Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrolyte Composition Impact on the Electroremoval of Ammonium Chloride
2.2. Impacts of Varying Process Parameters on the Electroremoval of Ammonium Chloride
2.2.1. Effect of Chloride Concentration
2.2.2. Effect of Applied Current Intensity
2.2.3. Effect of Initial Ammonium Concentration
2.3. Degradation Mechanism and Nitrogen Molar Balance
3. Materials and Methods
3.1. Reagents
3.2. Electrochemical Oxidation Experiments
3.3. Total Nitrogen Compound (NTOT) Removal and Intermediates Analyses
3.4. Degradation Mechanism and Nitrogen Molar Balance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Grattieri, M.; Minteer, S.D. Microbial Fuel Cells in Saline and Hypersaline Environments: Advancements, Challenges and Future Perspectives. Bioelectrochemistry 2018, 120, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Roberts, D.J. A Review of Anaerobic Treatment of Saline Wastewater. Environ. Technol. 2010, 31, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Song, L.; Chen, X.; Li, P. An Exploration of Seaweed Polysaccharides Stimulating Denitrifying Bacteria for Safer Nitrate Removal. Molecules 2021, 26, 3390. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, H.; Bañuelos, G.; Yan, B.; Zhou, Q.; Yu, X.; Cheng, X. Constructed Wetlands for Saline Wastewater Treatment: A Review. Ecol. Eng. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Lefebvre, O.; Moletta, R. Treatment of Organic Pollution in Industrial Saline Wastewater: A Literature Review. Water Res. 2006, 40, 3671–3682. [Google Scholar] [CrossRef]
- Lü, X.; Shao, S.; Wu, J.; Zhao, Y.; Lu, B.; Li, J.; Liang, L.; Tian, L. Recovery of Acid and Alkaline from Industrial Saline Wastewater by Bipolar Membrane Electrodialysis under High-Chemical Oxygen Demand Concentration. Molecules 2022, 27, 7308. [Google Scholar] [CrossRef]
- Yang, J.; Spanjers, H.; Jeison, D.; Van Lier, J.B. Impact of Na+ on Biological Wastewater Treatment and the Potential of Anaerobic Membrane Bioreactors: A Review. Crit. Rev. Environ. Sci. Technol. 2013, 43, 2722–2746. [Google Scholar] [CrossRef]
- Zhang, M.; Han, F.; Chen, H.; Yao, J.; Li, Q.; Li, Z.; Zhou, W. The Effect of Salinity on Ammonium-Assimilating Biosystems in Hypersaline Wastewater Treatment. Sci. Total Environ. 2022, 829, 154622. [Google Scholar] [CrossRef]
- Pounsamy, M.; Somasundaram, S.; Palanivel, S.; Balasubramani, R.; Chang, S.W.; Nguyen, D.D.; Ganesan, S. A Novel Protease-Immobilized Carbon Catalyst for the Effective Fragmentation of Proteins in High-TDS Wastewater Generated in Tanneries: Spectral and Electrochemical Studies. Environ. Res. 2019, 172, 408–419. [Google Scholar] [CrossRef]
- Yurtsever, A.; Calimlioglu, B.; Görür, M.; Çınar, Ö.; Sahinkaya, E. Effect of NaCl Concentration on the Performance of Sequential Anaerobic and Aerobic Membrane Bioreactors Treating Textile Wastewater. Chem. Eng. J. 2016, 287, 456–465. [Google Scholar] [CrossRef]
- Sun, J.; Liu, L.; Yang, F. Electro-Enhanced Chlorine-Mediated Ammonium Nitrogen Removal Triggered by an Optimized Catalytic Anode for Sustainable Saline Wastewater Treatment. Sci. Total Environ. 2021, 776, 146035. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Teng, H.-J.; Guo, J.-Z.; Wang, Y.-X.; Li, B. Enhanced Removal of Cr(VI) by Nitrogen-Doped Hydrochar Prepared from Bamboo and Ammonium Chloride. Bioresour. Technol. 2021, 342, 126028. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.; Ebrahimi, S.; Zhu, Y.; Wang, C.; Hofmann, R.; Andrews, S. A Comparison of Sodium Sulfite, Ammonium Chloride, and Ascorbic Acid for Quenching Chlorine Prior to Disinfection Byproduct Analysis. Water Supply 2021, 21, 2313–2323. [Google Scholar] [CrossRef]
- Akpanyung, K.; Loto, R.; Fajobi, M. An Overview of Ammonium Chloride (NH 4 Cl) Corrosion in the Refining Unit. J. Phys. Conf. Ser. 2019, 1378, 022089. [Google Scholar] [CrossRef]
- Miladinovic, N.; Weatherley, L.R.; López-Ruiz, J.L. Ammonia Removal from Saline Wastewater by Ion Exchange. Water Air Soil Pollut. Focus 2004, 4, 169–177. [Google Scholar] [CrossRef]
- Candido, L.; Gomes, J.A.C.P. Evaluation of Anode Materials for the Electro-Oxidation of Ammonia and Ammonium Ions. Mater. Chem. Phys. 2011, 129, 1146–1151. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, X.; Li, X.; Jiang, Y.; Li, Y.; Liang, Y. Review of Separation Methods for the Determination of Ammonium/Ammonia in Natural Water. Trends Environ. Anal. Chem. 2020, 27, e00098. [Google Scholar] [CrossRef]
- Wasielewski, S.; Rott, E.; Minke, R.; Steinmetz, H. Application of Natural Clinoptilolite for Ammonium Removal from Sludge Water. Molecules 2020, 26, 114. [Google Scholar] [CrossRef]
- Batley, G.E.; Simpson, S.L. Development of Guidelines for Ammonia in Estuarine and Marine Water Systems. Mar. Pollut. Bull. 2009, 58, 1472–1476. [Google Scholar] [CrossRef]
- Huang, J.; Kankanamge, N.R.; Chow, C.; Welsh, D.T.; Li, T.; Teasdale, P.R. Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. J. Environ. Sci. 2018, 63, 174–197. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating Biochar and Its Modifications for the Removal of Ammonium, Nitrate, and Phosphate in Water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef] [PubMed]
- Mirvish, S.S. N-Nitroso Compounds, Nitrite, and Nitrate: Possible Implications for the Causation of Human Cancer. In Proceedings of the Conference on Nitrogen As a Water Pollutant; Elsevier: Amsterdam, The Netherlands, 2013; pp. 195–207. [Google Scholar]
- Sevda, S.; Sreekishnan, T.R.; Pous, N.; Puig, S.; Pant, D. Bioelectroremediation of Perchlorate and Nitrate Contaminated Water: A Review. Bioresour. Technol. 2018, 255, 331–339. [Google Scholar] [CrossRef]
- Carneiro Fidélis Silva, L.; Santiago Lima, H.; Antônio de Oliveira Mendes, T.; Sartoratto, A.; de Paula Sousa, M.; Suhett de Souza, R.; Oliveira de Paula, S.; Maia de Oliveira, V.; Canêdo da Silva, C. Heterotrophic Nitrifying/Aerobic Denitrifying Bacteria: Ammonium Removal under Different Physical-Chemical Conditions and Molecular Characterization. J. Environ. Manag. 2019, 248, 109294. [Google Scholar] [CrossRef]
- López-Rosales, L.; López-García, P.; Benyachou, M.A.; Molina-Miras, A.; Gallardo-Rodríguez, J.J.; Cerón-García, M.C.; Sánchez Mirón, A.; García-Camacho, F. Treatment of Secondary Urban Wastewater with a Low Ammonium-Tolerant Marine Microalga Using Zeolite-Based Adsorption. Bioresour. Technol. 2022, 359, 127490. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; Szczuka, A.; Jiang, R.; Mitch, W.A.; Criddle, C.S. Optimization of Reverse Osmosis Operational Conditions to Maximize Ammonia Removal from the Effluent of an Anaerobic Membrane Bioreactor. Environ. Sci. Water Res. Technol. 2021, 7, 739–747. [Google Scholar] [CrossRef]
- Jafarinejad, S.; Park, H.; Mayton, H.; Walker, S.L.; Jiang, S.C. Concentrating Ammonium in Wastewater by Forward Osmosis Using a Surface Modified Nanofiltration Membrane. Environ. Sci. Water Res. Technol. 2019, 5, 246–255. [Google Scholar] [CrossRef]
- Dey, S.; Basha, S.R.; Babu, G.V.; Nagendra, T. Characteristic and Biosorption Capacities of Orange Peels Biosorbents for Removal of Ammonia and Nitrate from Contaminated Water. Clean. Mater. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Adimasu, Y. Improving the Performance of Graphite Anode in a Microbial Fuel Cell via PANI Encapsulated α-MnO2 Composite Modification for Efficient Power Generation and Methyl Red Removal. Chem. Eng. J. Adv. 2022, 10, 100283. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S. Optimization of Polyvinyl Alcohol Binder on PANI Coated Pencil Graphite Electrode in Doubled Chamber Microbial Fuel Cell for Glucose Biosensor. Sens. Bio-Sens. Res. 2022, 36, 100484. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S. A Review on Advancements of Nanocomposites as Efficient Anode Modifier Catalyst for Microbial Fuel Cell Performance Improvement. J. Chem. Rev. 2021, 3, 320–344. [Google Scholar]
- Leone, V.; Canzano, S.; Iovino, P.; Capasso, S. Sorption of Humic Acids by a Zeolite-Feldspar-Bearing Tuff in Batch and Fixed-Bed Column. J. Porous Mater. 2012, 19, 449–453. [Google Scholar] [CrossRef]
- Fenti, A.; Jin, Y.; Rhoades, A.J.H.; Dooley, G.P.; Iovino, P.; Salvestrini, S.; Musmarra, D.; Mahendra, S.; Peaslee, G.F.; Blotevogel, J. Performance Testing of Mesh Anodes for in Situ Electrochemical Oxidation of PFAS. Chem. Eng. J. Adv. 2022, 9, 100205. [Google Scholar] [CrossRef]
- Li, Y.; Shi, S.; Cao, H.; Wu, X.; Zhao, Z.; Wang, L. Bipolar Membrane Electrodialysis for Generation of Hydrochloric Acid and Ammonia from Simulated Ammonium Chloride Wastewater. Water Res. 2016, 89, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.; Yadav, M.K.; Gupta, A.K.; Dubey, B.K. Chlorine Mediated Indirect Electro-Oxidation of Ammonia Using Non-Active PbO2 Anode: Influencing Parameters and Mechanism Identification. Sep. Purif. Technol. 2020, 247, 116910. [Google Scholar] [CrossRef]
- Chianese, S.; Fenti, A.; Iovino, P.; Musmarra, D.; Salvestrini, S. Sorption of Organic Pollutants by Humic Acids: A Review. Molecules 2020, 25, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovino, P.; Chianese, S.; Canzano, S.; Prisciandaro, M.; Musmarra, D. Photodegradation of Diclofenac in Wastewaters. Desalin. Water Treat. 2017, 61, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Bringas, E.; Saiz, J.; Ortiz, I. Kinetics of Ultrasound-Enhanced Electrochemical Oxidation of Diuron on Boron-Doped Diamond Electrodes. Chem. Eng. J. 2011, 172, 1016–1022. [Google Scholar] [CrossRef]
- Angar, Y.; Djelali, N.-E.; Kebbouche-Gana, S. Contribution to the Study of the Ammonium Electro-Oxidation in Aqueous Solution. Desalin. Water Treat. 2017, 63, 212–220. [Google Scholar] [CrossRef]
- Salvestrini, S.; Fenti, A.; Chianese, S.; Iovino, P.; Musmarra, D. Electro-Oxidation of Humic Acids Using Platinum Electrodes: An Experimental Approach and Kinetic Modelling. Water 2020, 12, 2250. [Google Scholar] [CrossRef]
- Ghimire, U.; Jang, M.; Jung, S.; Park, D.; Park, S.; Yu, H.; Oh, S.-E. Electrochemical Removal of Ammonium Nitrogen and COD of Domestic Wastewater Using Platinum Coated Titanium as an Anode Electrode. Energies 2019, 12, 883. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-W.; Kim, Y.-J.; Kim, I.-T.; Park, G.-I.; Lee, E.-H. Electrochemical Conversion Characteristics of Ammonia to Nitrogen. Water Res. 2006, 40, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Capasso, S.; Salvestrini, S.; Roviello, V.; Trifuoggi, M.; Iovino, P. Electrochemical Removal of Humic Acids from Water Using Aluminum Anode: Influence of Chloride Ion and Current Parameters. J. Chem. 2019, 2019, 5401475. [Google Scholar] [CrossRef]
- Srivastava, A.; Parida, V.K.; Majumder, A.; Gupta, B.; Gupta, A.K. Treatment of Saline Wastewater Using Physicochemical, Biological, and Hybrid Processes: Insights into Inhibition Mechanisms, Treatment Efficiencies and Performance Enhancement. J. Environ. Chem. Eng. 2021, 9, 105775. [Google Scholar] [CrossRef]
- Wilk, B.K.; Szopińska, M.; Luczkiewicz, A.; Sobaszek, M.; Siedlecka, E.; Fudala-Ksiazek, S. Kinetics of the Organic Compounds and Ammonium Nitrogen Electrochemical Oxidation in Landfill Leachates at Boron-Doped Diamond Anodes. Materials 2021, 14, 4971. [Google Scholar] [CrossRef] [PubMed]
- Díaz, V.; Ibáñez, R.; Gómez, P.; Urtiaga, A.M.; Ortiz, I. Kinetics of Electro-Oxidation of Ammonia-N, Nitrites and COD from a Recirculating Aquaculture Saline Water System Using BDD Anodes. Water Res. 2011, 45, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R.; Adimasu, Y. Biosynthesized α-MnO2-Based Polyaniline Binary Composite as Efficient Bioanode Catalyst for High-Performance Microbial Fuel Cell. All Life 2021, 14, 541–568. [Google Scholar] [CrossRef]
- Dessie, Y.; Tadesse, S.; Eswaramoorthy, R.; Abdisa, E. Bimetallic Mn–Ni Oxide Nanoparticles: Green Synthesis, Optimization and Its Low-Cost Anode Modifier Catalyst in Microbial Fuel Cell. Nano-Struct. Nano-Objects 2021, 25, 100663. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process Saf. Environ. Prot. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Bagastyo, A.Y.; Novitasari, D.; Nurhayati, E.; Direstiyani, L.C. Impact of Sulfate Ion Addition on Electrochemical Oxidation of Anaerobically Treated Landfill Leachate Using Boron-Doped Diamond Anode. Res. Chem. Intermed. 2020, 46, 4869–4881. [Google Scholar] [CrossRef]
- Kapałka, A.; Joss, L.; Anglada, Á.; Comninellis, C.; Udert, K.M. Direct and Mediated Electrochemical Oxidation of Ammonia on Boron-Doped Diamond Electrode. Electrochem. Commun. 2010, 12, 1714–1717. [Google Scholar] [CrossRef]
- Zöllig, H.; Fritzsche, C.; Morgenroth, E.; Udert, K.M. Direct Electrochemical Oxidation of Ammonia on Graphite as a Treatment Option for Stored Source-Separated Urine. Water Res. 2015, 69, 284–294. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y. Ammonia Removal in Electrochemical Oxidation: Mechanism and Pseudo-Kinetics. J. Hazard. Mater. 2009, 161, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Chiang, L.-C.; Chang, J.-E.; Wen, T.-C. Indirect Oxidation Effect in Electrochemical Oxidation Treatment of Landfill Leachate. Water Res. 1995, 29, 671–678. [Google Scholar] [CrossRef]
- Zhang, C.; He, D.; Ma, J.; Waite, T.D. Active Chlorine Mediated Ammonia Oxidation Revisited: Reaction Mechanism, Kinetic Modelling and Implications. Water Res. 2018, 145, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.-J.; Huang, Y.-H.; Huang, C.P. In-Situ Electrochemical Formation of Nickel Oxyhydroxide (NiOOH) on Metallic Nickel Foam Electrode for the Direct Oxidation of Ammonia in Aqueous Solution. Electrochim. Acta 2018, 281, 410–419. [Google Scholar] [CrossRef]
- Czarnetzki, L.R.; Janssen, L.J.J. Formation of Hypochlorite, Chlorate and Oxygen during NaCl Electrolysis from Alkaline Solutions at an RuO2/TiO2 Anode. J. Appl. Electrochem. 1992, 22, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Cornejo, O.M.; Murrieta, M.F.; Castañeda, L.F.; Nava, J.L. Characterization of the Reaction Environment in Flow Reactors Fitted with BDD Electrodes for Use in Electrochemical Advanced Oxidation Processes: A Critical Review. Electrochim. Acta 2020, 331, 135373. [Google Scholar] [CrossRef]
- Periyasamy, S.; Muthuchamy, M. Electrochemical Oxidation of Paracetamol in Water by Graphite Anode: Effect of PH, Electrolyte Concentration and Current Density. J. Environ. Chem. Eng. 2018, 6, 7358–7367. [Google Scholar] [CrossRef]
- Yao, J.; Mei, Y.; Xia, G.; Lu, Y.; Xu, D.; Sun, N.; Wang, J.; Chen, J. Process Optimization of Electrochemical Oxidation of Ammonia to Nitrogen for Actual Dyeing Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2931. [Google Scholar] [CrossRef] [Green Version]
- Pauss, A.; Andre, G.; Perrier, M.; Guiot, S.R. Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process. Appl. Environ. Microbiol. 1990, 56, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Moo-Young, M.; Blanch, H.W. Design of Biochemical Reactors Mass Transfer Criteria for Simple and Complex Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 1–69. [Google Scholar]
- Perry, R.H.; Green, D.W.; Maloney, J.O. Perry’s Chemical Engineer’s Handbook Chemical Engineer’s Handbook; McGraw-Hill: New York, NY, USA, 1984. [Google Scholar]
- Joshi, J.B.; Sharma, M.M. A Circulation Cell Model for Bubble Columns. Chem. Eng. Res. Des. 1979, 57, 244–251. [Google Scholar]
- Pérez, G.; Saiz, J.; Ibañez, R.; Urtiaga, A.M.; Ortiz, I. Assessment of the Formation of Inorganic Oxidation By-Products during the Electrocatalytic Treatment of Ammonium from Landfill Leachates. Water Res. 2012, 46, 2579–2590. [Google Scholar] [CrossRef]
- Mendrinou, P.; Hatzikioseyian, A.; Kousi, P.; Oustadakis, P.; Tsakiridis, P.; Remoundaki, E. Simultaneous Removal of Soluble Metal Species and Nitrate from Acidic and Saline Industrial Wastewater in a Pilot-Scale Biofilm Reactor. Environ. Process. 2021, 8, 1481–1499. [Google Scholar] [CrossRef]
- Yan, Z.-Q.; Zeng, L.-M.; Li, Q.; Liu, T.-Y.; Matsuyama, H.; Wang, X.-L. Selective Separation of Chloride and Sulfate by Nanofiltration for High Saline Wastewater Recycling. Sep. Purif. Technol. 2016, 166, 135–141. [Google Scholar] [CrossRef]
- Wang, K.; Mao, R.; Liu, R.; Zhang, J.; Zhao, X. Sulfur-Dopant-Promoted Electrocatalytic Reduction of Nitrate by a Self-Supported Iron Cathode: Selectivity, Stability, and Underlying Mechanism. Appl. Catal. B Environ. 2022, 319, 121862. [Google Scholar] [CrossRef]
- Rajkumar, D.; Guk Kim, J.; Palanivelu, K. Indirect Electrochemical Oxidation of Phenol in the Presence of Chloride for Wastewater Treatment. Chem. Eng. Technol. 2005, 28, 98–105. [Google Scholar] [CrossRef]
- Michels, N.-L.; Kapałka, A.; Abd-El-Latif, A.A.; Baltruschat, H.; Comninellis, C. Enhanced Ammonia Oxidation on BDD Induced by Inhibition of Oxygen Evolution Reaction. Electrochem. Commun. 2010, 12, 1199–1202. [Google Scholar] [CrossRef]
- Radjenovic, J.; Petrovic, M. Removal of Sulfamethoxazole by Electrochemically Activated Sulfate: Implications of Chloride Addition. J. Hazard. Mater. 2017, 333, 242–249. [Google Scholar] [CrossRef]
- Azizi, O.; Hubler, D.; Schrader, G.; Farrell, J.; Chaplin, B.P. Mechanism of Perchlorate Formation on Boron-Doped Diamond Film Anodes. Environ. Sci. Technol. 2011, 45, 10582–10590. [Google Scholar] [CrossRef]
- Cooper, M.; Gerardine, G. Hydrogen Production from the Electro-Oxidation of Ammonia Catalyzed by Platinum and Rhodium on Raney Nickel Substrate. J. Electrochem. Soc. 2006, 153, A1894. [Google Scholar] [CrossRef]
- Bonnin, E.P.; Biddinger, E.J.; Botte, G.G. Effect of Catalyst on Electrolysis of Ammonia Effluents. J. Power Sources 2008, 182, 284–290. [Google Scholar] [CrossRef]
- Zhu, X.; Ni, J.; Lai, P. Advanced Treatment of Biologically Pretreated Coking Wastewater by Electrochemical Oxidation Using Boron-Doped Diamond Electrodes. Water Res. 2009, 43, 4347–4355. [Google Scholar] [CrossRef] [PubMed]
- Pérez, G.; Fernández-Alba, A.R.; Urtiaga, A.M.; Ortiz, I. Electro-Oxidation of Reverse Osmosis Concentrates Generated in Tertiary Water Treatment. Water Res. 2010, 44, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Sieira, B.J.; Montes, R.; Touffet, A.; Rodil, R.; Cela, R.; Gallard, H.; Quintana, J.B. Chlorination and Bromination of 1,3-Diphenylguanidine and 1,3-Di-o-Tolylguanidine: Kinetics, Transformation Products and Toxicity Assessment. J. Hazard. Mater. 2020, 385, 121590. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Segura, S.; Mostafa, E.; Baltruschat, H. Electrogeneration of Inorganic Chloramines on Boron-Doped Diamond Anodes during Electrochemical Oxidation of Ammonium Chloride, Urea and Synthetic Urine Matrix. Water Res. 2019, 160, 107–117. [Google Scholar] [CrossRef]
- Anglada, A.; Urtiaga, A.; Ortiz, I. Pilot Scale Performance of the Electro-Oxidation of Landfill Leachate at Boron-Doped Diamond Anodes. Environ. Sci. Technol. 2009, 43, 2035–2040. [Google Scholar] [CrossRef]
- Pressley, T.A.; Bishop, D.F.; Roan, S.G. Ammonia-Nitrogen Removal by Breakpoint Chlorination. Environ. Sci. Technol. 1972, 6, 622–628. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Blatchley, E.R.; Wang, X.; Ren, P. UV/Chlorine Process for Ammonia Removal and Disinfection by-Product Reduction: Comparison with Chlorination. Water Res. 2015, 68, 804–811. [Google Scholar] [CrossRef]
- Piya-areetham, P.; Shenchunthichai, K.; Hunsom, M. Application of Electrooxidation Process for Treating Concentrated Wastewater from Distillery Industry with a Voluminous Electrode. Water Res. 2006, 40, 2857–2864. [Google Scholar] [CrossRef]
- Radha, K.V.; Sridevi, V.; Kalaivani, K. Electrochemical Oxidation for the Treatment of Textile Industry Wastewater. Bioresour. Technol. 2009, 100, 987–990. [Google Scholar] [CrossRef]
- Yavuz, Y.; Koparal, A. Electrochemical Oxidation of Phenol in a Parallel Plate Reactor Using Ruthenium Mixed Metal Oxide Electrode. J. Hazard. Mater. 2006, 136, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Cerisola, G. Direct And Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Vanlangendonck, Y.; Corbisier, D.; Van Lierde, A. Influence of Operating Conditions on the Ammonia Electro-Oxidation Rate in Wastewaters from Power Plants (ELONITATM Technique). Water Res. 2005, 39, 3028–3034. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Tawalbeh, M. Electrochemical Oxidation of Ammonia on Nickel Oxide Nanoparticles. Int. J. Hydrog. Energy 2020, 45, 10398–10408. [Google Scholar] [CrossRef]
- Jafvert, C.T.; Valentine, R.L. Reaction Scheme for the Chlorination of Ammoniacal Water. Environ. Sci. Technol. 1992, 26, 577–586. [Google Scholar] [CrossRef]
Exp. Run | Operating Conditions (NTOT(0) ≈ 13–200 mg·L−1; V = 0.250 L; T = 25 °C; Treatment Time = 0–180 min) | Parameter Varied |
---|---|---|
1 | Electrolyte concentration = 250 mg·L−1 M; I = 0.15 A; NTOT source = NH4Cl | Electrolyte type = NaCl, Na2SO4, NaClO4 |
2 | Electrolyte type = NaCl; I = 0.15 A; NTOT source = NH4Cl | Electrolyte concentration = 100–750 mg·L−1 |
3 | Electrolyte type = NaCl; electrolyte concentration = 250 mg·L−1; NTOT source = NH4Cl | I = 0.05 − 0.25 A |
4 | Electrolyte type = NaCl; electrolyte concentration = 250 mg·L−1; I = 0.15 A | NTOT source = NH4Cl |
Parameter | Value | Unit |
---|---|---|
db | 1 | mm |
Dgas,liquid | 1.5 × 10−9 | m2·s−1 |
μl | 0.000825 | Pa·s−1 |
ρl | 997.05 | kg·m−3 |
σl | 72.80 | N·m−1 |
g | 9.81 | m·s−2 |
KH,NH3 | 1.7 | m3·Pa·mol−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iovino, P.; Fenti, A.; Galoppo, S.; Najafinejad, M.S.; Chianese, S.; Musmarra, D. Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater. Molecules 2023, 28, 1306. https://doi.org/10.3390/molecules28031306
Iovino P, Fenti A, Galoppo S, Najafinejad MS, Chianese S, Musmarra D. Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater. Molecules. 2023; 28(3):1306. https://doi.org/10.3390/molecules28031306
Chicago/Turabian StyleIovino, Pasquale, Angelo Fenti, Simona Galoppo, Mohammad Saleh Najafinejad, Simeone Chianese, and Dino Musmarra. 2023. "Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater" Molecules 28, no. 3: 1306. https://doi.org/10.3390/molecules28031306
APA StyleIovino, P., Fenti, A., Galoppo, S., Najafinejad, M. S., Chianese, S., & Musmarra, D. (2023). Electrochemical Removal of Nitrogen Compounds from a Simulated Saline Wastewater. Molecules, 28(3), 1306. https://doi.org/10.3390/molecules28031306