The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Features of t-DZH and t-DZ in the Three Media
2.2. Photochromism of t-DZH in the Three Media
2.3. Photochromism of t-DZ in the Three Media
2.4. Photo-Induced ΔpH
3. Materials and Methods
3.1. Materials
3.2. Synthesis of t-DZH
3.3. Spectrophotometric and Photochemical Experiments
3.4. Determination of the c-DZH Lifetimes through the Maximum Entropy Method
3.5. Method for Calculating the Chromaticity and RGB Coordinates from the Transmittance Spectra
3.6. Quantum-Mechanical Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Mitchell, M. Artificial Intelligence. A Guide for Thinking Humans, 1st ed.; Farrar, Straus and Giroux: New York, NY, USA, 2019. [Google Scholar]
- Zadeh, L.A. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 1973, 3, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Gentili, P.L. Why is Complexity Science valuable for reaching the goals of the UN 2030 Agenda? Rend. Fis. Acc. Lincei 2021, 32, 117–134. [Google Scholar] [CrossRef]
- Gentili, P.L. Untangling Complex Systems: A Grand Challenge for Science, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Indiveri, G. Introducing Neuromorphic Computing and Engineering. Neuromorph. Comput. Eng. 2021, 1, 010401. [Google Scholar] [CrossRef]
- Donoghue, J.P. Bridging the brain to the world: A perspective on neural interface systems. Neuron 2008, 60, 511–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrocki, R.A.; Voyles, R.M.; Shaheen, S.E. A mini review of neuromorphic architectures and implementations. IEEE Trans. Electron Dev. 2016, 63, 3819–3829. [Google Scholar] [CrossRef]
- Ha, S.D.; Ramanathan, S. Adaptive oxide electronics: A review. J. Appl. Phys. 2011, 110, 071101. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, T.-W. Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res. 2019, 52, 964–974. [Google Scholar] [CrossRef]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; van de Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 2020, 7, 011307. [Google Scholar] [CrossRef]
- Gentili, P.L. Small steps towards the development of chemical artificial intelligent systems. RSC Adv. 2013, 3, 25523–25549. [Google Scholar] [CrossRef]
- Vanag, V. Hierarchical network of pulse coupled chemical oscillators with adaptive behavior: Chemical neurocomputer. Chaos 2019, 29, 083104. [Google Scholar] [CrossRef] [PubMed]
- Litschel, T.; Norton, M.M.; Tserunyan, V.; Fraden, S. Engineering reaction–diffusion networks with properties of neural tissue. Lab Chip 2018, 18, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przyczyna, D.; Zawal, P.; Mazur, T.; Strzelecki, M.; Gentili, P.L.; Szaciłowski, K. In-materio neuromimetic devices: Dynamics, information processing and pattern recognition. Jpn. J. Appl. Phys. 2020, 59, 050504. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Fischer, I. Reservoir Computing, 1st ed.; Springer: Singapore, 2021. [Google Scholar]
- Kheirabadi, N.R.; Chiolerio, A.; Szaciłowski, K.; Adamatzky, A. Neuromorphic liquids, colloids, and gels: A review. ChemPhysChem 2022, 24, e202200390. [Google Scholar] [CrossRef] [PubMed]
- Gentili, P.L.; Giubila, M.S.; Germani, R.; Romani, A.; Nicoziani, A.; Spalletti, A.; Heron, B.M. Optical Communication among Oscillatory Reactions and Photo-Excitable Systems: UV and Visible Radiation Can Synchronize Artificial Neuron Models. Angew. Chem. Int. Ed. 2017, 56, 7535–7540. [Google Scholar] [CrossRef]
- Epstein, I.R.; Pojman, J.A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos, 1st ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Gentili, P.L.; Micheau, J.C. Light and chemical oscillations: Review and perspectives. J. Photochem. Photobiol. C Photochem. Rev. 2020, 43, 100321. [Google Scholar] [CrossRef]
- Gentili, P.L.; Bartolomei, B.; Micheau, J.C. Light-driven artificial neuron models based on photoswitchable systems. Dye. Pigment. 2021, 187, 109086. [Google Scholar] [CrossRef]
- Gentili, P.L.; Baldinelli, L.; Bartolomei, B. Design of a new photochromic oscillator: Towards dynamical models of pacemaker neurons. Reac. Kinet. Mech. Cat. 2022, 135, 1281–1297. [Google Scholar] [CrossRef]
- Gentili, P.L.; Giubila, M.S.; Germani, R.; Heron, B.M. Photochromic and luminescent compounds as artificial neuron models. Dye. Pigment. 2018, 156, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Gentili, P.L.; Dolnik, M.; Epstein, I.R. “Photochemical oscillator”: Colored hydrodynamic oscillations and waves in a photochromic system. J. Phys. Chem. C 2014, 118, 598–608. [Google Scholar] [CrossRef]
- Gentili, P.L. Photochromic and luminescent materials for the development of Chemical Artificial Intelligence. Dye. Pigment. 2022, 205, 110547. [Google Scholar] [CrossRef]
- Liao, Y. Design and applications of metastable-state photoacids. Acc. Chem. Res. 2017, 50, 1956–1964. [Google Scholar] [PubMed]
- Emond, M.; Le Saux, T.; Maurin, S.; Baudin, J.B.; Plasson, R.; Jullien, L. 2-Hydroxyazobenzenes to Tailor pH Pulses and Oscillations with Light. Chem. A Eur. J. 2010, 16, 8822–8831. [Google Scholar] [CrossRef] [PubMed]
- Emond, M.; Sun, J.; Grégoire, J.; Maurin, S.; Tribet, C.; Jullien, L. Photoinduced pH drops in water. Phys. Chem. Chem. Phys. 2011, 13, 6493–6499. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, M.; Silvi, S.; Credi, A. Photo-and redox-driven artificial molecular motors. Chem. Rev. 2020, 120, 200–268. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Amorós, J.; Velasco, D. Tautomerizable Azophenol Dyes: Cornerstones for Advanced Light-Responsive Materials. In Tautomerism: Concepts and Applications in Science and Technology; Antonov, L., Ed.; Wiley-VCH: Weinheim, Germany, 2016; pp. 253–272. [Google Scholar]
- Jacques, P. Solvent effects on the photochemical behaviour of 4-phenylazo-1-naphthol: A flash photolysis study. Dye. Pigment. 1988, 9, 129–135. [Google Scholar] [CrossRef]
- Bandara, H.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Gentili, P.L. The fuzziness of a chromogenic spirooxazine. Dye. Pigment. 2014, 110, 235–248. [Google Scholar] [CrossRef]
- Gentili, P.L.; Perez-Mercader, J. Quantitative estimation of chemical microheterogeneity through the determination of fuzzy entropy. Front. Chem. 2022, 10, 950769. [Google Scholar] [CrossRef]
- Gentili, P.L. Establishing a New Link between Fuzzy Logic, Neuroscience, and Quantum Mechanics through Bayesian Probability: Perspectives in Artificial Intelligence and Unconventional Computing. Molecules 2021, 26, 5987. [Google Scholar] [CrossRef]
- Gegiou, D.; Muszkat, K.A.; Fisher, E. Temperature dependence of photoisomerization. V. Effect of substituents on the photoisomerization of stilbenes and azobenzenes. J. Am. Chem. Soc. 1968, 90, 3907–3918. [Google Scholar] [CrossRef]
- Kumar, G.S.; Neckers, D.C. Photochemistry of azobenzene-containing polymers. Chem. Rev. 1989, 89, 1915–1925. [Google Scholar] [CrossRef]
- Gentili, P.L.; Costantino, U.; Vivani, R.; Latterini, L.; Nocchetti, M.; Aloisi, G.G. Preparation and characterization of zirconium phosphonate–azobenzene intercalation compounds. A structural, photophysical and photochemical study. J. Mater. Chem. 2004, 14, 1656–1662. [Google Scholar] [CrossRef]
- Gabor, G.; Fischer, E. Tautomerism and Geometrical Isomerism in Arylazophenols and Naphthols. Part II. 2-Phenylazo-3-Naphthol. The Effect of Internal Hydrogen Bonds on Photoisomerization. PART I. J. Phys. Chem. 1962, 66, 2478–2481. [Google Scholar] [CrossRef]
- Bartolomei, B.; Heron, B.M.; Gentili, P.L. A contribution to neuromorphic engineering: Neuromodulation implemented through photochromic compounds maintained out of equilibrium by UV–visible radiation. Rend. Fis. Acc. Lincei 2020, 31, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Spreti, N.; Bartoletti, A.; Di Profio, P.; Germani, R.; Savelli, G. Effects of ionic and zwitterionic surfactants on the stabilization of bovine catalase. Biotechnol. Prog. 1995, 11, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Gentili, P.L.; Rightler, A.L.; Heron, B.M.; Gabbutt, C.D. Extending human perception of electromagnetic radiation to the UV region through biologically inspired photochromic fuzzy logic (BIPFUL) systems. Chem. Commun. 2016, 52, 1474–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darwish, S.; Fahmy, H.M.; Abdel Aziz, M.A.; Et Maghraby, A.A. Polarography of some arylazothiohydantoin derivatives. J. Chem. Soc. Perkin Trans. II 1981, 2, 344–349. [Google Scholar] [CrossRef]
- Kunitake, T.; Okahata, Y.; Shimomura, M.; Yasunami, S.; Takarabe, K. Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc. 1981, 103, 5401–5413. [Google Scholar] [CrossRef]
- Jirandehi, H.F.; Mobinikhaledi, A. Synthesis of some aryl azo-compounds under mild conditions. Asian J. Chem. 2010, 22, 6851–6854. [Google Scholar]
- Steinbach, P.J.; Ionescu, R.; Matthews, C.R. Analysis of kinetics using a hybrid maximum-entropy/nonlinear-least-squares method: Application to protein folding. Biophys. J. 2002, 82, 2244–2255. [Google Scholar] [CrossRef] [Green Version]
- Gentili, P.L.; Clementi, C.; Romani, A. Ultraviolet–visible absorption and luminescence properties of quinacridone–barium sulfate solid mixtures. Appl. Spectrosc. 2010, 64, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.G.; Amundarain, M.J.; Nicoletti, F.; Drechsler, M.; Costabel, M.; Gentili, P.L.; Dodero, V.I. Thin-Plate Superstructures of the Immunogenic 33-mer Gliadin Peptide. ChemBioChem 2022, 23, e202200552. [Google Scholar] [CrossRef]
- Gralak, B.; Tayeb, G.; Enoch, S. Morpho butterflies wings color modelled with lamellar grating theory. Opt. Express 2001, 9, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Parr, R.G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Improta, R.; Scalmani, G.; Frisch, M.J.; Barone, V. Toward effective and reliable fluorescence energies in solution by a new state specific polarizable continuum model time dependent density functional theory approach. J. Chem. Phys. 2007, 127, 074504. [Google Scholar] [CrossRef] [PubMed]
- Improta, R.; Barone, V.; Scalamani, G.; Frisch, M.J. A state-specific polarizable continuum model time dependent density functional theory method for excited state calculations in solution. J. Chem. Phys. 2006, 125, 054103. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
t-DZH | |||
Transitions | E (eV)/λ (nm) | f | Character |
S0→S1 | 2.47/503 | 0.00 | 99% (H-1→L) |
S0→S2 | 3.01/412 | 0.30 | 91% (H→L); 9% (H-2→L) |
S0→S3 | 3.41/364 | 0.62 | 91% (H-2→L); 9% (H→L) |
S0→S4 | 3.73/332 | 0.03 | 97% (H-3→L) |
t-DZ | |||
Transitions | E (eV)/λ (nm) | f | Character |
S0→S1 | 2.25/550 | 0.00 | 99% (H-1→L) |
S0→S2 | 2.51/494 | 0.47 | 99% (H→L) |
S0→S3 | 3.30/375 | 0.00 | 99% (H-3→L) |
S0→S4 | 3.59/345 | 0.37 | 97% (H-2→L) |
t-DZH | t-DZ | C (10−3) | |||||||
---|---|---|---|---|---|---|---|---|---|
x | y | z | Colour | x | y | z | Colour | ||
CH3CN | 0.339 | 0.365 | 0.296 | 0.368 | 0.358 | 0.274 | 8 | ||
H2O/CH3CN = 1/1 | 0.336 | 0.359 | 0.305 | 0.349 | 0.355 | 0.296 | 1.5 | ||
SB3-14 (0.1 M) | 0.343 | 0.369 | 0.288 | 0.364 | 0.368 | 0.268 | 6.9 |
t-DZH | |||
0.07 | 0.08 | 0.20 |
t-DZH | |||
(s) | 259 | 137 | 50 |
0.67 | 0.69 | 0.62 |
t-DZ | |||
0.12 | 0.35 | 0.25 |
t-DZH | |||
(s) | 1,960,000 ± 350,000 | 35,500 ± 400 | 41,000 ± 3000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentili, P.L.; Capaccioni, A.; Germani, R.; Fantacci, S. The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene. Molecules 2023, 28, 1183. https://doi.org/10.3390/molecules28031183
Gentili PL, Capaccioni A, Germani R, Fantacci S. The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene. Molecules. 2023; 28(3):1183. https://doi.org/10.3390/molecules28031183
Chicago/Turabian StyleGentili, Pier Luigi, Antonio Capaccioni, Raimondo Germani, and Simona Fantacci. 2023. "The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene" Molecules 28, no. 3: 1183. https://doi.org/10.3390/molecules28031183
APA StyleGentili, P. L., Capaccioni, A., Germani, R., & Fantacci, S. (2023). The Versatile Photo-Thermal Behaviour of a 2-Hydroxyazobenzene. Molecules, 28(3), 1183. https://doi.org/10.3390/molecules28031183