Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review
Abstract
:1. Introduction
2. Methodology of the Literature Review
3. Description of Gas Sensors
3.1. Characteristics
3.2. Type of Gas Sensors
3.3. Operation
3.4. Mechanisms of Gas Detection
4. Results of Acetone Detection in MOx Sensors
4.1. ZnO-Based Sensors
4.2. SnO2-Based Sensors
4.3. TiO2-Based Sensors
4.4. WO3-Based Sensors
4.5. FexOy-Based Sensors
4.6. In2O3-Based Sensors
4.7. CuO-Based Sensors
4.8. Light-Assisted Detection
4.9. Comparison
5. Devices and Applications in Breath Gas Analysis
6. Conclusions and Futures Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, M. Breath Tests in Medicine. Sci. Am. 1992, 267, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Crofford, O.B.; Mallard, R.E.; Winton, R.E. Acetone in Breath and Blood. Trans. Am. Clin. Climatol. Assoc. 1977, 88, 128–139. [Google Scholar]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef] [Green Version]
- Rydosz, A. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring. Sensors 2018, 18, 2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligor, M.; Ligor, T.; Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Denz, H.; Fiegl, M.; Hilbe, W.; Weiss, W.; et al. Determination of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer Using Solid Phase Microextraction and Gas Chromatography Mass Spectrometry. Clin. Chem. Lab. Med. 2009, 47, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Steeghs, M.; Bais, H.P.; de Gouw, J.; Goldan, P.; Kuster, W.; Northway, M.; Fall, R.; Vivanco, J.M. Proton-Transfer-Reaction Mass Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis. Plant. Physiol. 2004, 135, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.-I. Ion Mobility Spectrometry for the Detection of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastrointestinal Diseases. Sensors 2018, 18, 2613. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of Electronic Nose and GC-MS in Detection and Monitoring Some VOC. Atmos. Environ. 2012, 51, 278–285. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Spannhake, J.; Helwig, A.; Schulz, O.; Müller, G. Micro-Fabrication of Gas Sensors. In Solid State Gas Sensing; Springer: Boston, MA, USA, 2009; pp. 1–46. [Google Scholar]
- Marzorati, D.; Mainardi, L.; Sedda, G.; Gasparri, R.; Spaggiari, L.; Cerveri, P. A Metal Oxide Gas Sensors Array for Lung Cancer Diagnosis Through Exhaled Breath Analysis. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1584–1587. [Google Scholar]
- Nag, S.; Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.F. Spray Layer-by-Layer Assembly of POSS Functionalized CNT Quantum Chemo-Resistive Sensors with Tuneable Selectivity and Ppm Resolution to VOC Biomarkers. Sens. Actuators B Chem. 2016, 222, 362–373. [Google Scholar] [CrossRef]
- Tisch, U.; Haick, H. Chemical Sensors for Breath Gas Analysis: The Latest Developments at the Breath Analysis Summit 2013. J. Breath Res. 2014, 8, 027103. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Zuri, L.; Haick, H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2015, 4, 4611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkes, J.L.; Slatin, S.L.; Pardo, S.; Ginsberg, B.H. A New Consensus Error Grid to Evaluate the Clinical Significance of Inaccuracies in the Measurement of Blood Glucose. Diabetes Care 2000, 23, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statista Diabetes—Statistical Data|Statista. Available online: https://es.statista.com/temas/3526/diabetes/#topicHeader__wrapper (accessed on 10 January 2022).
- Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, M.; Pang, A.L.; Ardani, M.R.; Pung, S.-Y.; Ooi, P.C.; Hamzah, A.A.; Mohd Razip Wee, M.F.; Aniq Shazni Mohammad Haniff, M.; Dee, C.F.; Mahmoudi, E.; et al. Detection of Breath Acetone by Semiconductor Metal Oxide Nanostructures-Based Gas Sensors: A Review. Mater. Sci. Semicond. Process. 2022, 149, 106897. [Google Scholar] [CrossRef]
- Yang, D.; Gopal, R.A.; Lkhagvaa, T.; Choi, D. Metal-Oxide Gas Sensors for Exhaled-Breath Analysis: A Review. Meas. Sci. Technol. 2021, 32, 102004. [Google Scholar] [CrossRef]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.S.M.A.; Wong, Y.C.; Wong, Y.H. Advances in Chemiresistive Sensors for Acetone Gas Detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Vajhadin, F.; Mazloum-Ardakani, M.; Amini, A. Metal Oxide-based Gas Sensors for the Detection of Exhaled Breath Markers. Med. Devices Sens. 2021, 4, e10161. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Olanrewaju Alade, I.; Qamar, M.; Akbar, S. Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review. Chem. Asian J. 2021, 16, 1519–1538. [Google Scholar] [CrossRef]
- Tai, H.; Wang, S.; Duan, Z.; Jiang, Y. Evolution of Breath Analysis Based on Humidity and Gas Sensors: Potential and Challenges. Sens. Actuators B Chem. 2020, 318, 128104. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, J.; Yu, X.; Zhang, W.; Zhang, X. Determination of Acetone in Human Breath by Gas Chromatography–Mass Spectrometry and Solid-Phase Microextraction with on-Fiber Derivatization. J. Chromatogr. B 2004, 810, 269–275. [Google Scholar] [CrossRef]
- Righettoni, M.; Tricoli, A.; Pratsinis, S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010, 82, 3581–3587. [Google Scholar] [CrossRef] [PubMed]
- Park, S. Acetone Gas Detection Using TiO2 Nanoparticles Functionalized In2O3 Nanowires for Diagnosis of Diabetes. J. Alloys Compd. 2017, 696, 655–662. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Diabetes: A Look to the Future. Lancet Diabetes Endocrinol. 2014, 2, e1–e2. [Google Scholar] [CrossRef]
- Rydosz, A. A Negative Correlation Between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath. J. Diabetes Sci. Technol. 2015, 9, 881–884. [Google Scholar] [CrossRef]
- Jiang, L.; Lv, S.; Tang, W.; Zhao, L.; Wang, C.; Wang, J.; Wang, T.; Guo, X.; Liu, F.; Wang, C.; et al. YSZ-Based Acetone Sensor Using a Cd2SnO4 Sensing Electrode for Exhaled Breath Detection in Medical Diagnosis. Sens. Actuators B Chem. 2021, 345, 130321. [Google Scholar] [CrossRef]
- Boots, A.W.; Van Berkel, J.J.B.N.; Dallinga, J.W.; Smolinska, A.; Wouters, E.F.; van Schooten, F.J. The Versatile Use of Exhaled Volatile Organic Compounds in Human Health and Disease. J. Breath Res. 2012, 6, 027108. [Google Scholar] [CrossRef]
- Tricoli, A.; Righettoni, M.; Teleki, A. Semiconductor Gas Sensors: Dry Synthesis and Application. Angew. Chem. Int. Ed. 2010, 49, 7632–7659. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, A.; Chang, H.; Xia, B. Room-Temperature High-Performance Acetone Gas Sensor Based on Hydrothermal Synthesized SnO2-Reduced Graphene Oxide Hybrid Composite. RSC Adv. 2015, 5, 3016–3022. [Google Scholar] [CrossRef]
- Van Duy, L.; Van Duy, N.; Hung, C.M.; Hoa, N.D.; Dich, N.Q. Urea Mediated Synthesis and Acetone-Sensing Properties of Ultrathin Porous ZnO Nanoplates. Mater. Today Commun. 2020, 25, 101445. [Google Scholar] [CrossRef]
- Wang, P.; Dong, T.; Jia, C.; Yang, P. Ultraselective Acetone-Gas Sensor Based ZnO Flowers Functionalized by Au Nanoparticle Loading on Certain Facet. Sens. Actuators B Chem. 2019, 288, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y. Ultrasensitive and Low Detection Limit of Acetone Gas Sensor Based on ZnO/SnO2 Thick Films. RSC Adv. 2020, 10, 35958–35965. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wang, S.; Yuan, Z.; Duan, Z.; Zhao, Q.; Zhang, Y.; Su, Y.; Jiang, Y.; Xie, G.; Tai, H. Novel Chitosan/ZnO Bilayer Film with Enhanced Humidity-Tolerant Property: Endowing Triboelectric Nanogenerator with Acetone Analysis Capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Drmosh, Q.A.; Al Wajih, Y.A.; Alade, I.O.; Mohamedkhair, A.K.; Qamar, M.; Hakeem, A.S.; Yamani, Z.H. Engineering the Depletion Layer of Au-Modified ZnO/Ag Core-Shell Films for High-Performance Acetone Gas Sensing. Sens. Actuators B Chem. 2021, 338, 129851. [Google Scholar] [CrossRef]
- Hu, J.; Yang, J.; Wang, W.; Xue, Y.; Sun, Y.; Li, P.; Lian, K.; Zhang, W.; Chen, L.; Shi, J.; et al. Synthesis and Gas Sensing Properties of NiO/SnO2 Hierarchical Structures toward ppb-Level Acetone Detection. Mater. Res. Bull. 2018, 102, 294–303. [Google Scholar] [CrossRef]
- Cheng, P.; Lv, L.; Wang, Y.; Zhang, B.; Zhang, Y.; Zhang, Y.; Lei, Z.; Xu, L. SnO2/ZnSnO3 Double-Shelled Hollow Microspheres Based High-Performance Acetone Gas Sensor. Sens. Actuators B Chem. 2021, 332, 129212. [Google Scholar] [CrossRef]
- Du, L.; Pan, J.; Dong, Q.; Liu, Y.; Sun, H. Controllable Construction of Multi-Shelled ZnSnO3 Hollow Microspheres as High-Performance Sensing Material for Acetone Detection. Sens. Actuators B Chem. 2022, 372, 132605. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, X.; Lian, D.; Yang, J.; Wang, S.; Li, Y.; Song, H. Enhanced Selective Acetone Gas Sensing Performance by Fabricating ZnSnO3/SnO2 Concave Microcube. Appl. Surf. Sci. 2021, 542, 148555. [Google Scholar] [CrossRef]
- Guo, W.; Huang, L.; Zhao, B.; Gao, X.; Fan, Z.; Liu, X.; He, Y.; Zhang, J. Synthesis of the ZnFe2O4/ZnSnO3 Nanocomposite and Enhanced Gas Sensing Performance to Acetone. Sens. Actuators B Chem. 2021, 346, 130524. [Google Scholar] [CrossRef]
- Ochoa-Muñoz, Y.H.; de Mejía de Gutiérrez, R.M.; Rodríguez-Páez, J.E.; Gràcia, I.; Vallejos, S. Gas Sensors Based on Porous Ceramic Bodies of MSnO3 Perovskites (M = Ba, Ca, Zn): Formation and Sensing Properties towards Ethanol, Acetone, and Toluene Vapours. Molecules 2022, 27, 2889. [Google Scholar] [CrossRef] [PubMed]
- Hanh, N.H.; van Duy, L.; Hung, C.M.; Xuan, C.T.; van Duy, N.; Hoa, N.D. High-Performance Acetone Gas Sensor Based on Pt–Zn2SnO4 Hollow Octahedra for Diabetic Diagnosis. J. Alloys Compd. 2021, 886, 161284. [Google Scholar] [CrossRef]
- Cai, L.; Dong, X.; Wu, G.; Sun, J.; Chen, N.; Wei, H.; Zhu, S.; Tian, Q.; Wang, X.; Jing, Q.; et al. Ultrasensitive Acetone Gas Sensor Can Distinguish the Diabetic State of People and Its High-Performance Analysis by First-Principles Calculation. Sens. Actuators B Chem. 2022, 351, 130863. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, R. Selective Determination of Ammonia, Ethanol and Acetone by Reduced Graphene Oxide Based Gas Sensors at Room Temperature. Sens. Biosensing Res. 2020, 28, 100336. [Google Scholar] [CrossRef]
- Kalidoss, R.; Umapathy, S.; Sivalingam, Y. An Investigation of GO-SnO2-TiO2 Ternary Nanocomposite for the Detection of Acetone in Diabetes Mellitus Patient’s Breath. Appl. Surf. Sci. 2018, 449, 677–684. [Google Scholar] [CrossRef]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced Acetone Sensing Properties of Titanium Dioxide Nanoparticles with a Sub-Ppm Detection Limit. Sens. Actuators B Chem. 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Zhou, Y.; Ding, Q.; Li, J.; Wang, Y.; Wang, B.; Zhu, W.; OuYang, X.; Liu, L.; Wang, Y. Enhanced Sensing Performance of TiO2/Ag2V4O11 Nanoheterostructures to Ethanol Gas. J. Alloys Compd. 2019, 811, 151958. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Myung, J. ha Highly Selective Detection of Acetone by TiO2-SnO2 Heterostructures for Environmental Biomarkers of Diabetes. Sens. Actuators B Chem. 2021, 349, 130733. [Google Scholar] [CrossRef]
- Muñoz-Bolaños, J.D.; Rodríguez-Páez, J.E. WO3 Mono-Nanocrystals: Synthesis, Characterization and Evaluation of Their Electrical Behavior in Oxygen and Acetone Atmospheres. Mater. Sci. Eng. B 2021, 274, 115472. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, B.; Liu, W.; Zhou, X.; Liu, M.; Sun, X.; Lv, J.; Zhang, L.; Xu, W.; Bai, X.; et al. Highly Sensitive and Selective Acetone Sensor Based on Three-Dimensional Ordered WO3/Au Nanocomposite with Enhanced Performance. Sens. Actuators B Chem. 2020, 320, 128405. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, C.; Zheng, L.; Zheng, W.; Liu, X.; Kumar, M.; Zhang, J. Highly Sensitive and Selective Detection of Acetone Based on Platinum Sensitized Porous Tungsten Oxide Nanospheres. Sens. Actuators B Chem. 2020, 307, 127616. [Google Scholar] [CrossRef]
- Lu, J.; Xu, C.; Cheng, L.; Jia, N.; Huang, J.; Li, C. Acetone Sensor Based on WO3 Nanocrystallines with Oxygen Defects for Low Concentration Detection. Mater. Sci. Semicond. Process. 2019, 101, 214–222. [Google Scholar] [CrossRef]
- Zahmouli, N.; Hjiri, M.; Leonardi, S.G.; El Mir, L.; Neri, G.; Iannazzo, D.; Espro, C.; Aida, M.S. High Performance Gd-Doped γ-Fe2O3 Based Acetone Sensor. Mater. Sci. Semicond. Process. 2020, 116, 105154. [Google Scholar] [CrossRef]
- Che, Y.; Feng, G.; Sun, T.; Xiao, J.; Guo, W.; Song, C. Excellent Gas-Sensitive Properties towards Acetone of In2O3 Nanowires Prepared by Electrospinning. Colloid Interface Sci. Commun. 2021, 45, 100508. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, J.; Li, G.; Leng, D.; Gao, Y.; Gao, J.; Lu, H.; Li, X. Metal–Organic Framework-Derived Cu2O–CuO Octahedrons for Sensitive and Selective Detection of Ppb-Level NO2 at Room Temperature. Sens. Actuators B Chem. 2021, 328, 129045. [Google Scholar] [CrossRef]
- Choi, Y.M.; Cho, S.-Y.; Jang, D.; Koh, H.-J.; Choi, J.; Kim, C.-H.; Jung, H.-T. Ultrasensitive Detection of VOCs Using a High-Resolution CuO/Cu2O/Ag Nanopattern Sensor. Adv. Funct. Mater. 2019, 29, 1808319. [Google Scholar] [CrossRef]
- Srinivasan, P.; Prakalya, D.; Jeyaprakash, B.G. UV-Activated ZnO/CdO n-n Isotype Heterostructure as Breath Sensor. J. Alloys Compd. 2020, 819, 152985. [Google Scholar] [CrossRef]
- Chang, X.; Qiao, X.; Li, K.; Wang, P.; Xiong, Y.; Li, X.; Xia, F.; Xue, Q. UV Assisted ppb-Level Acetone Detection Based on Hollow ZnO/MoS2 Nanosheets Core/Shell Heterostructures at Low Temperature. Sens. Actuators B Chem. 2020, 317, 128208. [Google Scholar] [CrossRef]
- Wang, J.-C.; Shi, W.; Sun, X.-Q.; Wu, F.-Y.; Li, Y.; Hou, Y. Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase−Junction. Nanomaterials 2020, 10, 398. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhang, D.; Li, T.; Zhang, J.; Yu, L. Green Light-Driven Acetone Gas Sensor Based on Electrospinned CdS Nanospheres/Co3O4 Nanofibers Hybrid for the Detection of Exhaled Diabetes Biomarker. J. Colloid Interface Sci. 2022, 606, 261–271. [Google Scholar] [CrossRef]
- Korotcenkov, G. Metal Oxides for Solid-State Gas Sensors: What Determines Our Choice? Mater. Sci. Eng. B Solid. State Mater. Adv. Technol. 2007, 139, 1–23. [Google Scholar] [CrossRef]
- Yamazoe, N. New Approaches for Improving Semiconductor Gas Sensors. J. Sens. Actuators B Chem. 1991, 5, 7–19. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bochenkov, V.E.; Sergeev, G.B. Sensitivity, Selectivity, and Stability of Gas-Sensitive Metal-Oxide Nanostructures. Met. Oxide Nanostructures Appl. 2010, 3, 31–52. [Google Scholar]
- Righettoni, M.; Amann, A.; Pratsinis, S.E. Breath Analysis by Nanostructured Metal Oxides as Chemo-Resistive Gas Sensors. Mater. Today 2015, 18, 163–171. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A Survey on Gas Sensing Technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [Green Version]
- Umeh, C.; Gupta, R.C.; Gupta, R.; Kaur, H.; Kazourra, S.; Maguwudze, S.; Torbela, A.; Saigal, S. Acetone Ingestion Resulting in Cardiac Arrest and Death. Cureus 2021, 13, e18466. [Google Scholar] [CrossRef]
- Ram, S. Metal Oxide Nanostructures as Gas Sensing Devices, G. Eranna. Mater. Manuf. Process. 2013, 28, 1277–1278. [Google Scholar] [CrossRef]
- Deng, Y. Semiconducting Metal Oxides for Gas Sensing; Springer: Singapore, 2019; ISBN 978-981-13-5852-4. [Google Scholar]
- Yamazoe, N.; Shimanoe, K. New Perspectives of Gas Sensor Technology. Sens. Actuators B Chem. 2009, 138, 100–107. [Google Scholar] [CrossRef]
- Montenegro, J.E.; Ochoa-Muñoz, Y.; Rodríguez-Páez, J.E. Nanoparticles of Zinc Stannates (ZTO): Synthesis, Characterization and Electrical Behavior in Oxygen and Acetone Vapors. Ceram. Int. 2020, 46, 2016–2032. [Google Scholar] [CrossRef]
- Aguilar-Paz, C.J.; Ochoa-Muñoz, Y.; Ponce, M.A.; Rodríguez-Páez, J.E. Electrical Behavior of SnO2 Polycrystalline Ceramic Pieces Formed by Slip Casting: Effect of Surrounding Atmosphere (Air and CO). J. Electron. Mater. 2016, 45, 576–593. [Google Scholar] [CrossRef]
- Dey, A. Semiconductor Metal Oxide Gas Sensors: A Review. Mater. Sci. Eng. B Solid. State Mater. Adv. Technol. 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Khodkumbhe, A.; Nahid, M.; Saini, V.; Agarwal, A.; Prajesh, R. Metal Oxide Semiconductor-Based Gas Sensor for Acetone Sensing. In Proceedings of the 2018 IEEE Nanotechnology Symposium (ANTS), New York, NY, USA, 14–15 November 2018; pp. 1–4. [Google Scholar]
- Fleischer, M.; Lehmann, M. Solid State Gas Sensors—Industrial Application; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783540365679. [Google Scholar]
- Tille, T. Automotive Requirements for Sensors Using Air Quality Gas Sensors as an Example. Procedia Eng. 2010, 5, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ma, J.; Zhang, J.; Feng, Y.; Vijjapu, M.T.; Yuvaraja, S.; Surya, S.G.; Salama, K.N.; Dong, C.; Wang, Y.; et al. Gas Sensing Materials Roadmap. J. Phys. Condens. Matter. 2021, 33, 303001. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Zeng, W.; Li, Y. Gas Sensing Mechanisms of Metal Oxide Semiconductors: A Focus Review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wang, M.; Ma, S.; Wang, P.; Zhang, G.; Chen, W.; Jiao, H.; Liu, L.; Xu, X. Enhanced Acetone Sensor Based on Au Functionalized In-Doped ZnSnO3 Nanofibers Synthesized by Electrospinning Method. J. Colloid Interface Sci. 2019, 543, 285–299. [Google Scholar] [CrossRef]
- Mohamedkhair, A.K.; Drmosh, Q.A.; Yamani, Z.H. Silver Nanoparticle-Decorated Tin Oxide Thin Films: Synthesis, Characterization, and Hydrogen Gas Sensing. Front. Mater. 2019, 6, 188. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Kuang, Q.; Xie, Z.; Zheng, L. The Effect of Noble Metal (Au, Pd and Pt) Nanoparticles on the Gas Sensing Performance of SnO2-Based Sensors: A Case Study on the {221} High-Index Faceted SnO2 Octahedra. CrystEngComm 2015, 17, 6308–6313. [Google Scholar] [CrossRef]
- Kakati, N.; Jee, S.H.; Kim, S.H.; Lee, H.-K.; Yoon, Y.S. Sensitivity Enhancement of ZnO Nanorod Gas Sensors with Surface Modification by an InSb Thin Film. Jpn. J. Appl. Phys. 2009, 48, 105002. [Google Scholar] [CrossRef]
- Woo, H.-S.; Na, C.; Lee, J.-H. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview. Sensors 2016, 16, 1531. [Google Scholar] [CrossRef] [Green Version]
- Korotcenkov, G.; Cho, B.K. Metal Oxide Composites in Conductometric Gas Sensors: Achievements and Challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Zheng, J.; Hou, H.; Fu, H.; Gao, L.; Liu, H. Size-Controlled Synthesis of Porous ZnSnO3 Nanocubes for Improving Formaldehyde Gas Sensitivity. RSC Adv. 2021, 11, 20268–20277. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Zhu, X.; Xia, M.; Tao, T.; Leng, B.; Xu, W. Improving Ethanol Sensitivity of ZnSnO3 Sensor at Low Temperature with Multi-Measures: Mg Doping, Nano-TiO2 Decoration and UV Radiation. Sens. Actuators B Chem. 2019, 297, 126745. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Leng, B.; Ma, J.; Qi, Z.; Tao, T.; Wang, M. Enhanced Gas Sensing Properties for Ethanol of Ag@ZnSnO3 Nano-Composites. J. Mater. Sci. Mater. Electron. 2020, 31, 18649–18663. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, B.; Fu, M.; Wang, C.; Peng, R. One Pot Synthesis of Hierarchical and Porous ZnSnO3 Nanocubes and Gas Sensing Properties to Formaldehyde. Results Phys. 2019, 15, 102606. [Google Scholar] [CrossRef]
- Kim, H.; Jin, C.; Park, S.; Lee, C. Synthesis, Structure and Gas-Sensing Properties of Pd-Functionalized ZnSnO3 Rods. J. Nanosci. Nanotechnol. 2013, 13, 533–536. [Google Scholar] [CrossRef]
- Dabbabi, S.; Ben Nasr, T.; Madouri, A.; Cavanna, A.; Garcia-Loureiro, A.; Kamoun, N. Fabrication and Characterization of Sensitive Room Temperature NO2 Gas Sensor Based on ZnSnO3 Thin Film. Phys. Status Solidi 2019, 216, 1900205. [Google Scholar] [CrossRef]
- Patil, L.A.; Pathan, I.G.; Suryawanshi, D.N.; Bari, A.R.; Rane, D.S. Spray Pyrolyzed ZnSnO3 Nanostructured Thin Films for Hydrogen Sensing. Procedia Mater. Sci. 2014, 6, 1557–1565. [Google Scholar] [CrossRef] [Green Version]
- Seiyama, T.; Kato, A.; Fujiishi, K.; Nagatani, M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962, 34, 1502–1503. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.; Chen, Y.; Zhang, Y.; Ji, H. Atomic Structure-Dominated Enhancement of Acetone Sensing for a ZnO Nanoplate with Highly Exposed (0001) Facet. CrystEngComm 2017, 19, 6711–6718. [Google Scholar] [CrossRef]
- Mazabuel-Collazos, A.; Rodríguez-Páez, J.E. Chemical Synthesis and Characterization of ZnO–TiO2 Semiconductor Nanocomposites: Tentative Mechanism of Particle Formation. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1739–1752. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Ag Nanoparticles Modified TiO2 Spherical Heterostructures with Enhanced Gas-Sensing Performance. Sens. Actuators B Chem. 2011, 155, 716–721. [Google Scholar] [CrossRef]
- Bhowmik, B.; Manjuladevi, V.; Gupta, R.K.; Bhattacharyya, P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016, 16, 3488–3495. [Google Scholar] [CrossRef]
- Tian, X.; Cui, X.; Lai, T.; Ren, J.; Yang, Z.; Xiao, M.; Wang, B.; Xiao, X.; Wang, Y. Gas Sensors Based on TiO2 Nanostructured Materials for the Detection of Hazardous Gases: A Review. Nano Mater. Sci. 2021, 3, 390–403. [Google Scholar] [CrossRef]
- Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like Hierarchical Heterostructure (α-Fe2O3/TiO2): A Novel Sensing Material for Trimethylamine Gas Sensor. ACS Appl. Mater. Interfaces 2013, 5, 12310–12316. [Google Scholar] [CrossRef]
- Kohli, N.; Hastir, A.; Kumari, M.; Singh, R.C. Hydrothermally Synthesized Heterostructures of In2O3/MWCNT as Acetone Gas Sensor. Sens. Actuators A Phys. 2020, 314, 112240. [Google Scholar] [CrossRef]
- Harvey, S.P.; Mason, T.O.; Gassenbauer, Y.; Schafranek, R.; Klein, A. Surface versus Bulk Electronic/Defect Structures of Transparent Conducting Oxides: I. Indium Oxide and ITO. J. Phys. D Appl. Phys. 2006, 39, 3959–3968. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; He, G.; Deng, Y. Enhancement of Photoresponse and UV-Assisted Gas Sensing with Au Decorated ZnO Nanofibers. Mater. Chem. Phys. 2012, 134, 1172–1178. [Google Scholar] [CrossRef]
- Jing, R.; Ibni Khursheed, A.; Song, J.; Sun, L.; Yu, Z.; Nie, Z.; Cao, E. A Comparative Study on the Acetone Sensing Properties of ZnO Disk Pairs, Flowers, and Walnuts Prepared by Hydrothermal Method. Appl. Surf. Sci. 2022, 591, 153218. [Google Scholar] [CrossRef]
- Rydosz, A.; Maziarz, W.; Pisarkiewicz, T.; de Torres, H.B.; Mueller, J. A Micropreconcentrator Design Using Low Temperature Cofired Ceramics Technology for Acetone Detection Applications. IEEE Sens. J. 2013, 13, 1889–1896. [Google Scholar] [CrossRef]
- Corporation, T. News Release (18 March 2014): Toshiba Develops Breath Analyzer for Medical Applications | News | Toshiba. Available online: https://www.global.toshiba/ww/news/corporate/2014/03/pr1801.html (accessed on 3 April 2022).
- Diabetomat. Available online: http://adediabetics.pl/index.php/diabetomat/ (accessed on 2 April 2022).
Sensitive Material | 1 Response | 2 T (°C) | C(acetone) (ppm) | 3 LOD (ppm) | Reference |
---|---|---|---|---|---|
YSZ-Cd2SnO4 | * 60–70 | 600 | 10/98% RH | 0.05 | [30] |
ZnO | ~12 | 450 | 125/80% RH | ~2 | [34] |
ZnO: Au | 2900 | 365 | 100 | – | [35] |
ZnO/SnO2 | 13.83 | 180 | 5/25% RH | 0.5 | [36] |
Chitosan/ZnO | ~18 | RT | 10 | 1 | [37] |
Ag/ZnO/Au | ** 80 | 150 | 5 | 1 | [38] |
NiO/SnO2 | 20.18 | 300 | 50 | 0.01 | [39] |
SnO2/ZnSnO3 | 16.7 | 290 | 100/90% RH | 2 | [40] |
ZnSnO3 | 105.1 | 260 | 100/65% RH | – | [41] |
ZnSnO3/SnO2 | 19.1 | 260 | 50 | 1 | [42] |
ZnFe2O4/ZnSnO3 | 63.3 | 200 | 30/50% RH | – | [43] |
ZnSnO3 bodies | 37 | 270 | 80/30% RH | 1 | [44] |
Zn2SnO4:Pt | 33 | 300 | 100 | 1.27 | [45] |
Rh2O3-ZnO | 1.9 | 250 | 0.0100 | 0.005 | [46] |
RGO | 31.23 | RT | 1000 | – | [47] |
GO-SnO2-TiO2 | 60 | 200 | 5 | 0.25 | [48] |
TiO2 | 15.24 | 270 | 1000 | 0.5 | [49] |
TiO2/Ag2V4O11 | 10.2 | 300 | 100/30% RH | – | [50] |
TiO2/SnO2 | 303.5 | 300 | 100 | 0.02 | [51] |
WO3 | – | 250 | >1 | – | [52] |
WO3:Au | 7.6 | 410 | 1.5 | 0.1 | [53] |
W18O49:Pt | ~6 | 180 | 20/95% | 0.0052 | [54] |
WO3 | 3.8 | 320 | 0.25 | 0.0075 | [55] |
γ-Fe2O3:Gd | 31.2 | 200 | 20 | – | [56] |
In2O3 | 39.7 | 200 | 100 | – | [57] |
In2O3/TiO2 | 33.34 | 250 | 10 | 0.1 | [27] |
Cu2O-CuO | 25 | RT | 500/30% RH | – | [58] |
Cu2O-CuO:Ag | ** 34 | 350 | 1000 | – | [59] |
ZnO/CdO | *** 540 | RT | 1 | 1 | [60] |
ZnO/MoS2 | *** 1.33 | RT | 0.001 | 0.001 | [61] |
WO3:Fe | *** 12 | 260 | 10/90% RH | 0.2 | [62] |
CdS/Co3O4 | *** 7.22 | RT | 100 | 0.5 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa-Muñoz, Y.H.; Mejía de Gutiérrez, R.; Rodríguez-Páez, J.E. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules 2023, 28, 1150. https://doi.org/10.3390/molecules28031150
Ochoa-Muñoz YH, Mejía de Gutiérrez R, Rodríguez-Páez JE. Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules. 2023; 28(3):1150. https://doi.org/10.3390/molecules28031150
Chicago/Turabian StyleOchoa-Muñoz, Yasser H., Ruby Mejía de Gutiérrez, and Jorge E. Rodríguez-Páez. 2023. "Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review" Molecules 28, no. 3: 1150. https://doi.org/10.3390/molecules28031150
APA StyleOchoa-Muñoz, Y. H., Mejía de Gutiérrez, R., & Rodríguez-Páez, J. E. (2023). Metal Oxide Gas Sensors to Study Acetone Detection Considering Their Potential in the Diagnosis of Diabetes: A Review. Molecules, 28(3), 1150. https://doi.org/10.3390/molecules28031150