Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition Analysis of Fish By-Products and Viscera
2.2. Production of Enzymatic Extract from Fish Viscera
2.3. Enzymatic Hydrolysis of Fish By-Products
2.4. Characterization of Fish Protein Hydrolysates
2.4.1. Protein and Free Amino Acid Content
2.4.2. Molecular Weight Distribution
2.4.3. Peptide Profile
2.5. Bioactive Properties of Fish Protein Hydrolysates
2.5.1. Antioxidant Activity and Effect of Gastrointestinal Digestion
2.5.2. Ability to Inhibit the Angiotensin Converting Enzyme and Effect of Gastrointestinal Digestion
2.6. Technological Properties
3. Materials and Methods
3.1. Materials and Reagents
3.2. Composition Analysis of Fish By-Products and Viscera
3.3. Preparation of Enzymatic Extract from Fish Viscera
3.3.1. Determination of Proteolytic Activity of Viscera Enzymatic Extract
3.3.2. Effect of pH on Activity of Viscera Enzymatic Extract
3.3.3. Optimal Temperature of Viscera Enzymatic Extract
3.4. Enzymatic Hydrolysis of Fish By-Products
3.4.1. Determination of Degree of Hydrolysis
3.4.2. Molecular Weight Distribution
3.5. Enzymatic Hydrolysis under the Best Conditions
3.6. Characterization of Fish Protein Hydrolysates
3.6.1. Protein and Free Amino Acid Content
3.6.2. Molecular Weight Distribution
3.6.3. Peptide Profile
3.7. Bioactive Properties of Fish Hydrolysates
3.7.1. Analysis of Antioxidant Activity
ABTS Scavenging Assay
ORAC Assay
3.7.2. Measurement of Angiotensin Converting Enzyme (ACE) Inhibitory Effect
3.8. Simulation of Gastrointestinal Tract Conditions
3.9. Technological Properties
3.9.1. Oil Absorption Capacity
3.9.2. Emulsifying Capacity and Stability
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- La Acuicultura, Y. El Estado Mundial de la Pesca y la Acuicultura; FAO: Roma, Italy, 2016. [Google Scholar]
- Marti-Quijal, F.J.; Remize, F.; Meca, G.; Ferrer, E.; Ruiz, M.-J.; Barba, F.J. Fermentation in fish and by-products processing: An overview of current research and future prospects. Curr. Opin. Food Sci. 2020, 31, 9–16. [Google Scholar] [CrossRef]
- Villamil, O.; Váquiro, H.; Solanilla, J.F. Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chem. 2017, 224, 160–171. [Google Scholar] [CrossRef]
- Halim, N.; Yusof, H.; Sarbon, N. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci. Technol. 2016, 51, 24–33. [Google Scholar] [CrossRef]
- Kim, K.; Park, Y.; Je, H.-W.; Seong, M.; Damusaru, J.H.; Kim, S.; Jung, J.-Y.; Bai, S.C. Tuna byproducts as a fish-meal in tilapia aquaculture. Ecotoxicol. Environ. Saf. 2019, 172, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Bougatef, A. Trypsins from fish processing waste: Characteristics and biotechnological applications–comprehensive review. J. Clean. Prod. 2013, 57, 257–265. [Google Scholar] [CrossRef]
- Atef, M.; Ojagh, S.M. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J. Funct. Foods 2017, 35, 673–681. [Google Scholar] [CrossRef]
- Jegannathan, K.R.; Nielsen, P.H. Environmental assessment of enzyme use in industrial production—A literature review. J. Clean. Prod. 2013, 42, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Altınelataman, C.; Koroleva, O.; Fedorova, T.; Torkova, A.; Lisitskaya, K.; Tsentalovich, M.; Kononikhin, A.; Popov, I.; Vasina, D.; Kovalyov, L. An in vitro and in silico study on the antioxidant and cell culture-based study on the chemoprotective activities of fish muscle protein hydrolysates obtained from European seabass and gilthead seabream. Food Chem. 2019, 271, 724–732. [Google Scholar] [CrossRef]
- Vásquez, P.; Zapata, J.E.; Chamorro, V.C.; Fillería, S.F.G.; Tironi, V.A. Antioxidant and angiotensin I-converting enzyme (ACE) inhibitory peptides of rainbow trout (Oncorhynchus mykiss) viscera hydrolysates subjected to simulated gastrointestinal digestion and intestinal absorption. LWT 2021, 154, 112834. [Google Scholar] [CrossRef]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Bioactive fish hydrolysates resistance to food processing. LWT 2020, 117, 108670. [Google Scholar] [CrossRef]
- Heffernan, S.; Giblin, L.; O’Brien, N. Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem. 2021, 359, 129852. [Google Scholar] [CrossRef] [PubMed]
- Pezeshk, S.; Ojagh, S.M.; Alishahi, A. Effect of plant antioxidant and antimicrobial compounds on the shelf-life of seafood—A Review. Czech J. Food Sci. 2016, 33, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Sila, A.; Bougatef, A. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 2016, 21, 10–26. [Google Scholar] [CrossRef]
- Binsi, P.K.; Viji, P.; Panda, S.K.; Mathew, S.; Zynudheen, A.A.; Ravishankar, C.N. Characterisation of hydrolysates prepared from engraved catfish (Nemapteryx caelata) roe by serial hydrolysis. J. Food Sci. Technol. 2016, 53, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Lima, K.O.; de Quadros, C.d.C.; da Rocha, M.; de Lacerda, J.T.J.G.; Juliano, M.A.; Dias, M.; Mendes, M.A.; Prentice, C. Bioactivity and bioaccessibility of protein hydrolyzates from industrial byproducts of Stripped weakfish (Cynoscion guatucupa). LWT 2019, 111, 408–413. [Google Scholar] [CrossRef]
- Zamorano-Apodaca, J.C.; García-Sifuentes, C.O.; Carvajal-Millán, E.; Vallejo-Galland, B.; Scheuren-Acevedo, S.M.; Lugo-Sánchez, M.E. Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 2020, 331, 127350. [Google Scholar] [CrossRef]
- Roslan, J.; Yunos, K.F.M.; Abdullah, N.; Kamal, S.M.M. Characterization of fish protein hydrolysate from tilapia (Oreochromis niloticus) by-product. Agric. Agric. Sci. Procedia 2014, 2, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Abraha, B.; Admassu, H.; Mahmud, A.; Tsighe, N.; Shui, X.W.; Fang, Y. Effect of processing methods on nutritional and physico-chemical composition of fish: A review. Food Process. Technol. 2018, 6, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Alencar, R.; Biondi, M.; Paiva, P.; Vieira, V.; Carvalho, L., Jr.; Bezerra, R.d.S. Alkaline proteases from digestive tract of four tropical fishes. Braz. J. Food Technol. 2003, 6, 279–284. [Google Scholar]
- Bougatef, A.; Souissi, N.; Fakhfakh, N.; Ellouz-Triki, Y.; Nasri, M. Purification and characterization of trypsin from the viscera of sardine (Sardina pilchardus). Food Chem. 2007, 102, 343–350. [Google Scholar] [CrossRef]
- Ktari, N.; Khaled, H.B.; Nasri, R.; Jellouli, K.; Ghorbel, S.; Nasri, M. Trypsin from zebra blenny (Salaria basilisca) viscera: Purification, characterisation and potential application as a detergent additive. Food Chem. 2012, 130, 467–474. [Google Scholar] [CrossRef]
- Barkia, A.; Bougatef, A.; Nasri, R.; Fetoui, E.; Balti, R.; Nasri, M. Trypsin from the viscera of Bogue (Boops boops): Isolation and characterisation. Fish Physiol. Biochem. 2010, 36, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Kishimura, H.; Tokuda, Y.; Yabe, M.; Klomklao, S.; Benjakul, S.; Ando, S. Trypsins from the pyloric ceca of jacopever (Sebastes schlegelii) and elkhorn sculpin (Alcichthys alcicornis): Isolation and characterization. Food Chem. 2007, 100, 1490–1495. [Google Scholar] [CrossRef] [Green Version]
- Ahn, C.-B.; Jeon, Y.-J.; Kang, D.-S.; Shin, T.-S.; Jung, B.-M. Free radical scavenging activity of enzymatic extracts from a brown seaweed Scytosiphon lomentaria by electron spin resonance spectrometry. Food Res. Int. 2004, 37, 253–258. [Google Scholar] [CrossRef]
- Hsu, K.-C. Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chem. 2010, 122, 42–48. [Google Scholar] [CrossRef]
- Sayari, N.; Sila, A.; Haddar, A.; Balti, R.; Ellouz-Chaabouni, S.; Bougatef, A. Valorisation of smooth hound (Mustelus mustelus) waste biomass through recovery of functional, antioxidative and antihypertensive bioactive peptides. Environ. Sci. Pollut. Res. 2016, 23, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Murthy, L.N.; Phadke, G.G.; Unnikrishnan, P.; Annamalai, J.; Joshy, C.G.; Zynudheen, A.A.; Ravishankar, C.N. Valorization of fish viscera for crude proteases production and its use in bioactive protein hydrolysate preparation. Waste Biomass Valorization 2018, 9, 1735–1746. [Google Scholar] [CrossRef]
- Camargo, T.R.; Ramos, P.; Monserrat, J.M.; Prentice, C.; Fernandes, C.J.C.; Zambuzzi, W.F.; Valenti, W.C. Biological activities of the protein hydrolysate obtained from two fishes common in the fisheries bycatch. Food Chem. 2021, 342, 128361. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Dinesh kumar, B.; Hemalatha, R.; Jyothirmayi, T. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chem. 2012, 135, 3020–3038. [Google Scholar] [CrossRef]
- Alvares, T.S.; Conte-Junior, C.A.; Pierucci, A.P.; de Oliveira, G.V.; Cordeiro, E.M. Acute effect of fish protein hydrolysate supplementation on vascular function in healthy individuals. J. Funct. Foods 2018, 46, 250–255. [Google Scholar] [CrossRef]
- Klomklao, S.; Kishimura, H.; Benjakul, S. Use of viscera extract from hybrid catfish (Clarias macrocephalus × Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minuta) muscle. Food Chem. 2013, 136, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Chalamaiah, M.; Rao, G.N.; Rao, D.G.; Jyothirmayi, T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem. 2010, 120, 652–657. [Google Scholar] [CrossRef]
- Del Favero, S.; Roschel, H.; Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Otaduy, M.C.; Benatti, F.B.; Harris, R.C.; Wise, J.A.; Leite, C.C. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): Effects on muscle carnosine content and physical capacity. Amino Acids 2012, 43, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohli, R.; Meininger, C.J.; Haynes, T.E.; Yan, W.; Self, J.T.; Wu, G. Dietary L-arginine supplementation enhances endothelial nitric oxide synthesis in streptozotocin-induced diabetic rats. J. Nutr. 2004, 134, 600–608. [Google Scholar] [CrossRef] [Green Version]
- May, P.E.; Barber, A.; T D’Olimpio, J.; Hourihane, A.; Abumrad, N.N. Reversal of cancer-related wasting using oral supplementation with a combination of β-hydroxy-β-methylbutyrate, arginine, and glutamine. Am. J. Surg. 2002, 183, 471–479. [Google Scholar] [CrossRef]
- Chen, T.; Ni, Y.; Ma, X.; Bao, Y.; Liu, J.; Huang, F.; Hu, C.; Xie, G.; Zhao, A.; Jia, W. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations. Sci. Rep. 2016, 6, 20594. [Google Scholar] [CrossRef] [Green Version]
- Sajadi, S.A.A. Metal ion-binding properties of L-glutamic acid and L-aspartic acid, a comparative investigation. Nat. Sci. 2010, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Kroger, M.; Meister, K.; Kava, R. Low-calorie Sweeteners and Other Sugar Substitutes: A Review of the Safety Issues. Compr. Rev. Food Sci. Food Saf. 2006, 5, 35–47. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Shahidi, F. Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. J. Funct. Foods 2017, 34, 7–17. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef]
- Samaranayaka, A.G.P.; Kitts, D.D.; Li-Chan, E.C.Y. Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific hake (Merluccius productus) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation. J. Agric. Food Chem. 2010, 58, 1535–1542. [Google Scholar] [CrossRef]
- Cinq-Mars, C.D.; Hu, C.; Kitts, D.D.; Li-Chan, E.C.Y. Investigations into inhibitor type and mode, simulated gastrointestinal digestion, and cell transport of the angiotensin I-converting enzyme–inhibitory peptides in Pacific hake (Merluccius productus) fillet hydrolysate. J. Agric. Food Chem. 2008, 56, 410–419. [Google Scholar] [CrossRef]
- Isah, S.; Oshodi, A.; Atasie, V. Physicochemical properties of cross linked acha (digitaria exilis) starch with citric acid. Chem. Int 2017, 3, 150–157. [Google Scholar]
- Chaparro Acuña, S.P.; Gil González, J.H.; Aristizábal Torres, I.D. Physicochemical characteristics and functional properties of vitabosa (mucuna deeringiana) and soybean (glycine max). Food Sci. Technol. 2012, 32, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Foh, M.; Kamara, M.; Amadou, I.; Foh, B.; Wenshui, X. Chemical and physicochemical properties of tilapia (Oreochromis niloticus) fish protein hydrolysate and concentrate. Int. J. Biol. Chem. 2011, 5, 21–36. [Google Scholar] [CrossRef] [Green Version]
- Hemker, A.K.; Nguyen, L.T.; Karwe, M.; Salvi, D. Effects of pressure-assisted enzymatic hydrolysis on functional and bioactive properties of tilapia (Oreochromis niloticus) by-product protein hydrolysates. LWT 2020, 122, 109003. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Proestos, C.; Loukatos, P.; Komaitis, M. Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem. 2008, 106, 1218–1224. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Quirós, A.; Ramos, M.; Muguerza, B.; Delgado, M.A.; Miguel, M.; Aleixandre, A.; Recio, I. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int. Dairy J. 2007, 17, 33–41. [Google Scholar] [CrossRef]
- Amorim, M.; Pinheiro, H.; Pintado, M. Valorization of spent brewer’s yeast: Optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. LWT 2019, 111, 77–84. [Google Scholar] [CrossRef]
Fish By-Products | Viscera | |
---|---|---|
Moisture (%) | 74.5 ± 0.6 | 66.9 ± 0.1 |
Protein (%) | 17.7 ± 1.0 | 12.4 ± 0.6 |
Fat (%) | 2.0 ± 0.0 | 18.6 ± 0.5 |
Ash (%) | 3.9 ± 0.5 | 2.0 ± 0.1 |
Carbohydrate (%) * | 1.9 | 0.1 |
pH Values | U/mL |
---|---|
3 | 5.64 ± 0.00 a |
5 | 17.36 ± 0.20 b |
6 | 30.78 ± 0.02 c |
8 | 67.72 ± 1.05 d |
9 | 68.83 ± 1.20 d |
Temperature (°C) | |
40 | 77.16 ± 1.22 e |
50 | 71.65 ± 1.65 e |
60 | 27.45 ± 0.13 f |
Alcalase | 2602.22 ± 80.30 |
Amino Acids (mg/g Protein) | Viscera Enzymatic Extract | Alcalase |
---|---|---|
Aspartic acid | 7.84 ± 0.12 | 2.44 ± 0.01 |
Glutamic acid | 9.49 ± 0.16 | 3.00 ± 0.04 |
Cysteine | 0.11 ± 0.01 | 0.46 ± 0.03 |
Asparagine | 0.24 ± 0.00 | 1.35 ± 0.02 |
Serine | 3.66 ± 0.03 | 2.39 ± 0.05 |
Histidine * | 1.65 ± 0.14 | 3.61 ± 0.16 |
Glutamine | 3.41 ± 0.01 | 3.38 ± 0.05 |
Threonine * | 5.64 ± 0.06 | 4.55 ± 0.08 |
Arginine | 14.79 ± 0.11 | 6.14 ± 0.18 |
Alanine | 12.45 ± 0.07 | 7.62 ± 0.13 |
Tyrosine | 4.53 ± 0.08 | 2.82 ± 0,06 |
Valine * | 7.74 ± 0.06 | 5.15 ± 0.09 |
Methionine * | 5.20 ± 0.09 | 4.35 ± 0.02 |
Tryptophan * | 0.98 ± 0.04 | 0.72 ± 0.03 |
Phenylalanine * | 5.64 ± 0.40 | 4.64 ± 0.18 |
Isoleucine * | 5.85 ± 0.06 | 3.38 ± 0.04 |
Leucine * | 11.65 ± 0.06 | 9.66 ± 0.27 |
Total | 100.86 | 65.66 |
Fish Hydrolysates | ABTS (mg Ascorbic Acid/g Dry Extract) | ORAC (mg Trolox/g Dry Extract) | IC50 (µg of Protein/mL) | |||
---|---|---|---|---|---|---|
Before GIT | After GIT | Before GIT | After GIT | Before GIT | After GIT | |
Viscera enzymatic extract | 10.4 ± 0.9 a,b | 10.7 ± 0.9 a,b | 142.0 ± 4.2 c | 148.3 ± 4.8 c | 554.4 ± 10.1 d | 430.6 ± 13.2 f |
Alcalase | 11.0 ± 0.5 a | 13.7 ± 0.0 b | 153.2 ± 29.4 c | 127.4 ± 54.9 c | 101.1 ± 2.0 e | 155.3 ± 4.0 g |
Fish Hydrolysates | Oil Absorption Capacity (g Oil/g Sample) | Emulsifying Property (%) | Stability of Emulsifying Property (%) |
---|---|---|---|
Viscera enzymatic extract | 1.07 ± 0.08 a | 41.9 ± 0.3 b | 41.4 ± 0.4 b |
Alcalase | 1.06 ± 0.17 a | 41.1 ± 1.5 b | 41.1 ± 1.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, S.; Odila, J.; Voss, G.; Martins, R.; Rosa, A.; Couto, J.A.; Almeida, A.; Pintado, M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules 2023, 28, 1155. https://doi.org/10.3390/molecules28031155
Borges S, Odila J, Voss G, Martins R, Rosa A, Couto JA, Almeida A, Pintado M. Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules. 2023; 28(3):1155. https://doi.org/10.3390/molecules28031155
Chicago/Turabian StyleBorges, Sandra, Joana Odila, Glenise Voss, Rui Martins, Ana Rosa, José António Couto, André Almeida, and Manuela Pintado. 2023. "Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates" Molecules 28, no. 3: 1155. https://doi.org/10.3390/molecules28031155
APA StyleBorges, S., Odila, J., Voss, G., Martins, R., Rosa, A., Couto, J. A., Almeida, A., & Pintado, M. (2023). Fish By-Products: A Source of Enzymes to Generate Circular Bioactive Hydrolysates. Molecules, 28(3), 1155. https://doi.org/10.3390/molecules28031155