Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor
Abstract
:1. Introduction
2. Results
2.1. Degradation of Pharmaceuticals in Hospital WWTP Effluent
2.2. Organic Load Evolution
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Photocatalytic Experiments
3.3. Determination of Physicochemical Parameters
3.4. Extraction of Wastewater Samples
3.5. LTQ-FT Orbitrap Instrument Operational Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014, 466–467, 421–438. [Google Scholar] [CrossRef]
- Prieto-Rodríguez, L.; Oller, I.; Klamerth, N.; Agüera, A.; Rodríguez, E.M.; Malato, S. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Res. 2013, 47, 1521–1528. [Google Scholar] [CrossRef]
- Sousa, M.A.; Gonçalves, C.; Vilar, V.J.P.; Boaventura, R.A.R.; Alpendurada, M.F. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem. Eng. J. 2012, 198–199, 301–309. [Google Scholar] [CrossRef]
- van Doorslaer, X.; Dewulf, J.; de Maerschalk, J.; van Langenhove, H.; Demeestere, K. Heterogeneous photocatalysis of moxifloxacin in hospital effluent: Effect of selected matrix constituents. Chem. Eng. J. 2015, 261, 9–16. [Google Scholar] [CrossRef]
- Kanakaraju, D.; Glass, B.D.; Oelgemöller, M. Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ. Chem. Lett. 2014, 12, 27–47. [Google Scholar] [CrossRef]
- Mahmoud, W.M.M.; Rastogi, T.; Kümmerer, K. Application of titanium dioxide nanoparticles as a photocatalyst for the removal of micropollutants such as pharmaceuticals from water. Curr. Opin. Green Sustain. Chem. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Salimi, M.; Esrafili, A.; Gholami, M.; Jafari, A.J.; Kalantary, R.R.; Farzadkia, M.; Kermani, M.; Sobhi, H.R. Contaminants of emerging concern: A review of new approach in AOP technologies. Environ. Monit. Assess. 2017, 189, 414. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Hapeshi, E.; Michael, C.; Varela, A.R.; Kyriakou, S.; Manaia, C.M.; Fatta-Kassinos, D. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci. Water Res. 2012, 46, 5621–5634. [Google Scholar] [CrossRef] [PubMed]
- Rapti, I.; Bairamis, F.; Konstantinou, I. g-C3N4/MoS2 Heterojunction for Photocatalytic Removal of Phenol and Cr(VI). Photochem 2021, 1, 358–370. [Google Scholar] [CrossRef]
- Bairamis, F.; Konstantinou, I. WO3 fibers/ g-C3N4 z-scheme heterostructure photocatalysts for simultaneous oxidation/reduction of phenol/Cr(VI) in aquatic media. Catalysts 2021, 11, 792. [Google Scholar] [CrossRef]
- Zhong, J.; Jiang, H.; Wang, Z.; Yu, Z.; Wang, L.; Mueller, J.F.; Guo, J. Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environ. Sci. Ecotechnol. 2021, 5, 100079. [Google Scholar] [CrossRef]
- Kane, A.; Chafiq, L.; Dalhatou, S.; Bonnet, P.; Nasr, M.; Gaillard, N.; Dikdim, J.M.D.; Monier, G.; Assadie, A.A.; Zeghioud, H. g-C3N4/TiO2 S-scheme heterojunction photocatalyst with enhanced photocatalytic Carbamazepine degradation and mineralization. J. Photochem. Photobiol. A Chem. 2022, 430, 113971. [Google Scholar] [CrossRef]
- Gao, B.; Wang, J.; Dou, M.; Xu, C.; Huang, X. Enhanced photocatalytic removal of amoxicillin with Ag/TiO2/mesoporous g-C3N4 under visible light: Property and mechanistic studies. Environ. Sci. Pollut. Res. 2020, 27, 7025–7039. [Google Scholar] [CrossRef] [PubMed]
- Malato, S.; Maldonado, M.I.; Fernández-Ibáñez, P.; Oller, I.; Polo, I.; Sánchez-Moreno, R. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Mater. Sci. Semicond. Process. 2016, 42, 15–23. [Google Scholar] [CrossRef]
- Antonopoulou, M.; Kosma, C.; Albanis, T.; Konstantinou, I. An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale. Sci. Total Environ. 2021, 765, 144163. [Google Scholar] [CrossRef]
- Abdel-Maksoud, Y.; Imam, E.; Ramadan, A. TiO2 solar photocatalytic reactor systems: Selection of reactor design for scale-up and commercialization—Analytical review. Catalysts 2016, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Matos, J.; Miralles-Cuevas, S.; Ruíz-Delgado, A.; Oller, I.; Malato, S. Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon 2017, 122, 361–373. [Google Scholar] [CrossRef]
- Rapti, I.; Kosma, C.; Albanis, T.; Konstantinou, I. Solar photocatalytic degradation of inherent pharmaceutical residues in real hospital WWTP effluents using titanium dioxide on a CPC pilot scale reactor. Catal. Today, 2023; in press. [Google Scholar] [CrossRef]
- Konstas, P.S.; Kosma, C.; Konstantinou, I.; Albanis, T. Photocatalytic treatment of pharmaceuticals in real hospital wastewaters for effluent quality amelioration. Water 2019, 11, 2165. [Google Scholar] [CrossRef] [Green Version]
- Kosma, C.I.; Kapsi, M.G.; Konstas, P.S.G.; Trantopoulos, E.P.; Boti, V.I.; Konstantinou, I.K.; Albanis, T.A. Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environ. Res. 2020, 191, 110152. [Google Scholar] [CrossRef]
- Dou, M.; Wang, J.; Gao, B.; Xu, C.; Yang, F. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation. Chem. Eng. J. 2020, 383, 123134. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Sampaio, M.J.; Ribeiro, A.R.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl. Catal. B Environ. 2019, 248, 184–192. [Google Scholar] [CrossRef]
- Valencia, S.; Marín, J.M.; Restrepo, G.; Frimmel, F.H. Evaluation of natural organic matter changes fromLake Hohloh by three-dimensional excitation-emission matrix fluorescence spectroscopy during TiO2/UV process. Water Res. 2014, 51, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Mostofa, K.M.G.; Liu, C.-Q.; Yoshioka, T.; Vione, D.; Zhang, Y.; Sakugawa, H. Fluorescent Dissolved Organic Matter in Natural Waters. In Photobiogeochemistry of Organic Matter. Environmental Science and Engineerin; Mostofa, K., Yoshioka, T., Mottaleb, A., Vione, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 429–559. [Google Scholar] [CrossRef]
- Hong, G.; Lee, J.C.; Robinson, J.T.; Raaz, U.; Xie, L.; Huang, N.F.; Cooke, J.P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat. Med. 2012, 18, 1841–1846. [Google Scholar] [CrossRef] [PubMed]
- Amat, A.M.; Arques, A.; García-Ripoll, A.; Santos-Juanes, L.; Vicente, R.; Oller, I.; Maldonado, M.I.; Malato, S. A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Res. 2009, 43, 784–792. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Parameters | Min | Max | S.D. | Median |
---|---|---|---|---|
pH | 5.5 | 7.3 | 0.58 | 6.65 |
Temperature (°C) | 12.2 | 25.7 | 3.8 | 21.8 |
Conductivity (μS cm−1) | 1060 | 1959 | 300.9 | 1305 |
Total Dissolved solids (TDS, mg L−1) | 308 | 1951 | 646.62 | 390 |
Turbidity (NTU) | 4.1 | 16.5 | 3.5 | 10.4 |
BOD5 (mg L−1) | 4.2 | 48.5 | 18.37 | 12.7 |
COD (mg L−1) | 5 | 186 | 67.4 | 36.5 |
Abs254 | 0.16 | 0.31 | 0.03 | 0.25 |
Total phenols (mg L−1) | 0.09 | 6.9 | 2.73 | 1.45 |
NO3− (mg L−1) | 1.89 | 50.9 | 19.2 | 26.4 |
PO43− (mg L−1) | 2.96 | 50.6 | 12.64 | 10.04 |
Cl− (mg L−1) | 93.5 | 569.03 | 43.04 | 186.35 |
SO4− (mg L−1) | 1.57 | 45.7 | 8.1 | 12.7 |
Amisulpride | O-Desmethyl Venlafaxine | Venlafaxine | Carbamazepine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cg-C3N4 (mg L−1)/(AE, kJ L−1) | k (L kJ−1) | R2 | %R | k (L kJ−1) | R2 | %R | k (L kJ−1) | R2 | %R | k (L kJ−1) | R2 | %R |
100/(69.93) | 0.039 | 0.9777 | 94 | 0.016 | 0.9947 | 69 | 0.018 | 0.9833 | 68 | 0.03 | 0.9747 | 83 |
200/(67.61) (1st cycle) | 0.044 | 0.965 | 95 | 0.013 | 0.9861 | 56 | 0.019 | 0.9958 | 66 | 0.04 | 0.9927 | 87 |
300/(45.78) | 0.067 | 0.9746 | 96 | 0.016 | 0.9867 | 54 | 0.029 | 0.9818 | 72 | 0.014 | 0.9889 | 49 |
200/(62.72) (2nd cycle) | 0.018 | 0.9889 | 68 | 0.009 | 0.9648 | 39 | 0.008 | 0.9743 | 35 | 0.034 | 0.9851 | 84 |
g-C3N4 100 (mg L−1) | g-C3N4 300 (mg L−1) | |||||
---|---|---|---|---|---|---|
k (L kJ−1) | R2 | %R (AE) | k (L kJ−1) | R2 | %R (AE) | |
Valsartan | 0.03 | 0.9857 | 84 (69.93) | 0.037 | 0.9721 | 84 (45.78) |
Citalopram | 0.029 | 0.9345 | 86 (69.93) | 0.026 | 0.9742 | 74 (45.78) |
Quetiapine | 0.133 | 0.9858 | 86 (13.76) | |||
Trimethoprim | 0.049 | 0.9517 | 91 (45.78) | |||
Mirtazapine | 0.018 | 0.9997 | 34 (23.93) | |||
Atenolol | 0.021 | 0.9716 | 59 (45.78) |
Parameter | 100 mg L−1 g-C3N4 | 200 mg L−1 g-C3N4 (1st cycle) | 200 mg L−1 g-C3N4 (2nd cycle) | 300 mg L−1 g-C3N4 | ||||
---|---|---|---|---|---|---|---|---|
Initial | After Treatment | Initial | After Treatment | Initial | After Treatment | Initial | After Treatment | |
BOD5 (mg L−1) | 12.7 | 9.0 | 7.0 | 4.5 | 6.2 | 3.0 | 13.3 | 8.5 |
COD (mg L−1) | 52.0 | 23.0 | 12.0 | 6.5 | 34.0 | 6.3 | 47.0 | 21.0 |
BOD5/COD | 0.24 | 0.39 | 0.58 | 0.69 | 0.18 | 0.48 | 0.28 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapti, I.; Kourkouta, T.; Malisova, E.-M.; Albanis, T.; Konstantinou, I. Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor. Molecules 2023, 28, 1170. https://doi.org/10.3390/molecules28031170
Rapti I, Kourkouta T, Malisova E-M, Albanis T, Konstantinou I. Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor. Molecules. 2023; 28(3):1170. https://doi.org/10.3390/molecules28031170
Chicago/Turabian StyleRapti, Ilaeira, Theodora Kourkouta, Evrydiki-Maria Malisova, Triantafyllos Albanis, and Ioannis Konstantinou. 2023. "Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor" Molecules 28, no. 3: 1170. https://doi.org/10.3390/molecules28031170
APA StyleRapti, I., Kourkouta, T., Malisova, E. -M., Albanis, T., & Konstantinou, I. (2023). Photocatalytic Degradation of Inherent Pharmaceutical Concentration Levels in Real Hospital WWTP Effluents Using g-C3N4 Catalyst on CPC Pilot Scale Reactor. Molecules, 28(3), 1170. https://doi.org/10.3390/molecules28031170