Degradation of Dyes
3.3. MOF Materials for Photocatalytic Degradation of Dyes
3.4. LDH Materials for Photocatalytic Degradation of Dyes
3.5. Factors Affecting Photocatalytic Degradation
4. Chemical Degradation Approaches for Water-Soluble Dyes and Nitro-Compounds
4.1. Chemical Degradation of Azo, Triarylmethane, and Anthraquinone Dyes
4.2. Chemical Degradation of Nitro-Compounds and Mechanisms
4.3. Materials Used for the Chemical Degradation of Dyes and Nitro-Compounds
4.4. Factors Affecting Chemical Degradation
4.5. Reusability of the Above Materials
4.6. Economic Cost
5. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elgarahy, A.; Elwakeel, K.; Mohammad, S.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Kim, K.-H. Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv. Colloid Interface Sci. 2022, 302, 102633. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Ullah, S.; Majeed, M.T.; Yasmeen, R. Environmental pollution in Asian economies: Does the industrialisation matter? OPEC Energy Rev. 2020, 44, 227–248. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Taufiq-Yap, Y.H.; Ng, C.H.; Vo DV, N.; Ibrahim, M.L.; Munjur, H.M.; Khan MA, R.; Nur, A.S.M.; Awual, M.R. Step towards the sustainable toxic dyes removal and recycling from aqueous solution-A comprehensive review. Resour. Conserv. Recycl. 2021, 175, 105849. [Google Scholar] [CrossRef]
- Valentin, L.; Nousiainen, A.; Mikkonen, A. Introduction to organic contaminants in soil: Concepts and risks. In Emerging Organic Contaminants in Sludges; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–29. [Google Scholar]
- Haritha, E.; Roopan, S.M.; Madhavi, G.; Elango, G.; Al-Dhabi, N.A.; Arasu, M.V. Green chemical approach towards the synthesis of SnO2 NPs in argument with photocatalytic degradation of diazo dye and its kinetic studies. J. Photochem. Photobiol. B Biol. 2016, 162, 441–447. [Google Scholar] [CrossRef]
- Sharma, J.; Sharma, S.; Soni, V. Classification and impact of synthetic textile dyes on Aquatic Flora: A review. Reg. Stud. Mar. Sci. 2021, 45, 101802. [Google Scholar] [CrossRef]
- Rani, B.; Maheshwari, R.; Yadav, R.; Pareek, D.; Sharma, A. Resolution to provide safe drinking water for sustainability of future perspectives. Res. J. Chem. Environ. Sci. 2013, 1, 50–54. [Google Scholar]
- Deepika, S.; Harishkumar, R.; Dinesh, M.; Abarna, R.; Anbalagan, M.; Roopan, S.M.; Selvaraj, C.I. Photocatalytic degradation of synthetic food dye, sunset yellow FCF (FD&C yellow no. 6) by Ailanthus excelsa Roxb. possessing antioxidant and cytotoxic activity. J. Photochem. Photobiol. B Biol. 2017, 177, 44–55. [Google Scholar]
- Saratale, R.G.; Ghodake, G.S.; Shinde, S.K.; Cho, S.-K.; Saratale, G.D.; Pugazhendhi, A.; Bharagava, R.N. Photocatalytic activity of CuO/Cu (OH)2 nanostructures in the degradation of Reactive Green 19A and textile effluent, phytotoxicity studies and their biogenic properties (antibacterial and anticancer). J. Environ. Manag. 2018, 223, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Sahasrabudhe, M.M.; Saratale, R.G.; Saratale, G.D.; Pathade, G.R. Decolorization and detoxification of sulfonated toxic diazo dye CI Direct Red 81 by Enterococcus faecalis YZ 66. J. Environ. Health Sci. Eng. 2014, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Anand, K.; Kaviyarasu, K.; Muniyasamy, S.; Roopan, S.M.; Gengan, R.; Chuturgoon, A. Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management. J. Clust. Sci. 2017, 28, 2279–2291. [Google Scholar] [CrossRef]
- Hashmi, S.S.; Shah, M.; Muhammad, W.; Ahmad, A.; Ullah, M.A.; Nadeem, M.; Abbasi, B.H. Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. J. Indian Chem. Soc. 2021, 98, 100019. [Google Scholar] [CrossRef]
- Manickam, P.; Vijay, D. Chemical hazards in textiles. In Chemical Management in Textiles and Fashion; Elsevier: Amsterdam, The Netherlands, 2021; pp. 19–52. [Google Scholar]
- Feng, J.; Cerniglia, C.E.; Chen, H. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front. Biosci. 2012, 4, 568. [Google Scholar] [CrossRef] [PubMed]
- Kishor, R.; Purchase, D.; Saratale, G.D.; Saratale, R.G.; Ferreira LF, R.; Bilal, M.; Chandra, R.; Bharagava, R.N. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J. Environ. Chem. Eng. 2021, 9, 105012. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Omer, O.S.; Hussein, M.A.; Hussein, B.H.; Mgaidi, A. Adsorption thermodynamics of cationic dyes (methylene blue and crystal violet) to a natural clay mineral from aqueous solution between 293.15 and 323.15 K. Arab. J. Chem. 2018, 11, 615–623. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Rodríguez-López, M.I.; Fortea, M.I.; Hernández, J.A.G.; Lucas-Abellán, C.; Mercader-Ros, M.T.; Serrano-Martínez, A.; Núñez-Delicado, E.; Cosma, P.; Fini, P.J.; et al. Removing of Direct Red 83, 1 using α-and HP-α-CDs polymerized with epichlorohydrin: Kinetic and equilibrium studies. Dye. Pigment. 2018, 149, 736–746. [Google Scholar] [CrossRef]
- Kumar, P.S.; Varjani, S.J.; Suganya, S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling. Bioresour. Technol. 2018, 250, 716–722. [Google Scholar] [CrossRef]
- Chicinaş, R.P.; Bedelean, H.; Stefan, R.; Măicăneanu, A. Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions. J. Mol. Struct. 2018, 1154, 187–195. [Google Scholar] [CrossRef]
- Kabalka, G.W. Reduction of nitro and nitroso compounds. Compr. Org. Synth. 1991, 8, 363. [Google Scholar]
- Nasrollahzadeh, M.; Nezafat, Z.; Gorab, M.G.; Sajjadi, M. Recent progresses in graphene-based (photo) catalysts for reduction of nitro compounds. Mol. Catal. 2020, 484, 110758. [Google Scholar] [CrossRef]
- Bilal, M.; Bagheri, A.R.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. J. Environ. Manag. 2021, 291, 112685. [Google Scholar] [CrossRef]
- Ramu, A.; Kumari, M.A.; Elshikh, M.S.; Alkhamis, H.H.; Alrefaei, A.F.; Choi, D. A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium. Chemosphere 2021, 271, 129475. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Chan, W. Development of a QuEChERS-based method for determination of carcinogenic 2-nitrofluorene and 1-nitropyrene in rice grains and vegetables: A comparative study with benzo [a] pyrene. J. Agric. Food Chem. 2017, 65, 1992–1999. [Google Scholar] [CrossRef] [PubMed]
- Mansour, C.; Guibbolini, M.; Rouane, H.; Omar, S.; Mosbahi, D.; Risso-de Faverney, C. Oxidative stress and damage biomarkers in clam Ruditapes decussatus exposed to a polluted site: The reliable biomonitoring tools in hot and cold seasons. Arch. Environ. Contam. Toxicol. 2020, 78, 478–494. [Google Scholar] [CrossRef]
- Xavier, J.A.; Silva, T.L.; Torres-Santos, E.C.; de Vasconcelos, C.C.; Boane, A.; dos Santos, R.A.; Xavier, A.F.A.; Goulart, M.O. Unveiling the relevance of the redox character of nitroaromatic and nitroheteroaromatic compounds as potential medicines. Curr. Opin. Electrochem. 2021, 29, 100740. [Google Scholar] [CrossRef]
- Kannan, N.; Sundaram, M.M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—A comparative study. Dye. Pigment. 2001, 51, 25–40. [Google Scholar] [CrossRef]
- Zelmanov, G.; Semiat, R. Boron removal from water and its recovery using iron (Fe+3) oxide/hydroxide-based nanoparticles (NanoFe) and NanoFe-impregnated granular activated carbon as adsorbent. Desalination 2014, 333, 107–117. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 2009, 153, 1–8. [Google Scholar] [CrossRef]
- Nyankson, E.; Kumar, R.V. Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes. Mater. Today Adv. 2019, 4, 100025. [Google Scholar] [CrossRef]
- Stejskal, J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020, 74, 1–54. [Google Scholar]
- Lan, D.; Zhu, H.; Zhang, J.; Li, S.; Chen, Q.; Wang, C.; Wu, T.; Xu, M. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. Chemosphere 2021, 293, 133464. [Google Scholar] [CrossRef]
- Senguttuvan, S.; Senthilkumar, P.; Janaki, V.; Kamala-Kannan, S. Significance of conducting polyaniline based composites for the removal of dyes and heavy metals from aqueous solution and wastewaters-A review. Chemosphere 2021, 267, 129201. [Google Scholar] [CrossRef] [PubMed]
- Haleem, A.; Zeeshan, H.; Rafi u Shan, A.; Uzabakiriho, P.C.; Afzal, S.; Gang, Z.; He, W.-D. Highly porous and thermally stable tribopositive hybrid bimetallic cryogel to boost up the performance of triboelectric nanogenerators. Int. J. Energy Res. 2020, 44, 8442–8454. [Google Scholar] [CrossRef]
- Haleem, A.; Li, H.-J.; Li, P.-Y.; Hu, C.-S.; Li, X.-C.; Wang, J.-Y.; Chen, S.-Q.; He, W.-D. Rapid UV-radiation synthesis of polyacrylate cryogel oil-sorbents with adaptable structure and performance. Environ. Res. 2020, 187, 109488. [Google Scholar] [CrossRef]
- Haleem, A.; Chen, S.-Q.; Ullah, M.; Siddiq, M.; He, W.-D. Highly porous cryogels loaded with bimetallic nanoparticles as an efficient antimicrobial agent and catalyst for rapid reduction of water-soluble organic contaminants. J. Environ. Chem. Eng. 2021, 9, 106510. [Google Scholar] [CrossRef]
- Zeeshan, H.; Haleem, A.; Rafi u Shan, A.; Umar, F.; Lin, S.; Uzabakiriho, P.C.; Memon, K.; Fareed, A.; Khan, I.; Karmah, M.; et al. Highly porous polymer cryogel based tribopositive material for high performance triboelectric nanogenerators. Nano Energy 2020, 68, 1–12. [Google Scholar]
- Haleem, A.; Chen, J.; Guo, X.-X.; Hou, S.-C.; Chen, S.-Q.; Siddiq, M.; He, W.-D. Radiation-induced synthesis of hydrophobic cryogels with rapid and high absorption of organic solvents and oils. Microporous Mesoporous Mater. 2022, 330, 111486. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Guo, X.-X.; Chen, J.; Hou, S.-C.; Li, H.-J.; Haleem, A.; Chen, S.-Q.; He, W.-D. A Versatile Platform of Poly(acrylic acid) Cryogel for Highly Efficient Photothermal Water Evaporation. Mater. Adv. 2021, 2, 3088–3098. [Google Scholar] [CrossRef]
- Haleem, A.; Jun, C.; Guo, X.-X.; Wang, J.-Y.; Li, H.-J.; Li, P.-Y.; Chen, S.-Q.; He, W.-D. Hybrid Cryogels Composed of P(NIPAM-co-AMPS) and Metal Nanoparticles for Rapid Reduction of p-Nitrophenol. Polymer 2020, 193, 1–10. [Google Scholar] [CrossRef]
- Ahmad, R.U.S.; Haleem, A.; Haider, Z.; Claver, U.P.; Fareed, A.; Khan, I.; Mbogba, M.K.; Memon, K.; Ali, W.; He, W.; et al. Realizing the Capability of Negatively Charged Graphene Oxide in the Presence of Conducting Polyaniline for Performance Enhancement of Tribopositive Material of Triboelectric Nanogenerator. Adv. Electron. Mater. 2020, 6, 1–14. [Google Scholar]
- Hu, C.-S.; Li, H.-J.; Wang, J.-Y.; Haleem, A.; Li, X.-C.; He, W.-D. Mushroom-Like rGO/PAM Hybrid Cryogels with Efficient Solar-Heating Water Evaporation. ACS Appl. Energy Mater. 2019, 2, 7554–7563. [Google Scholar] [CrossRef]
- Haleem, A.; Wang, J.Y.; Li, H.J.; Hu, C.S.; Li, X.C.; He, W.D. Macroporous Oil-Sorbents with a High Absorption Capacity and High-Temperature Tolerance Prepared Through Cryo-Polymerization. Polymers 2019, 11, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.-X.; Hou, S.-C.; Li, H.-J.; Chen, J.; Haleem, A.; He, W.-D. Simultaneous Cryogenic Radical and Oxidative Coupling Polymerizations to Polyaniline/Polyacrylamide Conductive Cryogels for Gas Sensing. Gels 2022, 8, 556. [Google Scholar] [CrossRef]
- Inal, M.; Erduran, N.; Gökgöz, M. The dye adsorption and antibacterial properties of composite polyacrylamide cryogels modified with ZnO. J. Ind. Eng. Chem. 2021, 98, 200–210. [Google Scholar] [CrossRef]
- Yin, T.; Zhang, X.; Shao, S.; Xiang, T.; Zhou, S. Covalently crosslinked sodium alginate/poly (sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr. Polym. 2022, 301, 120356. [Google Scholar] [CrossRef]
- Shao, Z.-J.; Huang, X.-L.; Yang, F.; Zhao, W.-F.; Zhou, X.-Z.; Zhao, C.-S. Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr. Polym. 2018, 187, 85–93. [Google Scholar] [CrossRef]
- Ihlenburg, R.B.; Lehnen, A.-C.; Koetz, J.; Taubert, A. Sulfobetaine Cryogels for preferential adsorption of methyl orange from mixed dye solutions. Polymers 2021, 13, 208. [Google Scholar] [CrossRef]
- Yin, M.; Li, X.; Liu, Y.; Ren, X. Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohydr. Polym. 2021, 266, 118129. [Google Scholar] [CrossRef]
- García-González, A.; Zavala-Arce, R.E.; Avila-Pérez, P.; Rangel-Vazquez, N.A.; Salazar-Rábago, J.J.; García-Rivas, J.L.; García-Gaitán, B. Experimental and theoretical study of dyes adsorption process on chitosan-based cryogel. Int. J. Biol. Macromol. 2021, 169, 75–84. [Google Scholar] [CrossRef]
- Dragan, E.S.; Loghin, D.F.A. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chem. Eng. J. 2013, 234, 211–222. [Google Scholar] [CrossRef]
- Shi, Y.; Chang, Q.; Zhang, T.; Song, G.; Sun, Y.; Ding, G. A Review on Selective Dye Adsorption by Different Mechanisms. J. Environ. Chem. Eng. 2022, 10, 108639. [Google Scholar] [CrossRef]
- Molla, A.; Li, Y.; Mandal, B.; Kang, S.G.; Hur, S.H.; Chung, J.S. Selective adsorption of organic dyes on graphene oxide: Theoretical and experimental analysis. Appl. Surf. Sci. 2019, 464, 170–177. [Google Scholar] [CrossRef]
- Wang, G.; Li, G.; Huan, Y.; Hao, C.; Chen, W. Acrylic acid functionalized graphene oxide: High-efficient removal of cationic dyes from wastewater and exploration on adsorption mechanism. Chemosphere 2020, 261, 127736. [Google Scholar] [CrossRef] [PubMed]
- Molla, A.; Choi, H.; Youk, J.H. Mechanochemical activation of zero-valent iron on carbonized boron-doped graphene dots for enhanced sonochemical dyes removal. Colloid Interface Sci. Commun. 2021, 45, 100548. [Google Scholar] [CrossRef]
- Zambare, R.; Song, X.; Bhuvana, S.; Prince, A.; Selvaraj, J.; Nemade, P. Ultrafast dye removal using ionic liquid–graphene oxide sponge. ACS Sustain. Chem. Eng. 2017, 5, 6026–6035. [Google Scholar] [CrossRef]
- Yadav, S.K.; Dhakate, S.R.; Singh, B.P. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresour. Technol. 2022, 344, 126231. [Google Scholar] [CrossRef]
- Qureshi, S.S.; Shah, V.; Nizamuddin, S.; Mubarak, N.M.; Karri, R.R.; Dehghani, M.H.; Ramesh, S.; Khalid, M.; Rahman, M.E. Microwave-assisted synthesis of carbon nanotubes for the removal of toxic cationic dyes from textile wastewater. J. Mol. Liq. 2022, 356, 119045. [Google Scholar] [CrossRef]
- Li, Y.; Du, Q.; Liu, T.; Peng, X.; Wang, J.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. Des. 2013, 91, 361–368. [Google Scholar] [CrossRef]
- Wan, W.; Zhang, R.; Li, W.; Liu, H.; Lin, Y.; Li, L.; Zhou, Y. Graphene–carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environ. Sci. Nano 2016, 3, 107–113. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Mäkilä, E.; Willför, S.; Xu, C. Ultralight and porous cellulose nanofibers/polyethyleneimine composite aerogels with exceptional performance for selective anionic dye adsorption. Ind. Crops Prod. 2022, 177, 114513. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, C.; Dichiara, A.B.; Jiang, W.; Gu, J. Cellulose nanofibril/carbon nanomaterial hybrid aerogels for adsorption removal of cationic and anionic organic dyes. Nanomaterials 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U., Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Mudasir Nazar, L.X.; Ullah, M.W.; Moradian, J.M.; Wang, Y.; Sethupathy, S.; Iqbal, B.; Nawaz, M.Z.; Zhu, D. Biological delignification of rice straw using laccase from Bacillus ligniniphilus L1 for bioethanol production: A clean approach for agro-biomass utilization. J. Clean. Prod. 2022, 360, 1–11. [Google Scholar]
- Mudasir Nazar, S.W.; Zhao, J.; Dong, Z.; Li, J.; Kaka, N.A.; Shao, T. The feasibility and effects of exogenous epiphytic microbiota on the fermentation quality and microbial community dynamics of whole crop corn. Bioresour. Technol. 2020, 306, 1–10. [Google Scholar]
- Tan, X.-F.; Liu, Y.-G.; Gu, Y.-L.; Xu, Y.; Zeng, G.-M.; Hu, X.-J.; Liu, S.-B.; Wang, X.; Liu, S.-M.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef]
- Hosny, M.; Fawzy, M.; Eltaweil, A.S. Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. J. Environ. Manag. 2022, 316, 115238. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.-M. Magnetic biochar composite: Facile synthesis, characterization, and application for heavy metal removal. Colloids Surf. A Physicochem. Eng. Asp. 2014, 454, 96–103. [Google Scholar] [CrossRef]
- Elumalai, S.; Agarwal, B.; Runge, T.M.; Sangwan, R.S. Integrated two-stage chemically processing of rice straw cellulose to butyl levulinate. Carbohydr. Polym. 2016, 150, 286–298. [Google Scholar] [CrossRef]
- Ashraf, A.; Liu, G.; Arif, M.; Mian, M.M.; Rashid, A.; Yousaf, B.; Khawar, M.I.; Riaz, L.; Safeer, R. Insights into the synthesis and application of biochar assisted graphene-based materials in antibiotic remediation. J. Clean. Prod. 2022, 361, 132211. [Google Scholar] [CrossRef]
- Sewu, D.D.; Boakye, P.; Woo, S.H. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste. Bioresour. Technol. 2017, 224, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Lonappan, L.; Rouissi, T.; Das, R.K.; Brar, S.K.; Ramirez, A.A.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste Manag. 2016, 49, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Sarkhel, R.; Das, P. Synthesis of pyrolyzed biochar and its application for dye removal: Batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surf. Interfaces 2020, 20, 100616. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Imran, M.; Hussain, T.; Naeem, M.A.; Al-Kahtani, A.A.; Shah, G.M.; Ahmad, S.; Farooq, A.; Rizwan, M.; Majeed, A. Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. J. Saudi Chem. Soc. 2021, 25, 101176. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, N.; Giri, B.S.; Chowdhary, P.; Chaturvedi, P. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresour. Technol. 2020, 306, 123202. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Feng, P.; Huang, G.; Xu, C.; Lin, B. High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar. Chemosphere 2020, 246, 125734. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.-H.; Chang, J.-S.; Lin, C.-S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef]
- Zhang, P.; O’Connor, D.; Wang, Y.; Jiang, L.; Xia, T.; Wang, L.; Tsang, D.C.W.; Ok, Y.S.; Hou, D. A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater. 2020, 384, 121286. [Google Scholar] [CrossRef]
- Ali, W.; Turab, A.; Nieto, J.J. On the novel existence results of solutions for a class of fractional boundary value problems on the cyclohexane graph. J. Inequalities Appl. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Nikaeen, M.; Khiadani, M. Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chem. Eng. J. 2012, 191, 341–348. [Google Scholar] [CrossRef]
- Vidal, C.B.; Raulino, G.S.C.; Barros, A.L.; Lima, A.C.A.; Ribeiro, J.P.; Pires, M.J.R.; Nascimento, R. F BTEX removal from aqueous solutions by HDTMA-modified Y zeolite. J. Environ. Manag. 2012, 112, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Shahadat, M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar]
- Bouraada, M.; Lafjah, M.; Ouali, M.S.; de Menorval, L.C. Basic dye removal from aqueous solutions by dodecylsulfate-and dodecyl benzene sulfonate-intercalated hydrotalcite. J. Hazard. Mater. 2008, 153, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhong, L.; Wang, J.; Tang, A.; Yang, H. Porous carbon-based MgAlF5·1.5 H2O composites derived from carbon-coated clay presenting super high adsorption capacity for Congo Red. Chem. Eng. J. 2021, 406, 126784. [Google Scholar] [CrossRef]
- Wang, X.; Tuo, Y.; Zhou, Y.; Wang, D.; Wang, S.; Zhang, J. Ta-doping triggered electronic structural engineering and strain effect in NiFe LDH for enhanced water oxidation. Chem. Eng. J. 2021, 403, 126297. [Google Scholar] [CrossRef]
- Bravo-Suárez, J.J.; Páez-Mozo, E.A.; Oyama, S. Ted Review of the synthesis of layered double hydroxides: A thermodynamic approach. Quim. Nova 2004, 27, 601–614. [Google Scholar] [CrossRef]
- Mittal, J. Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. J. Environ. Manag. 2021, 295, 113017. [Google Scholar] [CrossRef]
- Khajeh, M.; Oveisi, A.R.; Barkhordar, A.; Sorinezami, Z. Co-Fe-layered double hydroxide decorated amino-functionalized zirconium terephthalate metal-organic framework for removal of organic dyes from water samples. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118270. [Google Scholar] [CrossRef]
- Kostić, M.; Radović, M.; Velinov, N.; Najdanović, S.; Bojić, D.; Hurt, A.; Bojić, A. Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater. Ecotoxicol. Environ. Saf. 2018, 159, 332–341. [Google Scholar] [CrossRef]
- Prakash, R.; Mandal, S.; Bheeter, S.R. Bio-polymer modified layered double hydroxide extrudates: A novel approach towards adsorptive purification of water. J. Water Process Eng. 2020, 35, 101208. [Google Scholar]
- Shamsayei, M.; Yamini, Y.; Asiabi, H. Fabrication of zwitterionic histidine/layered double hydroxide hybrid nanosheets for highly efficient and fast removal of anionic dyes. J. Colloid Interface Sci. 2018, 529, 255–264. [Google Scholar] [CrossRef]
- Gidado, S.M.; Akanyeti, İ. Comparison of Remazol Brilliant Blue Reactive Adsorption on Pristine and Calcined ZnAl, MgAl, ZnMgAl Layered Double Hydroxides. Water Air Soil Pollut. 2020, 231, 1–18. [Google Scholar] [CrossRef]
- Abdellaoui, K.; Pavlovic, I.; Bouhent, M.; Benhamou, A.; Barriga, C. A comparative study of the amaranth azo dye adsorption/desorption from aqueous solutions by layered double hydroxides. Appl. Clay Sci. 2017, 143, 142–150. [Google Scholar] [CrossRef]
- Sharifi-Bonab, M.; Aber, S.; Salari, D.; Khodam, F. Synthesis of CoZnAl-layered double hydroxide/graphene oxide nanocomposite for the removal of methylene blue: Kinetic, thermodynamic, and isotherm studies. Environ. Prog. Sustain. Energy 2020, 39, e13316. [Google Scholar] [CrossRef]
- Nazir, M.A.; Khan, N.A.; Cheng, C.; Shah SS, A.; Najam, T.; Arshad, M.; Sharif, A.; Akhtar, S.; ur Rehman, A. Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl. Clay Sci. 2020, 190, 105564. [Google Scholar] [CrossRef]
- Bessaha, H.; Bouraada, M.; Deménorval, L.C. Removal of indigo carmine and green bezanyl-F2B from water using calcined and uncalcined Zn/Al+ Fe layered double hydroxide. J. Water Reuse Desalination 2017, 7, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Blaisi, N.I.; Zubair, M.; Ali, S.; Kazeem, T.S.; Manzar, M.S.; Al-Kutti, W.; Al, H.; Mamdouh, A. Date palm ash-MgAl-layered double hydroxide composite: Sustainable adsorbent for effective removal of methyl orange and eriochrome black-T from aqueous phase. Environ. Sci. Pollut. Res. 2018, 25, 34319–34331. [Google Scholar] [CrossRef]
- Meili, L.; Lins, P.V.; Zanta, C.L.P.S.; Soletti, J.I.; Ribeiro, L.M.O.; Dornelas, C.B.; Silva, T.L.; Vieira, M.G.A. MgAl-LDH/Biochar composites for methylene blue removal by adsorption. Appl. Clay Sci. 2019, 168, 11–20. [Google Scholar] [CrossRef]
- Ahmed, D.N.; Naji, L.A.; Faisal, A.A.; Al-Ansari, N.; Naushad, M. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Mei, Q.; Lv, W.; Du, M.; Zheng, Q. Morphological control of poly (vinylidene fluoride)@ layered double hydroxide composite fibers using metal salt anions and their enhanced performance for dye removal. RSC Adv. 2017, 7, 46576–46588. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, H.; Zhang, X.; Zhu, R.; Yan, L. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr (VI) and Congo red: Adsorptive and mechanistic study. Front. Environ. Sci. Eng. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, D.; Tantai, X.; Jiang, B.; Sun, Y.; Yang, N. Synthesis of three-dimensional hierarchical flower-like Mg–Al layered double hydroxides with excellent adsorption performance for organic anionic dyes. Trans. Tianjin Univ. 2021, 27, 394–408. [Google Scholar] [CrossRef]
- Ai, Z.; Liu, C.; Zhang, Q.; Qu, J.; Li, Z.; He, X. Adding ZnO and SiO2 to scatter the agglomeration of mechanochemically prepared Zn-Al LDH precursor and promote its adsorption toward methyl orange. J. Alloys Compd. 2018, 763, 342–348. [Google Scholar] [CrossRef]
- Zhang, P.; Ouyang, S.; Li, P.; Huang, Y.; Frost, R.L. Enhanced removal of ionic dyes by hierarchical organic three-dimensional layered double hydroxide prepared via soft-template synthesis with mechanism study. Chem. Eng. J. 2019, 360, 1137–1149. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Alinejad, A.; Kamarehie, B.; Javan, S.; Ghaderpoury, A.; Ahmadpour, M.; Ghaderpoori, M. Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions. Int. J. Environ. Sci. Technol. 2017, 14, 1959–1968. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Z.; Zhang, J.; Wu, C. The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. J. Chem. Eng. Data 2015, 60, 3414–3422. [Google Scholar] [CrossRef]
- Shao, Y.; Zhou, L.; Bao, C.; Ma, J.; Liu, M.; Wang, F. Magnetic responsive metal–organic frameworks nanosphere with core–shell structure for highly efficient removal of methylene blue. Chem. Eng. J. 2016, 283, 1127–1136. [Google Scholar] [CrossRef]
- Tehrani, M.S.; Zare-Dorabei, R. Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68 (Al): Central composite design optimization. RSC Adv. 2016, 6, 27416–27425. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.; Tang, Z.; Niu, H.; Cai, Y.; Meng, W.; Wu, F.; Giesy, J.P. Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water. Sci. Rep. 2015, 5, 11849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, E.; Lee Ji, E.; Jang, I.T.; Hwang, Y.K.; Chang, J.-S.; Jegal, J.; Jhung, S.H. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates. J. Hazard. Mater. 2010, 181, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wu, S.; Cheng, J.; Chen, Y. Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution. J. Alloys Compd. 2016, 687, 804–812. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, M.; Guan, Q.; Li, W. Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101 (Cr). Chem. Eng. J. 2012, 183, 60–67. [Google Scholar] [CrossRef]
- Duan, X.; Lv, R.; Shi, Z.; Wang, C.; Li, H.; Ge, J.; Ji, Z.; Yang, Y.; Li, B.; Qian, G. A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. J. Solid State Chem. 2019, 277, 159–162. [Google Scholar] [CrossRef]
- Baneshi, M.M.; Ghaedi, A.M.; Vafaei, A.; Emadzadeh, D.; Lau, W.J.; Marioryad, H.; Jamshidi, A. A high-flux P84 polyimide mixed matrix membranes incorporated with cadmium-based metal organic frameworks for enhanced simultaneous dyes removal: Response surface methodology. Environ. Res. 2020, 183, 109278. [Google Scholar] [CrossRef]
- Zolgharnein, J.; Farahani, S.D.; Bagtash, M.; Amani, S. Application of a new metal-organic framework of [Ni2F2 (4, 4′-bipy) 2 (H2O)2](VO3) 2.8 H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization. Environ. Res. 2020, 182, 109054. [Google Scholar] [CrossRef]
- Hazrati, M.; Safari, M. Cadmium-based metal–organic framework for removal of dye from aqueous solution. Environ. Prog. Sustain. Energy 2020, 39, e13411. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, D.; Wei, F.; Chen, N.; Liang, Z.; Luo, Y. Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. J. Chem. Technol. Biotechnol. 2018, 93, 698–709. [Google Scholar] [CrossRef]
- Liu, H.; Chen, L.; Ding, J. A core-shell magnetic metal organic framework of type Fe3O4@ ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim. Acta 2017, 184, 4091–4098. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, D.; Ma, C.; Wang, G.; Dong, X.; Zhang, X. Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye. Chemosphere 2020, 241, 125021. [Google Scholar] [CrossRef]
- Khan, I.U.; Haleem, A.; Khan, A.U. Non-edible plant seeds of Acacia farnesiana as a new and effective source for biofuel production. RSC Adv. 2022, 12, 21223–21234. [Google Scholar] [CrossRef]
- Khan, I.U.; Haleem, A. A seed of Albizzia julibrissin wild plant as an efficient source for biodiesel production. Biomass Bioenergy 2022, 158, 106381. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of acid-and alkali-modified biochar for removal of methylene blue pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Yarramuthi, V.; Kim, Y.; Lee, K.M.; Kim, D.-S. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. Ecotoxicol. Environ. Saf. 2018, 148, 601–607. [Google Scholar] [CrossRef]
- Cheng, Z.; Feng, K.E.; Su, Y.; Ye, J.; Chen, D.; Zhang, S.; Zhang, X.; Dionysiou, D. D Novel biosorbents synthesized from fungal and bacterial biomass and their applications in the adsorption of volatile organic compounds. Bioresour. Technol. 2020, 300, 122705. [Google Scholar] [CrossRef]
- Jaafar, A.; Darchen, A.; Driouich, A.; Lakbaibi, Z.; Boussaoud, A.; Chatib, B.; Laftani, Y.; El Makhfouk, M.; Hachkar, M. Fish scale of Sardina pilchardus as a biosorbent for the removal of Ponceau S dye from water: Experimental, designing and Monte Carlo investigations. Inorg. Chem. Commun. 2022, 137, 109196. [Google Scholar] [CrossRef]
- Putri, K.N.A.; Keereerak, A.; Chinpa, W. Novel cellulose-based biosorbent from lemongrass leaf combined with cellulose acetate for adsorption of crystal violet. Int. J. Biol. Macromol. 2020, 156, 762–772. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, S.; Li, H.; Guo, X. Effective multi-functional biosorbent derived from corn stalk pith for dyes and oils removal. Chemosphere 2021, 272, 129963. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef]
- El Amri, A.; Kadiri, L.; Hsissou, R.; Lebkiri, A.; Wardighi, Z.; Lebkiri, A. Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches. J. Mol. Struct. 2023, 1272, 134098. [Google Scholar] [CrossRef]
- Bagotia, N.; Sharma, A.K.; Kumar, S. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 2021, 268, 129309. [Google Scholar]
- Al-Anber, Z.A.; Matouq, M.A.D. Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater. 2008, 151, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Ngah, W.W.; Hanafiah, M.A.K.M. Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: Kinetic, equilibrium and thermodynamic studies. Biochem. Eng. J. 2008, 39, 521–530. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmad, R. Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination 2011, 265, 112–118. [Google Scholar] [CrossRef]
- Valix, M.; Cheung, W.; McKay, G. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere 2004, 56, 493–501. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-factionalized biomass material for methylene blue dye removal: A comprehensive adsorption and mechanism study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Safa, Y.; Bhatti, H.N. Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination 2011, 272, 313–322. [Google Scholar] [CrossRef]
- Yang, X.; Wang, L.; Shao, X.; Tong, J.; Zhou, J.; Feng, Y.; Chen, R.; Yang, Q.; Han, Y.; Yang, X. Characteristics and aqueous dye removal ability of novel biosorbents derived from acidic and alkaline one-step ball milling of hickory wood. Chemosphere 2022, 309, 136610. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Zhang, Q.; Sun, S.; Zhou, X.; Xu, Y. A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption. J. Clean. Prod. 2022, 331, 129878. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, T.; Song, X.-F.; Yang, J.-Y.; Wang, Y.-Y.; Li, Y.-S.; Liu, Y. Green synthesis of loofah-based biosorbent via radiation grafting for effective removal of methylene blue. Arab. J. Chem. 2022, 15, 104382. [Google Scholar] [CrossRef]
- Dos Santos Escobar, O.; de Azevedo, C.F.; Swarowsky, A.; Adebayo MAyorinde, N.; Matias, S.; Machado, F.M. Utilization of different parts of Moringa oleifera Lam. seeds as biosorbents to remove Acid Blue 9 synthetic dye. J. Environ. Chem. Eng. 2021, 9, 105553. [Google Scholar] [CrossRef]
- Caponi, N.; Schnorr, C.; Franco, D.S.P.; Netto, M.S.; Vedovatto, F.; Tres, M.V.; Zabot, G.L.; Abaide, E.R.; Silva, L.F.O.; Dotto, G.L. Potential of subcritical water hydrolyzed soybean husk as an alternative biosorbent to uptake basic Red 9 dye from aqueous solutions. J. Environ. Chem. Eng. 2022, 10, 108603. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Du, J.; Tang, J.; Zhou, Q. Cu@Co-MOFs as a novel catalyst of peroxymonosulfate for the efficient removal of methylene blue. RSC Adv. 2019, 9, 9410–9420. [Google Scholar] [CrossRef] [Green Version]
- Katheresan, V.; Kansedo, J.; Lau, S. Yon Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Moawed, E.A.; Kiwaan, H.A.; Elshazly, M.M. Application of polyurethane@ salvadora persica composite for detection and removal of acidic and basic dyes from wastewater. J. Taiwan Inst. Chem. Eng. 2017, 80, 894–900. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Sun, Q. Rapid and selective adsorption of cationic dyes by a unique metal-organic framework with decorated pore surface. Appl. Surf. Sci. 2018, 440, 1219–1226. [Google Scholar] [CrossRef]
- Thi Thanh Chau, V.; Thi MinhThanh, H.; Dinh Du, P.; Thanh Tam Toan, T.; Ngoc Tuyen, T.; Xuan Mau, T.; Quang Khieu, D. Metal-organic framework-101 (MIL-101): Synthesis, kinetics, thermodynamics, and equilibrium isotherms of remazol deep black RGB adsorption. J. Chem. 2018, 2018, 8616921. [Google Scholar] [CrossRef] [Green Version]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef]
- Waghchaure, R.H.; Adole, V.A.; Jagdale, B.S. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorg. Chem. Commun. 2022, 143, 109764. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. 2022, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Bobde, P.; Sharma, A.K.; Panchal, D.; Sharma, A.; Patel, R.K.; Dhodapkar, R.S.; Pal, S. Layered double hydroxides (LDHs)-based photocatalysts for dye degradation: A review. Int. J. Environ. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- He, H.; Zhang, T.C.; Ouyang, L.; Yuan, S. Superwetting and photocatalytic Ag2O/TiO2@ CuC2O4 nanocomposite-coated mesh membranes for oil/water separation and soluble dye removal. Mater. Today Chem. 2022, 23, 100717. [Google Scholar] [CrossRef]
- Andreozzi, M.; Álvarez, M.G.; Contreras, S.; Medina, F.; Clarizia, L.; Vitiello, G.; Llorca, J.; Marotta, R. Treatment of saline produced water through photocatalysis using rGO-TiO2 nanocomposites. Catal. Today 2018, 315, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Mishra, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Saleh, T.A.; Aminabhavi, T.M. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production–A review. J. Environ. Manag. 2019, 250, 109486. [Google Scholar] [CrossRef]
- Azarang, M.; Shuhaimi, A.; Yousefi, R.; Golsheikh, A.M.; Sookhakian, M. Synthesis and characterization of ZnO NPs/reduced graphene oxide nanocomposite prepared in gelatin medium as highly efficient photo-degradation of MB. Ceram. Int. 2014, 40, 10217–10221. [Google Scholar] [CrossRef]
- Gupta, V.K.; Eren, T.; Atar, N.; Yola, M.L.; Parlak, C.; Karimi-Maleh, H. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J. Mol. Liq. 2015, 208, 122–129. [Google Scholar] [CrossRef]
- Khan, F.; Khan, M.S.; Kamal, S.; Arshad, M.; Ahmad, S.I.; Nami, S. AA Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes. J. Mater. Chem. C 2020, 8, 15940–15955. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; El-Maghrabi, N.; Hosny, M.; Fawzy, M. Biogenic synthesis of reduced graphene oxide from Ziziphus spina-christi (Christ’s thorn jujube) extracts for catalytic, antimicrobial, and antioxidant potentialities. Environ. Sci. Pollut. Res. 2022, 29, 89772–89787. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Q.; Yang, W.; Han, K.; Wang, Z.; Zhu, H. Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells. Electrochim. Acta 2013, 94, 245–251. [Google Scholar] [CrossRef]
- Zhuo, Q.; Ma, Y.; Gao, J.; Zhang, P.; Xia, Y.; Tian, Y.; Sun, X.; Zhong, J.; Sun, X. Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature. Inorg. Chem. 2013, 52, 3141–3147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chou, S.-L.; Wang, Y.; Zhou, C.; Liu, H.-K.; Dou, S.-X. A facile route to synthesize transition metal oxide/reduced graphene oxide composites and their lithium storage performance. RSC Adv. 2013, 3, 16597–16603. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shang, J.; Xiao, Z.; Aprea, P.; Hao, S. Novel construction of carbon bonds in CeO2@C with efficiently photocatalytic activity. Dye. Pigment. 2020, 182, 108669. [Google Scholar] [CrossRef]
- Bharagav, U.; Reddy, N.R.; Rao VN, K.; Ravi, P.; Sathish, M.; Rangappa, D.; Prathap, K.; Chakra, C.S.; Shankar, M.V.; Appels, L. Bifunctional g-C3N4/carbon nanotubes/WO3 ternary nanohybrids for photocatalytic energy and environmental applications. Chemosphere 2022, 311, 137030. [Google Scholar] [CrossRef]
- Mirsalari, S.A.; Nezamzadeh-Ejhieh, A.; Massah, A.R. A Z-scheme CdS/Ag3PO4 catalyst: Characterization, experimental design and mechanism consideration for methylene blue. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 288, 122139. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, P.; Ling, M.; Li, S.; Liu, P.; Zhao, H.; Zhang, S. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery. ACS Appl. Mater. Interfaces 2012, 4, 3636–3642. [Google Scholar] [CrossRef]
- Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Li, Y.; He, Z.; Liu, L.; Jiang, Y.; Ong, W.-J.; Duan, Y.; Ho, W.; Dong, F. Inside-and-out modification of graphitic carbon nitride (g-C3N4) photocatalysts via defect engineering for energy and environmental science. Nano Energy 2022, 105, 108032. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, M.; Wu, J.; Kumar, A.; Guo, J.; Zhang, W.; Lu, L.; Singh, A.; Muddassir, M. Construction strategies to modulate the photocatalytic efficiency of Cd(II)-MOFs to photodegrade organic dyes. CrystEngComm 2022, 24, 7986–7995. [Google Scholar]
- Li, H.-P.; Dou, Z.; Chen, S.-Q.; Hu, M.; Li, S.; Sun, H.-M.; Jiang, Y.; Zhai, Q.-G. Design of a multifunctional indium–organic framework: Fluorescent sensing of nitro compounds, physical adsorption, and photocatalytic degradation of organic dyes. Inorg. Chem. 2019, 58, 11220–11230. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.-Z.; Cai, Y.; Wen, M.; Shi, Z.-F.; Kirillov, A.M. A new series of Cd (II) metal–organic architectures driven by soft ether-bridged tricarboxylate spacers: Synthesis, structural and topological versatility, and photocatalytic properties. Dalton Trans. 2018, 47, 14327–14339. [Google Scholar] [CrossRef] [PubMed]
- Llabrés i Xamena, F.X.; Corma, A.; Garcia, H. Applications for metal−organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80–85. [Google Scholar] [CrossRef]
- Mahata, P.; Madras, G.; Natarajan, S. Novel photocatalysts for the decomposition of organic dyes based on metal-organic framework compounds. J. Phys. Chem. B 2006, 110, 13759–13768. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, S.; Fan, C.; Ye, Q. A photosensitive metal–organic framework having a flower-like structure for effective visible light-driven photodegradation of rhodamine B. RSC Adv. 2021, 11, 18565–18575. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Zeng, T.; Shang, Q.; Zhou, H.; Pan, Z.; Cheng, Q. Two pure MOF-photocatalysts readily prepared for the degradation of methylene blue dye under visible light. Dalton Trans. 2018, 47, 4251–4258. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Gkaniatsou, E.; Sicard, C.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L. New Hybrid Fe-based MOFs/Polymer Composites for the Photodegradation of Organic Dyes. ChemistrySelect 2021, 6, 8120–8132. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Meng, Y.; Pan, G.; Ni, Z.; Xia, S. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review. Chem. Eng. J. 2020, 392, 123684. [Google Scholar] [CrossRef]
- Tathod, A.P.; Hayek, N.; Shpasser, D.; Simakov, D.S.A.; Gazit, O.M. Mediating interaction strength between nickel and zirconia using a mixed oxide nanosheets interlayer for methane dry reforming. Appl. Catal. B Environ. 2019, 249, 106–115. [Google Scholar] [CrossRef]
- Tan, L.; Xu, S.-.M.; Wang, Z.; Xu, Y.; Wang, X.; Hao, X.; Bai, S.; Ning, C.; Wang, Y.; Zhang, W. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. Int. Ed. 2019, 131, 11986–11993. [Google Scholar] [CrossRef]
- Meksi, N.; Moussa, A. A review of progress in the ecological application of ionic liquids in textile processes. J. Clean. Prod. 2017, 161, 105–126. [Google Scholar] [CrossRef]
- Bigambo, P.; Liu, H.; Broadbent, P.J.; Carr, C.M.; Rigout, M. Surface chemical and colorimetric analysis of reactively dyed cellulosic fabric. The effect of ISO 105 CO9 laundering and the implications for waste cellulosic recycling. Dye. Pigment. 2018, 148, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Kecić, V.; Kerkez, Đ.; Prica, M.; Lužanin, O.; Bečelić-Tomin, M.; Tomašević Pilipović, D.; Dalmacija, B. Optimization of azo printing dye removal with oak leaves-nZVI/H2O2 system using statistically designed experiment. J. Clean. Prod. 2018, 202, 65–80. [Google Scholar] [CrossRef]
- Cai, P.; Ci, S.; Wu, N.; Hong, Y.; Wen, Z. Layered structured CoAl/CdS-LDHs nanocomposites as visible light photocatalyst. Phys. Status Solidi A Appl. Mater. Sci. 2017, 214, 1600910. [Google Scholar] [CrossRef]
- Kumar, O.P.; Ashiq, M.N.; Shah, S.S.A.; Akhtar, S.; Obaidi, M.A.A.; Mujtaba, I.M.; ur Rehman, A. Nanoscale ZrRGOCuFe layered double hydroxide composites for enhanced photocatalytic degradation of dye contaminant. Mater. Sci. Semicond. Process. 2021, 128, 105748. [Google Scholar] [CrossRef]
- Nagay, B.E.; Dini, C.; Cordeiro, J.M.; Ricomini-Filho, A.P.; De Avila, E.D.; Rangel, E.C.; Da Cruz, N.C.; Barao, V.A. Visible-light-induced photocatalytic and antibacterial activity of TiO2 codoped with nitrogen and bismuth: New perspectives to control implant-biofilm-related diseases. ACS Appl Mater Interfaces 2019, 11, 18186–18202. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 2017, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Azad, K.; Gajanan, P. Photodegradation of methyl orange in aqueous solution by the visible light active Co: La: TiO2 nanocomposite. Chem. Sci. J. 2017, 8, 1000164–1000174. [Google Scholar]
- Coleman, H.; Vimonses, V.; Leslie, G.; Amal, R. Degradation of 1, 4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. J. Hazard. Mater. 2007, 146, 496–501. [Google Scholar] [CrossRef]
- Guo, X.-X.; Hou, S.-C.; Chen, J.; Liao, C.; He, W.-D. Transpiration-prompted Photocatalytic Degradation of Dye Pollutant with AuNPs/PANI Based Cryogels. Chin. J. Polym. Sci. 2022, 40, 1141–1153. [Google Scholar] [CrossRef]
- Ahmed, A.; Usman, M.; Yu, B.; Ding, X.; Peng, Q.; Shen, Y.; Cong, H. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. J. Photochem. Photobiol. B Biol. 2020, 202, 111682. [Google Scholar] [CrossRef]
- Sudarjanto, G.; Keller-Lehmann, B.; Keller, J. Photooxidation of a reactive azo-dye from the textile industry using UV/H2O2 technology: Process optimization and kinetics. J. Water Environ. Technol. 2005, 3, 1–7. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Chen, L.; Xu, P.; Wang, H. Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects. Catalysts 2020, 10, 924. [Google Scholar] [CrossRef]
- Mozia, S.; Morawski, A.W.; Toyoda, M.; Inagaki, M. Application of anatase-phase TiO2 for decomposition of azo dye in a photocatalytic membrane reactor. Desalination 2009, 241, 97–105. [Google Scholar] [CrossRef]
- Cavigli, L.; Bogani, F.; Vinattieri, A.; Faso, V.; Baldi, G. Volume versus surface-mediated recombination in anatase TiO2 nanoparticles. J. Appl. Phys. 2009, 106, 053516. [Google Scholar] [CrossRef]
- Hayat, M.; Shah, A.; Hakeem, M.K.; Irfan, M.; Haleem, A.; Khan, S.B.; Shah, I. A designed miniature sensor for the trace level detection and degradation studies of the toxic dye Rhodamine B. RSC Adv. 2022, 12, 15658–15669. [Google Scholar] [CrossRef]
- Yahya, R.; Shah, A.; Kokab, T.; Ullah, N.; Hakeem, M.K.; Hayat, M.; Haleem, A.; Shah, I. Electrochemical Sensor for Detection and Degradation Studies of Ethyl Violet Dye. ACS Omega 2022, 7, 34154–34165. [Google Scholar] [CrossRef]
- Hayat, M.; Shah, A.; Hakeem, M.K.; Irfan, M.; Haleem, A.; Khan, S.B.; Shah, I. A Novel Electrochemical Sensing Platform for the Sensitive Detection and Degradation Monitoring of Methylene Blue. Catalysts 2022, 12, 306. [Google Scholar] [CrossRef]
- Guntur Adisurya Ismail, H.S. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere 2022, 291, 132906. [Google Scholar]
- Ahmaruzzaman, M.; Mishra, S.R. Photocatalytic performance of g-C3N4 based nanocomposites for effective degradation/removal of dyes from water and wastewater. Mater. Res. Bull. 2021, 143, 111417. [Google Scholar] [CrossRef]
- Ghazalian, E.; Ghasemi, N.; Amani-Ghadim, A.R. Effect of gadollunium doping on visible light photocatalytic performance of Ag3PO4, Evaluation of activity in degradation of an anthraquinone dye and mechanism study. J. Mol. Catal. A Chem. 2017, 426, 1–14. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Hou, N.; Wang, Y.R.; Li, W.Q.; Liu, Q.; Lu, P.; Mu, Y. Carbon nanotubes mediated chemical and biological decolorization of azo dye: Understanding the structure-activity relationship. Environ. Res. 2022, 210, 1–8. [Google Scholar] [CrossRef]
- Hu, H.; Xin, J.H.; Hu, H.; Wang, X.; Miao, D.; Liu, Y. Synthesis and stabilization of metal nanocatalysts for reduction reactions–A review. J. Mater. Chem. A 2015, 3, 11157–11182. [Google Scholar] [CrossRef]
- Qian Li, Z.C.; Wang, H.; Yang, H.; Wen, T.; Wang, S.; Hu, B.; Wang, X. Removal of organic compounds by nanoscale zero-valent iron and its composites. Sci. Total Environ. 2021, 792, 1–17. [Google Scholar]
- Dongyang Shi, G.Z.; Zhang, X.; Zhang, X.; Li, X.; Fan, J. Ultra-small and recyclable zero-valent iron nanoclusters for rapid and highly efficient catalytic reduction of p-nitrophenol in water. Nanoscale 2019, 11, 1000–1010. [Google Scholar]
- Anbu, N.; Vijayan, C.; Dhakshinamoorthy, A. A versatile, mild and selective reduction of nitroarenes to aminoarenes catalyzed by CeO2 nanoparticles with hydrazine hydrate. ChemistrySelect 2019, 4, 1379–1386. [Google Scholar] [CrossRef]
- Sahiner, N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog. Polym. Sci. 2013, 38, 1329–1356. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Kotp, M.G. Magnetic polyaniline-chitosan nanocomposite decorated with palladium nanoparticles for enhanced catalytic reduction of 4-nitrophenol. Mol. Catal. 2017, 439, 72–80. [Google Scholar] [CrossRef]
- Vellaichamy, B.; Prakash, P.; Thomas, J. Synthesis of AuNPs@RGO nanosheets for sustainable catalysis toward nitrophenols reduction. Ultrason. Sonochemistry 2018, 48, 362–369. [Google Scholar] [CrossRef]
- Muhammad Ajmal, F.A.; Bibi, I.; Iqbal, M.; Ambreen, J.; Ahmad, H.B.; Akhtar, N.; Haleem, A.; Siddiq, M. Facile synthesis of porous anionic hydrogel embedded with nickel nanoparticles and evaluation of its catalytic performance for the rapid reduction of 4-nitrophenol. J. Porous Mater. 2018, 26, 281–290. [Google Scholar] [CrossRef]
- Sahiner, N.; Butun, S.; Turhan, T. p(AAGA) hydrogel reactor for in situ Co and Ni nanoparticle preparation and use in hydrogen generation from the hydrolysis of sodium borohydride. Chem. Eng. Sci. 2012, 82, 114–120. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Q.; Wu, X.; Fu, Y.; Deng, K.; Wang, X. Intimately coupled hybrid of graphitic carbon nitride nanoflakelets with reduced graphene oxide for supporting Pd nanoparticles: A stable nanocatalyst with high catalytic activity towards formic acid and methanol electrooxidation. Electrochim. Acta 2016, 200, 131–141. [Google Scholar] [CrossRef]
- Sana, S.S.; Haldhar, R.; Parameswaranpillai, J.; Chavali, M.; Kim, S.-C. Silver nanoparticles-based composite for dye removal: A comprehensive review. Clean. Mater. 2022, 6, 100161. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Akbari, R.; Sakhaei, S.; Nezafat, Z.; Banazadeh, S.; Orooji, Y.; Hegde, G. Polymer supported copper complexes/nanoparticles for treatment of environmental contaminants. J. Mol. Liq. 2021, 330, 115668. [Google Scholar] [CrossRef]
- Jia, H.; Cao, J.; Lu, Y. Design and fabrication of functional hybrid materials for catalytic applications. Curr. Opin. Green Sustain. Chem. 2017, 4, 16–22. [Google Scholar] [CrossRef]
- Khosravi, F.; Gholinejad, M.; Sansano, J.M.; Luque, R. Low-amount palladium supported on Fe-Cu MOF: Synergetic effect between Pd, Cu and Fe in Sonogashira-Hagihara coupling reaction and reduction of organic dyes. Mol. Catal. 2022, 522, 112199. [Google Scholar] [CrossRef]
- Zahid, M.; Almashhadani, H.A.; Jawad, S.F.; Khan, M.F.; Ismail, A. Stabilization of Pt nanoparticles within MOFs for selective hydrogenation of hazardous 4-nitrophenol to valuable 4-aminophenol: Confinement and synergistic effect. J. Solid State Chem. 2022, 316, 123565. [Google Scholar] [CrossRef]
- Haleem, A.; Syaal, B.S.; Ajmal, M.; Ambreen, J.; Rauf, S.; Ali, N.; Muhammad, S.; Shah, A.; Zia, M.A.; Siddiq, M. Silver and palladium nanoparticle embedded poly(n-isopropylacrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hybrid microgel catalyst with pH and temperature dependent catalytic activity. Korean J. Chem. Eng. 2020, 37, 614–622. [Google Scholar] [CrossRef]
- Shah, L.A.; Haleem, A.; Sayed, M.; Siddiq, M. Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J. Environ. Chem. Eng. 2016, 4, 3492–3497. [Google Scholar] [CrossRef]
- Ambreen, J.; Haleem, A.; Shah, A.A.; Mushtaq, F.; Siddiq, M.; Bhatti, M.A.; Bukhari, S.N.U.S.; Chandio, A.D.; Mahdi, W.A.; Alshehri, S. Facile Synthesis and Fabrication of NIPAM-Based Cryogels for Environmental Remediation. Gels 2023, 9, 1–13. [Google Scholar]
- Lozinsky, V.I. Cryostructuring of polymeric systems. 50. Cryogels and cryotropic gel-formation: Terms and definitions. Gels 2018, 4, 77. [Google Scholar] [CrossRef] [Green Version]
- Dinu, M.V.; Ozmen, M.M.; Dragan, E.S.; Okay, O. Freezing as a path to build macroporous structures: Superfast responsive polyacrylamide hydrogels. Polymer 2007, 48, 195–204. [Google Scholar] [CrossRef]
- Wang, J.; Kim, J.; Bu, J.; Kim, D.; Kim, S.Y.; Nam, K.T.; Varma, R.S.; Jang, H.W.; Luque, R.; Shokouhimehr, M. MOF-derived NiFe2O4 nanoparticles on molybdenum disulfide: Magnetically reusable nanocatalyst for the reduction of nitroaromatics in aqueous media. J. Ind. Eng. Chem. 2022, 107, 428–435. [Google Scholar] [CrossRef]
- Din, M.I.; Khalid, R.; Hussain, Z. Novel in-situ synthesis of copper oxide nanoparticle in smart polymer microgel for catalytic reduction of methylene blue. J. Mol. Liq. 2022, 358, 119181. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Ma, Y.; Wang, J.; Zhai, X.; He, Y.; Li, Y.; Ma, R.; Zhang, W. Catalytic behavior of a thermo-responsive PVDF/microgel@ Pd membrane for 2-nitroaniline degradation. J. Environ. Chem. Eng. 2021, 9, 104757. [Google Scholar] [CrossRef]
- Klinger, D.; Landfester, K. Stimuli-responsive microgels for the loading and release of functional compounds: Fundamental concepts and applications. Polymer 2012, 53, 5209–5231. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyaya, M.C. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 2017, 10, S1629–S1638. [Google Scholar] [CrossRef] [Green Version]
- Galán, J.; Rodríguez, A.; Gómez, J.M.; Allen, S.J.; Walker, G.M. Reactive dye adsorption onto a novel mesoporous carbon. Chem. Eng. J. 2013, 219, 62–68. [Google Scholar] [CrossRef]
- Kilic, M.Y. A Comparative Treatability Study for Textile Wastewater: Agricultural Waste Adsorbent versus Activated Carbon. Pol. J. Environ. Stud. 2020, 29, 4131–4137. [Google Scholar] [CrossRef]
- Chowdhury, P.; Elkamel, A.; Ray, A.K. Photocatalytic processes for the removal of dye. In Green Chemistry for Dyes Removal from Waste Water: Research Trends and Applications; Wiley: Hoboken, NJ, USA, 2015; pp. 119–137. [Google Scholar]
- Maroudas, A.; Pandis, P.K.; Chatzopoulou, A.; Davellas, L.-R.; Sourkouni, G.; Argirusis, C. Synergetic decolorization of azo dyes using ultrasounds, photocatalysis and photo-fenton reaction. Ultrason. Sonochemistry 2021, 71, 105367. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Muhammad, M.; Khan, J.; Raziq, A.; Uddin, M.K.; Niaz, A.; Ahmed, S.S.; Rahim, A. Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@ MWCNTs photocatalyst. J. Mol. Liq. 2020, 312, 113399. [Google Scholar] [CrossRef]
- Xu, G.; Yang, X.; Spinosa, L. Development of sludge-based adsorbents: Preparation, characterization, utilization and its feasibility assessment. J. Environ. Manag. 2015, 151, 221–232. [Google Scholar] [CrossRef]
- Gupta, V. Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
Type | Description | Applicability |
---|---|---|
Reactive dyes | Dyes which have a chromophore capable of making a strong covalent connection on the fabric’s nucleophilic sites. | Silk, wool, cotton, lenin, rayon |
Dispersive dyes | Less soluble dyes in water cause dispersion and give color to fabrics via H-bonding and other Van der Waals forces. | Acrylic, polyester, nylon |
Direct dyes | Attach to fabrics via adsorption isotherm. For the adsorption of dyes, electrolytes of an inorganic base are added, which highly promotes the uptake of dyes. | Linin, silk, rayon, cotton, wool |
Acidic dyes | The dyes are mainly applied in acidic conditions (pH 2–6). Coloring occurs via ionic bonding between dyes and fabrics. | Wool, silk, nylon |
Basic dyes | These dyes contain an amine group and have better solubility in alcohol. Coloring occurs via ionic bonding between the dye and negative charges on the network of fabrics. | Rayon, acrylic (solubility is limited) |
LHDs | Dye | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|
Cal. Mg/Al–LDH | Amaranth | 0.704 | [96] |
Co/Zn/Al–LDH | Methylene blue | 169.49 | [97] |
ZIF-67@Co/Al–LDH | Green bezanyl-F2B | 57.24 | [98] |
Cal. Zn/(Al + Fe)–LDH | Methylene blue | 487.9 | [99] |
ZIF-67@Co/Al–LDH | Methyl orange | 180.5 | [98] |
DPA–Mg/Al–LDH | Eriochrome black-T | 242.98 | [100] |
Mg/Al–Cl–Biochar –LDH | Methylene blue | 406.47 | [101] |
WFS Mg/Fe–LDH | Congo red | 9127.08 | [102] |
PVDF@Mg/Al–LDH | Methyl orange | 621.17 | [103] |
NH2–Mg/Al–LDH–EDTA | Congo red | 632.9 | [104] |
Co/Fe–LDH | Malachite Green | 555.62 | [91] |
3D–Mg/Al–LDH | Congo red | 1428.6 | [105] |
ZnO/SiO2–Zn/Al–LDH | Methyl orange | 222.25 | [106] |
O3D–Mg/Al–LDH | Rhodamine B | 377.89 | [107] |
Popular MOFs | Modified MOFs | Modified MOFs |
---|---|---|
MIL-100 (Fe) | Ce(III)-doped UiO-67 | UiO-66-NH2 |
UiO-66 (Zr) | H6P2W18@Cu3(BTC)2 | UiO-66-P |
Ni@MOF-74(Ni) | 32%NT/MIL-100(Fe) | UiO-66/PGP |
Cu-BTC | Fe(II)@MIL-100(Fe) | In-MOF@GO |
ZIF-8 | Fe3O4/MIL-101(Cr) | GO-Cu-MOF |
MIL-125(Ti) | MIL-68(In)-NH2 | Fe3O4/MIL-100(Fe) |
In-MOF | MgFe2O4@MOF | |
MIL-53(Al) | POM@UiO-66 |
MOFs | Dye | Adsorption Capacity mg/g) | Ref. |
---|---|---|---|
Uio-66 | Methylene blue | 91 | [109] |
MIL-53(Al)–NH2 | Methylene blue | 45.97 | [110] |
MIL-68(Al) | Methylene blue | 73.8 | [111] |
Fe3O4@MIL-100(Fe) | Methylene blue | 1666 | [112] |
Fe3O4/Cu3(BTC)2 | Methylene blue | 84–245 | [113] |
PED-MIL-101 | Methyl orange | 194 | [114] |
In-MOF@GO | Rhodamine B | 267 | [115] |
MIL-101(Cr) | Xylenol orange | 322–326 | [116] |
Mn-MOF | Crystal violet | 938 | [117] |
ZIF-67 | Acid orange 7 | 738 | [118] |
MIL-53(Al)–NH2 | Malachite Green | 38.09 | [110] |
[Ni2F2(4,4′ bipy)2(H2O)2](VO3)2⋅8H2O | Congo red | 242.1 | [119] |
TMU-8 | Reactive black 5 | 79.39 | [120] |
MIL-68(Al) | Rhodamine B | 1111 | [112] |
Advantages | Disadvantages | Ref. |
---|---|---|
Adsorption: Dyes are removed through various sorbents such as polymeric materials, carbon-based materials, clay-based materials, LDHs, and MOFs. The above materials have low capital cost, high adsorption performance, and are flexible. The materials mentioned above can remove many dyes from water bodies. The reusability of sponge-like materials is also great compared to powder-like materials. | These materials do not degrade organic pollutants. They also require constant maintenance since saturated adsorbents dramatically reduce the adsorption performance. Carbon-based materials have high costs, although their adsorption capacity is much better. | [230,231,232] |
Photocatalytic degradation: This is an environmentally friendly method of dye degradation because no extra energy is needed for it, fewer or no chemicals are needed for this process, and because solar energy is abundant in nature and we can efficiently utilize it for photocatalytic degradation. It is also a cost-effective route for dye degradation. The materials mentioned above for photocatalytic degradation can degrade many dyes from water bodies. The reusability of sponge-like materials is also great compared to powder-like materials. | Photocatalytic degradation is a time-consuming method in the modern world. Some materials such as LDHs and MOFs have costly synthetic routes such as hydrothermal methods, which require much energy. The reusability of the LDHs and MOFs is also an issue because they require centrifugation. During centrifugation, there is a chance that some amount of the materials will be lost. | [233,234,235] |
Chemical degradation Photocatalytic degradation is a slow degradation process. On the other hand, chemical degradation is a fast degradation process for dye and nitro-compound degradation. These methods allow high concentrations of dyes and nitro-compounds to degrade quickly in the presence of reducing agents. Such work can be performed anywhere because it does not need an expensive instrument. For confirmation, only a UV-spectrophotometer is needed. | It is not an environmentally friendly process due to the use of reducing agents, and is a costly method compared to photocatalytic degradation. | [38,42,222] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haleem, A.; Shafiq, A.; Chen, S.-Q.; Nazar, M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023, 28, 1081. https://doi.org/10.3390/molecules28031081
Haleem A, Shafiq A, Chen S-Q, Nazar M. A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules. 2023; 28(3):1081. https://doi.org/10.3390/molecules28031081
Chicago/Turabian StyleHaleem, Abdul, Anum Shafiq, Sheng-Qi Chen, and Mudasir Nazar. 2023. "A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials" Molecules 28, no. 3: 1081. https://doi.org/10.3390/molecules28031081
APA StyleHaleem, A., Shafiq, A., Chen, S. -Q., & Nazar, M. (2023). A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules, 28(3), 1081. https://doi.org/10.3390/molecules28031081