Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis
Abstract
:1. Introduction
2. Occurrence, Fate, and Toxicity of BPs in the Environment
3. Sample Preparation for Benzophenone Detection
3.1. Solid-Phase Extraction
3.2. Dispersive (Magnetic) Solid-Phase Extraction
3.3. Liquid–Liquid Extraction
3.4. Other Methods
4. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Lucas, J.; Logeux, V.; Rodrigues, A.M.S.; Stien, D.; Lebaron, P. Exposure to four chemical UV filters through contaminated sediment: Impact on survival, hatching success, cardiac frequency, and aerobic metabolic scope in embryo-larval stage of zebrafish. Environ. Sci. Pollut. Res. 2021, 28, 29412–29420. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.J.M.; Esteves da Silva, J.C.G. Environmental fate and behaviour of benzophenone-8 in aqueous solution. Environ. Technol. Innov. 2019, 13, 48–61. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S.E.A.T.M.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, I.A.; Paniagua, C.E.S.; Alberto, E.A.; Starling, M.C.V.M.; Agüera, A.; Trovó, A.G. A critical review of trends in advanced oxidation processes for the removal of benzophenone-3, fipronil, and propylparaben from aqueous matrices: Pathways and toxicity changes. J. Water Process Eng. 2022, 49, 102973. [Google Scholar] [CrossRef]
- La Farré, M.; Pérez, S.; Kantiani, L.; Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC-Trends Anal. Chem. 2008, 27, 991–1007. [Google Scholar] [CrossRef]
- Guo, Q.; Wei, D.; Zhao, H.; Du, Y. Predicted no-effect concentrations determination and ecological risk assessment for benzophenone-type UV filters in aquatic environment. Environ. Pollut. 2020, 256, 113460. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. A review of organic UV-filters in wastewater treatment plants. Environ. Int. 2016, 86, 24–44. [Google Scholar] [CrossRef]
- Du, Y.; Wang, W.Q.; Pei, Z.T.; Ahmad, F.; Xu, R.R.; Zhang, Y.M.; Sun, L.W. Acute toxicity and ecological risk assessment of benzophenone-3 (BP-3) and benzophenone-4 (BP-4) in ultraviolet (UV)-filters. Int. J. Environ. Res. Public Health 2017, 14, 1414. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Huo, Z.; Gu, J.; Xu, G. Benzophenones and synthetic progestin in wastewater and sediment from farms, WWTPs and receiving surface water: Distribution, sources, and ecological risks. RSC Adv. 2021, 11, 31766–31775. [Google Scholar] [CrossRef]
- Heurung, A.R.; Raju, S.I.; Warshaw, E.M. Benzophenones. Dermatitis 2014, 25, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shah, P.; Wu, F.; Liu, P.; You, J.; Goss, G. Potentiation of lethal and sub-lethal effects of benzophenone and oxybenzone by UV light in zebrafish embryos. Aquat. Toxicol. 2021, 235, 105835. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; He, Y.; Gin, K.Y.H. Occurrence and fate of benzophenone-type UV filters in aquatic environments: A review. Environ. Sci. Water Res. Technol. 2019, 5, 209–223. [Google Scholar] [CrossRef]
- Huang, Y.F.; Chang, J.P.; Chen, H.C.; Huang, Y.M. Simultaneous trace analysis of 10 benzophenone-type ultraviolet filters in fish through liquid chromatography–tandem mass spectrometry. Environ. Pollut. 2021, 286, 117306. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiao, X.Y.; Li, J.; Xu, L. A miniaturized sorbent phase-based extraction device in the form of syringe filter holder using molecularly imprinted polymer as sorbent and its application to extract benzophenones. J. Chromatogr. A 2018, 1543, 1–13. [Google Scholar] [CrossRef]
- Wejnerowska, G.; Narloch, I. Determination of benzophenones in water and cosmetics samples: A comparison of solid-phase extraction and microextraction by packed sorbent methods. Molecules 2021, 26, 6896. [Google Scholar] [CrossRef]
- Ge, J.; Huang, D.; Han, Z.; Wang, X.; Wang, X.; Wang, Z. Photochemical behavior of benzophenone sunscreens induced by nitrate in aquatic environments. Water Res. 2019, 153, 178–186. [Google Scholar] [CrossRef]
- Meng, Q.; Yeung, K.; Kwok, M.L.; Chung, C.T.; Hu, X.L.; Chan, K.M. Toxic effects and transcriptome analyses of zebrafish (Danio rerio) larvae exposed to benzophenones. Environ. Pollut. 2020, 265, 114857. [Google Scholar] [CrossRef]
- Stalikas, C.D.; Fiamegos, Y.C. Microextraction combined with derivatization. TrAC Trends Anal. Chem. 2008, 27, 533–542. [Google Scholar] [CrossRef]
- Aryal, N.; Wood, J.; Rijal, I.; Deng, D.; Jha, M.K.; Ofori-Boadu, A. Fate of environmental pollutants: A review. Water Environ. Res. 2020, 92, 1587–1594. [Google Scholar] [CrossRef]
- Ramos, S.; Homem, V.; Alves, A.; Santos, L. Advances in analytical methods and occurrence of organic UV-filters in the environment—A review. Sci. Total Environ. 2015, 526, 278–311. [Google Scholar] [CrossRef] [Green Version]
- Giokas, D.L.; Salvador, A.; Chisvert, A. UV filters: From sunscreens to human body and the environment. TrAC-Trends Anal. Chem. 2007, 26, 360–374. [Google Scholar] [CrossRef]
- Yan, S.; Wang, J.; Zheng, Z.; Ji, F.; Yan, L.; Yang, L.; Zha, J. Environmentally relevant concentrations of benzophenones triggered DNA damage and apoptosis in male Chinese rare minnows (Gobiocypris rarus). Environ. Int. 2022, 164, 107260. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; He, Y.; Kushmaro, A.; Gin, K.Y.H. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 2017, 193, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.; Pham, C.; Smith, J.; Mesinkovska, N.A. The banned sunscreen ingredients and their impact on human health: A systematic review. Int. J. Dermatol. 2020, 59, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cruz, M.S.; Molins-Delgado, D.; Serra-Roig, M.P.; Kalogianni, E.; Skoulikidis, N.T.; Barceló, D. Personal care products reconnaissance in EVROTAS river (Greece): Water-sediment partition and bioaccumulation in fish. Sci. Total Environ. 2019, 651, 3079–3089. [Google Scholar] [CrossRef] [PubMed]
- Loraine, G.A.; Pettigrove, M.E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695. [Google Scholar] [CrossRef]
- Tao, J.; Bai, C.; Chen, Y.; Zhou, H.; Liu, Y.; Shi, Q.; Pan, W.; Dong, H.; Li, L.; Xu, H.; et al. Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish. Sci. Total Environ. 2020, 721, 137686. [Google Scholar] [CrossRef]
- Fagervold, S.K.; Rodrigues, A.S.; Rohée, C.; Roe, R.; Bourrain, M.; Stien, D.; Lebaron, P. Occurrence and Environmental Distribution of 5 UV Filters During the Summer Season in Different Water Bodies. Water Air Soil Pollut. 2019, 230, 172. [Google Scholar] [CrossRef]
- Barón, E.; Gago-Ferrero, P.; Gorga, M.; Rudolph, I.; Mendoza, G.; Zapata, A.M.; Díaz-Cruz, S.; Barra, R.; Ocampo-Duque, W.; Páez, M.; et al. Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America. Chemosphere 2013, 92, 309–316. [Google Scholar] [CrossRef]
- Cadena-Aizaga, M.I.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Occurrence and environmental hazard of organic UV filters in seawater and wastewater from Gran Canaria Island (Canary Islands, Spain). Environ. Pollut. 2022, 300, 118843. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.P.; Emídio, E.S.; de Marchi, M.R.R. The occurrence of UV filters in natural and drinking water in São Paulo State (Brazil). Environ. Sci. Pollut. Res. 2015, 22, 19706–19715. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Zenker, A.; Rapp, M. Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland. Environ. Pollut. 2010, 158, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Quintana, J.B.; López-Manía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Multiclass determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry. Anal. Chem. 2008, 80, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, S.; Blüthgen, N.; Ieronimo, A.; Fent, K. The UV-absorber benzophenone-4 alters transcripts of genes involved in hormonal pathways in zebrafish (Danio rerio) eleuthero-embryos and adult males. Toxicol. Appl. Pharmacol. 2011, 250, 137–146. [Google Scholar] [CrossRef]
- Rodil, R.; Quintana, J.B.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 2958–2969. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef]
- Santos, A.J.M.; Miranda, M.S.; Esteves da Silva, J.C.G. The degradation products of UV filters in aqueous and chlorinated aqueous solutions. Water Res. 2012, 46, 3167–3176. [Google Scholar] [CrossRef]
- Kim, S.; Choi, K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef]
- Calafat, A.M.; Wong, L.Y.; Ye, X.; Reidy, J.A.; Needham, L.L. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003-2004. Environ. Health Perspect. 2008, 116, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Frederiksen, H.; Jensen, T.K.; Jørgensen, N.; Kyhl, H.B.; Husby, S.; Skakkebæk, N.E.; Main, K.M.; Juul, A.; Andersson, A.M. Human urinary excretion of non-persistent environmental chemicals: An overview of Danish data collected between 2006 and 2012. Reproduction 2014, 147, 555–565. [Google Scholar] [CrossRef]
- Wnuk, A.; Rzemieniec, J.; Lasoń, W.; Krzeptowski, W.; Kajta, M. Apoptosis Induced by the UV Filter Benzophenone-3 in Mouse Neuronal Cells Is Mediated via Attenuation of Erα/Pparγ and Stimulation of Erβ/Gpr30 Signaling. Mol. Neurobiol. 2018, 55, 2362–2383. [Google Scholar] [CrossRef] [Green Version]
- Janjua, N.R.; Kongshoj, B.; Andersson, A.M.; Wulf, H.C. Sunscreens in human plasma and urine after repeated whole-body topical application. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 456–461. [Google Scholar] [CrossRef]
- Van Der Meer, T.P.; Artacho-Cordón, F.; Swaab, D.F.; Struik, D.; Makris, K.C.; Wolffenbuttel, B.H.R.; Frederiksen, H.; Van Vliet-Ostaptchouk, J.V. Distribution of non-persistent endocrine disruptors in two different regions of the human brain. Int. J. Environ. Res. Public Health 2017, 14, 1059. [Google Scholar] [CrossRef] [Green Version]
- Molins-Delgado, D.; del Mar Olmo-Campos, M.; Valeta-Juan, G.; Pleguezuelos-Hernández, V.; Barceló, D.; Díaz-Cruz, M.S. Determination of UV filters in human breast milk using turbulent flow chromatography and babies’ daily intake estimation. Environ. Res. 2018, 161, 532–539. [Google Scholar] [CrossRef]
- Schlumpf, M.; Kypke, K.; Wittassek, M.; Angerer, J.; Mascher, H.; Mascher, D.; Vökt, C.; Birchler, M.; Lichtensteiger, W. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: Correlation of UV filters with use of cosmetics. Chemosphere 2010, 81, 1171–1183. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, R.; Zafra-Gómez, A.; Dorival-García, N.; Ballesteros, O.; Navalón, A. Determination of benzophenone-UV filters in human milk samples using ultrasound-assisted extraction and clean-up with dispersive sorbents followed by UHPLC-MS/MS analysis. Talanta 2015, 134, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Valle-Sistac, J.; Molins-Delgado, D.; Díaz, M.; Ibáñez, L.; Barceló, D.; Silvia Díaz-Cruz, M. Determination of parabens and benzophenone-type UV filters in human placenta: First description of the existence of benzyl paraben and benzophenone-4. Environ. Int. 2016, 88, 243–249. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Jiménez-Díaz, I.; Rodríguez-Gómez, R.; Zafra-Gómez, A.; Ballesteros, O.; Navalón, A.; Vílchez, J.L.; Fernández, M.F.; Olea, N. Determination of benzophenones in human placental tissue samples by liquid chromatography-tandem mass spectrometry. Talanta 2011, 85, 1848–1855. [Google Scholar] [CrossRef]
- Castro, G.; Fourie, A.J.; Marlin, D.; Venkatraman, V.; González, S.V.; Asimakopoulos, A.G. Occurrence of bisphenols and benzophenone UV filters in wild brown mussels (Perna perna) from Algoa Bay in South Africa. Sci. Total Environ. 2022, 813, 152571. [Google Scholar] [CrossRef]
- Chen, T.H.; Wu, Y.T.; Ding, W.H. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens). Ecotoxicology 2016, 25, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Weisbrod, C.J.; Kunz, P.Y.; Zenker, A.K.; Fent, K. Effects of the UV filter benzophenone-2 on reproduction in fish. Toxicol. Appl. Pharmacol. 2007, 225, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Dong, H.; Tao, J.; Chen, Y.; Xu, H.; Lin, J.; Huang, C.; Dong, Q. Lifetime exposure to benzophenone-3 at an environmentally relevant concentration leads to female–biased social behavior and cognition deficits in zebrafish. Sci. Total Environ. 2023, 857, 159733. [Google Scholar] [CrossRef] [PubMed]
- Thorel, E.; Clergeaud, F.; Jaugeon, L.; Rodrigues, A.M.S.; Lucas, J.; Stien, D.; Lebaron, P. Effect of 10 UV filters on the brine shrimp Artemia salina and themarinemicroalga Tetraselmis sp. Toxics 2020, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Esperanza, M.; Seoane, M.; Rioboo, C.; Herrero, C.; Cid, Á. Differential toxicity of the UV-filters BP-3 and BP-4 in Chlamydomonas reinhardtii: A flow cytometric approach. Sci. Total Environ. 2019, 669, 412–420. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment. Chemosphere 2015, 135, 182–188. [Google Scholar] [CrossRef]
- Zhong, X.; Downs, C.A.; Che, X.; Zhang, Z.; Li, Y.; Liu, B.; Li, Q.; Li, Y.; Gao, H. The toxicological effects of oxybenzone, an active ingredient in suncream personal care products, on prokaryotic alga Arthrospira sp. and eukaryotic alga Chlorella sp. Aquat. Toxicol. 2019, 216, 105295. [Google Scholar] [CrossRef]
- Lee, S.H.; Xiong, J.Q.; Ru, S.; Patil, S.M.; Kurade, M.B.; Govindwar, S.P.; Oh, S.E.; Jeon, B.H. Toxicity of benzophenone-3 and its biodegradation in a freshwater microalga Scenedesmus obliquus. J. Hazard. Mater. 2020, 389, 122149. [Google Scholar] [CrossRef]
- Pablos, M.V.; García-Hortigüela, P.; Fernández, C. Acute and chronic toxicity of emerging contaminants, alone or in combination, in Chlorella vulgaris and Daphnia magna. Environ. Sci. Pollut. Res. 2015, 22, 5417–5424. [Google Scholar] [CrossRef]
- Anido-Varela, L.; Seoane, M.; Esperanza, M.; Cid, Á.; Rioboo, C. Cytotoxicity of BP-3 and BP-4: Blockage of extrusion pumps, oxidative damage and programmed cell death on Chlamydomonas reinhardtii. Aquat. Toxicol. 2022, 251, 106285. [Google Scholar] [CrossRef]
- Rodríguez-Fuentes, G.; Sandoval-Gío, J.J.; Arroyo-Silva, A.; Noreña-Barroso, E.; Escalante-Herrera, K.S.; Olvera-Espinosa, F. Evaluation of the estrogenic and oxidative stress effects of the UV filter 3-benzophenone in zebrafish (Danio rerio) eleuthero-embryos. Ecotoxicol. Environ. Saf. 2015, 115, 14–18. [Google Scholar] [CrossRef]
- Coronado, M.; De Haro, H.; Deng, X.; Rempel, M.A.; Lavado, R.; Schlenk, D. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquat. Toxicol. 2008, 90, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Kitamura, S.; Khota, R.; Sugihara, K.; Fujimoto, N.; Ohta, S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol. Appl. Pharmacol. 2005, 203, 9–17. [Google Scholar] [CrossRef]
- Kunisue, T.; Chen, Z.; Buck Louis, G.M.; Sundaram, R.; Hediger, M.L.; Sun, L.; Kannan, K. Urinary concentrations of benzophenone-type UV filters in U.S. women and their association with endometriosis. Environ. Sci. Technol. 2012, 46, 4624–4632. [Google Scholar] [CrossRef] [Green Version]
- Archana, G.; Dhodapkar, R.; Kumar, A. Offline solid-phase extraction for preconcentration of pharmaceuticals and personal care products in environmental water and their simultaneous determination using the reversed phase high-performance liquid chromatography method. Environ. Monit. Assess. 2016, 188, 512. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, F.L.; Paun, I.; Pirvu, F.; Pascu, L.F.; Niculescu, M.; Galaon, T. Liquid chromatography tandem mass spectrometry method for ultra-trace analysis of organic UV filters in environmental water samples. Rev. Chim. 2020, 71, 92–99. [Google Scholar] [CrossRef]
- Kharbouche, L.; Gil García, M.D.; Lozano, A.; Hamaizi, H.; Martínez Galera, M. Determination of personal care products in water using UHPLC–MS after solid phase extraction with mesoporous silica-based MCM-41 functionalized with cyanopropyl groups. J. Sep. Sci. 2020, 43, 2142–2153. [Google Scholar] [CrossRef]
- Sun, H.; Li, Y.; Huang, C.; Peng, J.; Yang, J.; Sun, X.; Zang, S.; Chen, J.; Zhang, X. Solid-phase extraction based on a molecularly imprinted polymer for the selective determination of four benzophenones in tap and river water. J. Sep. Sci. 2015, 38, 3412–3420. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Mastroianni, N.; Díaz-Cruz, M.S.; Barceló, D. Fully automated determination of nine ultraviolet filters and transformation products in natural waters and wastewaters by on-line solid phase extraction-liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2013, 1294, 106–116. [Google Scholar] [CrossRef]
- Wang, W.; Kannan, K. Mass loading and emission of benzophenone-3 (BP-3) and its derivatives in wastewater treatment plants in New York State, USA. Sci. Total Environ. 2017, 579, 1316–1322. [Google Scholar] [CrossRef]
- Han, C.; Xia, B.; Chen, X.; Shen, J.; Miao, Q.; Shen, Y. Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chem. 2016, 194, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Lukić, J.; Radulović, J.; Lučić, M.; Đurkić, T.; Onjia, A. Chemometric Optimization of Solid-Phase Extraction Followed by Liquid Chromatography-Tandem Mass Spectrometry and Probabilistic Risk Assessment of Ultraviolet Filters in an Urban Recreational Lake. Front. Environ. Sci. 2022, 10, 916916. [Google Scholar] [CrossRef]
- Qiu, Y.Y.; Ding, W.H. Mechanochemically synthesized zeolitic imidazolate framework-8 as sorbent for dispersive solid-phase extraction of benzophenone-type ultraviolet filters in aqueous samples. J. Chromatogr. A 2022, 1681, 463443. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Hu, L.; Liu, J.; Tian, M.; Yang, L. Polyaniline-coated core-shell silica microspheres-based dispersive-solid phase extraction for detection of benzophenone-type UV filters in environmental water samples. Environ. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. A new carbon-based magnetic material for the dispersive solid-phase extraction of UV filters from water samples before liquid chromatography–tandem mass spectrometry analysis. Anal. Bioanal. Chem. 2017, 409, 4181–4194. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, R.; Chen, Z. Metal-organic framework-1210(zirconium/cuprum) modified magnetic nanoparticles for solid phase extraction of benzophenones in soil samples. J. Chromatogr. A 2019, 1607, 460403. [Google Scholar] [CrossRef]
- Medina, A.; Casado-Carmona, F.A.; López-Lorente, Á.I.; Cárdenas, S. Magnetic Graphene Oxide Composite for the Microextraction and Determination of Benzophenones in Water Samples. Nanomaterials 2020, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Vasilas, A.; Chatzimitakos, T.; Sygellou, L.; Stalikas, C. Performance study of a magnetic iron–copper bimetallic material for the removal of an environmental “cocktail” of diverse hazardous organic micropollutants from aqueous samples. Nanotechnol. Environ. Eng. 2021, 6, 66. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, N.; Li, Y.F.; Kunisue, T.; Gao, D.; Kannan, K. Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environ. Sci. Technol. 2011, 45, 3909–3916. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Q.; Jiao, J.; Wu, H. A solidified floating organic drop-dispersive liquid-liquid microextraction based onin situformed fatty acid-based deep eutectic solvents for the extraction of benzophenone-UV filters from water samples. New J. Chem. 2021, 45, 14082–14090. [Google Scholar] [CrossRef]
- Wang, H.; Hu, L.; Liu, X.; Yin, S.; Lu, R.; Zhang, S.; Zhou, W.; Gao, H. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples. J. Chromatogr. A 2017, 1516, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Çabuk, H.; Kavaracı, O. Magnetic retrieval of a switchable hydrophilicity solvent: Fast homogeneous liquid–liquid microextraction for the determination of benzophenone-type UV filters in environmental waters. Int. J. Environ. Anal. Chem. 2022, 102, 2569–2585. [Google Scholar] [CrossRef]
- Ziemblińska-Bernart, J.; Nowak, I.; Rykowska, I. Fast dispersive liquid–liquid microextraction based on magnetic retrieval of in situ formed an ionic liquid for the preconcentration and determination of benzophenone-type UV filters from environmental water samples. J. Iran. Chem. Soc. 2019, 16, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, L.; Zheng, D.; Xia, Z.; Peng, M.; Sun, D.; Hu, X. A Natural Monoterpene Enol for Dispersive Liquid—Liquid Microextraction Based on Solidification of Floating Organic Droplets for Determination of Benzophenone Compounds in Water Samples. Separations 2023, 10, 1. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, Z.; Min, H.; Song, F.; Wang, Y.X.; Shi, W.; Cheng, P. Water Stable Heterometallic Zn-Tb Coordination Polymer for Rapid Detection of the Ultraviolet Filter Benzophenone. Inorg. Chem. 2020, 59, 6729–6735. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Brunete, C.; Miguel, E.; Albero, B.; Tadeo, J.L. Analysis of salicylate and benzophenone-type UV filters in soils and sediments by simultaneous extraction cleanup and gas chromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 4291–4298. [Google Scholar] [CrossRef]
- Camino-Sánchez, F.J.; Zafra-Gómez, A.; Dorival-García, N.; Juárez-Jiménez, B.; Vílchez, J.L. Determination of selected parabens, benzophenones, triclosan and triclocarban in agricultural soils after and before treatment with compost from sewage sludge: A lixiviation study. Talanta 2016, 150, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.N.; da Silva, A.C.; Simão, V.; Merib, J.; Carasek, E. A novel approach to bar adsorptive microextraction: Cork as extractor phase for determination of benzophenone, triclocarban and parabens in aqueous samples. Anal. Chim. Acta 2015, 888, 59–66. [Google Scholar] [CrossRef]
- Almeida, C.; Stepkowska, A.; Alegre, A.; Nogueira, J.M.F. Determination of trace levels of benzophenone-type ultra-violet filters in real matrices by bar adsorptive micro-extraction using selective sorbent phases. J. Chromatogr. A 2013, 1311, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, W.; Hong, Y.; Hu, W.; Li, Z.; Chen, Z. Covalent organic framework-V modified porous polypropylene hollow fiber with detachable dumbbell-shaped structure for stir bar sorptive extraction of benzophenones. J. Chromatogr. A 2022, 1664, 462798. [Google Scholar] [CrossRef]
- Celeiro, M.; Acerbi, R.; Kabir, A.; Furton, K.G.; Llompart, M. Development of an analytical methodology based on fabric phase sorptive extraction followed by gas chromatography-tandem mass spectrometry to determine UV filters in environmental and recreational waters. Anal. Chim. Acta X 2020, 4, 100038. [Google Scholar] [CrossRef] [PubMed]
BPs | Molecular Formula | Structure | LogPow | CAS Number |
---|---|---|---|---|
Benzophenone | C13H10O | 3.18 | 119-61-9 | |
2,4-dihydroxybenzophenone or Benzophenone-1(BP-1) | C13H10O3 | 2.96 | 131-56-6 | |
2,2’,4,4’-tetrahydroxybenzophenone or Benzophenone-2 (BP-2) | C13H10O5 | 2.78 | 131-55-5 | |
2 -hydroxy-4-methoxybenzophenone or Oxybenzone or benzophenone-3 (BP-3) | C14H12O3 | 3.79 | 131-57-7 | |
2-hydroxy-4-methoxybenzophenone-5-sulfonic acid or sulisobenzone or Benzophenone-4 (BP-4) | C14H12O6S | 0.37 | 4065-45-6 | |
2-hydroxy-4-methoxybenzophenone-5-sodium sulfonate or Benzophenone-5 (BP-5) | C14H11NaO6S | - | 6628-37-1 | |
2,2’-dihydroxy-4,4’-dimethoxybenzophenone or Benzophenone-6 (BP-6) | C15H14O5 | 3.90 | 131-54-4 | |
5-chloro-2-hydroxybenzophenone or Benzophenone-7 (BP-7) | C13H9ClO2 | 4.09 | 85-19-8 | |
2,2’-dihydroxy-4-methoxybenzophenone or dioxybenzone or Benzophenone-8 (BP-8) | C14H12O4 | 3.82 | 131-53-3 | |
2,2’-dihydroxy-4,4’-dimethoxy benzophenone-5,5’-disodium sulfonate or Benzophenone-9 (BP-9) | C15H12Na2O11S2 | - | 76656-36-5 | |
2-hydroxy-4-methoxy-4’-methylbenzophenone or Benzophenone-10 (BP-10) | C15H14O3 | 4.07 | 1641-17-4 | |
2-hydroxy-4-octoxybenzophenone or benzophenone-12 (BP-12) | C21H26O3 | 6.96 | 1843-05-6 | |
4-hydroxybenzophenone | C13H10O2 | 3.07 | 1137-42-4 | |
4,4’-dihydroxy-benzophenone | C13H10O3 | 2.19 | 611-99-4 |
Method | Sample | Sorbent | Analytical Technique | BPs | Time for Treatment) | LOD (ng/L) | Recoveries % (RSD%) | Reference |
---|---|---|---|---|---|---|---|---|
SPE and MEPS | Groundwater, river | SPE(C-18) MEPS (syringe packed with C-18) | GC-MS | BP-1, BP-3, BP-8 | - | 34–67 | 96–107 | [16] |
10 | 1800–3200 | |||||||
SPE | River | MCM-41/ MCM-41-CN | UHPLC–MS | BP-1, DHBP, 4-OH-BP | ~20 (3 days for synthesis) | 74.8–106.4 | [67] | |
On-line SPE | River Groundwater, effluent | cross-linked styrene/divinylbenzene polymer | LC-MS/MS | BP-3, BP-1, 4-OH-BP, DHBP, BP-8, BP-2BP-4 | 20 | 0.3–4 | 70–114 | [69] |
SPE | Surface water wastewater | C18 | LC-MS/MS | 2-OH-BP, 4-OH-BP, BP-2, BP-1, DHBP, BP-8 | 70 | 0.59–1.46 1.17–2.93 | 79-98 | [66] |
50 | ||||||||
SPE Solid–liquid extraction | Sludge | methanol | HPLC-MS/MS | BP-3, 4-OH – BP, BP-1, BP-2, BP-8 | ~ 210 | - | 84–105 | [70] |
suspended particulate matter | >210 | 99–108 | ||||||
SPE | wastewater | ~145 | 81–122 | |||||
SPE | River water | C18 | RS-HPLC-DAD | BP | ~120 | 1480 | 80–86 | [65] |
Pressurized liquid extraction and SPE | Seafood | C18 | LC-QqLIT-MS/MS | BP-1, BP-2, BP-3 | - | - | 80.6–107.8 | [71] |
SPE | River water Tap water | Molecularly imprinted polymer | HPLC-DAD | BP-2, BP-1, BP-8, BP-6 | ~50 h (for synthesis) ~40 mins (for extraction) | 250–720 | 86.9–103.3 | [68] |
SPE | Lake water | Oasis HLB 6 mL Vac Cartridges (100 mg sorbent) | LC-MS/MS | BP-1 BP-3 BP-4 4-OH-BP | 280 | 0.04–4.4 | 62–82 | [72] |
SPE | Seawater | C18 | UHPLC MS/MS | BP-3 | - | 11.3–36.4 | 43.3–100 | [31] |
Wastewater | 24.6–555.6 | 26.0–98.5 |
Method | Sample | Sorbent | Analytical Technique | BPs | Time for Treatment (min) | LOD (ng/L) | Recoveries % | Reference |
---|---|---|---|---|---|---|---|---|
Magnetic DSPE | Lake water | Magnetic (Fe3O4)-graphitized carbon black (mGCB) | UHPLC-(QqQ) MS-MS | DHBP, BP4, BP-2, 4OH-BP, BP-1, BP-8, BP-3 | ~120 (2 days for synthesis) | 1–5 | 85–114 | [75] |
Magnetic DμSPE | Swimming pool water | (Fe3O4@SiO2@APTES@GO) | HPLC–(QqQ)MS/MS | 4-OH-BP, BP-8, BP-3, BP-6, BP-1 | ~15 (4 days synthesis) | 2500–8200 | 86–105 | [77] |
DSPE | Surface water River water Seawater | ZIF-8 + methanol | UHPLC-QTOF-MS | BP -3, BP-8, 2-OH-BP, 3-OH- BP, 4-OH-BP | ~12 (~75 for synthesis) | 0.1–7 | 81.2–94.1 | [73] |
MSPE | Soil | MOF-1210 (Zr/Cu)-Fe3O4 + 2% formic acid-acetonitrile | HPLC UV | BP-1, BP-3, BP-6 | ~62 (>4 days for synthesis) | 10–20 | 87.6–113.8 | [76] |
DSPE Fixed Bed | Effluent from WWTP | Acetone—5%, formic acid, Fe-Cu nano | HPLC-DAD | BP-2, BP-6 | ~ 20 (~24 h for synthesis) | - | 84–92 | [78] |
DPSE | River, swimming pool snow water domestic sewage | CSMS@ polyaniline + Methanol | CE-MS/MS | BP-1, BP-2, BP-3, BP-6, BP-8, DHBP | ~30 (>4 days for synthesis) | 0.6–200 | 84.2–101.0 | [74] |
Method | Sample | Sorbent | Analytical Technique | BPs | Time for Treatment (min) | LOD (ng/L) | Recoveries % | Reference |
---|---|---|---|---|---|---|---|---|
DLLME | Water samples | Hydrophobic DES | HPLC-DAD | BP-1, BP-2, BP-3, BP-6 | ~10–15 | 600–1500 | 73.1 to 99.8 | [80] |
DES-ultrasound-assisted DLLME | River water | DES | HPLC-UV | BP-1, BP, BP-3 | ~10–15 | 150–300 | 90.2–103.5 | [81] |
LLE and SPE | Sediment | Methanol (LLE) oasis HLB (SPE) | LC-MS/MS | BP-3, BP-1, BP-8, BP-2, 4-OH-BP | ~200 | 41–61 | 70–116 | [79] |
Sewage sludge | 0.41–0.67 | 38.3 | ||||||
DLLME | Lake water Seawater | Magnetic in situ-formed IL | UHPLC-DAD | BP-1, BP-2, BP-3 | 5 | 12.3–20.0 | 68.0–92.5 | [83] |
LLE | Tap water Stream water Seawater | DEHPA + Fe3O4 | HPLC-UV | BP-1, 4-OH-BP, BP-3 | ~7 | 700–800 | 80–103 | [82] |
DLLME | Tap water River water Domestic wastewater Factory wastewater | α−terpineol | HPLC-DAD | 4OH-BP BP-1 BP BP-4 | ~20 | 120–530 | 75–108.4 | [84] |
Method | Sample | Sorbent | Analytical technique | BPs | Time for Treatment (min) | LOD (ng/L) | Recoveries % | Reference |
---|---|---|---|---|---|---|---|---|
BAmΕ | Aqueous samples | 15 mm—cork-powder-coated polypropylene hollow fibers | HPLC-DAD | BP | 120 (15 h for synthesis) | 500 | 100% | [88] |
7.5 mm (half bar)—cork-powder-coated polypropylene hollow fibers | 200 | 123% | ||||||
SBSE | Soil | COF-V polypropylene hollow fibers | HPLC-UV | BP-1, BP-3, BP-6, Ph-BP | 210–240 (100 h for synthesis) | 20–30 | 73.9–111.7 | [90] |
BAmΕ | Seawater wastewater | P2-polymer-coated stir bar | HPLC–DAD | BP, BP-3, BP-1, 4-OH-BP | ~260 | 300–500 | 76.6–103.5 | [89] |
FPSE | Lake water River water Seawater | Sol–gel-coated sorbent | FPSE-GC/MS | BP-3 | 20 | 4.5 | 94 | [91] |
QuEChERS | Fish samples (<5% lipids) | MgSO4 PSA + Methanol | UHPLC–MS/MS | BP, BP-1, BP-2 BP-3, BP-8, 4-OHBP | ~100 | 0.001–0.122 | 70–166 | [14] |
Fish samples (>5% lipids) | 74–182 | |||||||
Zn-Tb CP | - | CP | Fluorescence | BP | ~30 (~96 h for synthesis) | - | [85] | |
Solid–liquid extraction and SPE | Soil | ethyl acetate–methanol (90%–10%), C18 + anhydrous sodium sulphate | GC-MS | BP-1, BP-3, BP-6, BP-8, 4-OH-BP | ~105 | 0.07–0.10 | Soil 89.8–104.4 | [86] |
Sediment | 0.14–0.28 | Sediment 88.4–105.3 | ||||||
Ultrasound-assisted Solid–liquid extraction | Soils Wastewater treatment plant compost | methanol | UHPLC-MS | BP-1, BP-2, BP-3, BP-6, BP-8 | ~60 | 0.05–0.40 | 83–107 | [87] |
0.06–0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrila, A.A.; Dasteridis, I.S.; Tzimas, A.A.; Chatzimitakos, T.G.; Stalikas, C.D. Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules 2023, 28, 1229. https://doi.org/10.3390/molecules28031229
Gavrila AA, Dasteridis IS, Tzimas AA, Chatzimitakos TG, Stalikas CD. Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules. 2023; 28(3):1229. https://doi.org/10.3390/molecules28031229
Chicago/Turabian StyleGavrila, Andromachi A., Ioannis S. Dasteridis, Alkiviadis A. Tzimas, Theodoros G. Chatzimitakos, and Constantine D. Stalikas. 2023. "Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis" Molecules 28, no. 3: 1229. https://doi.org/10.3390/molecules28031229
APA StyleGavrila, A. A., Dasteridis, I. S., Tzimas, A. A., Chatzimitakos, T. G., & Stalikas, C. D. (2023). Benzophenones in the Environment: Occurrence, Fate and Sample Preparation in the Analysis. Molecules, 28(3), 1229. https://doi.org/10.3390/molecules28031229