Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Energetics of HNCO Dimers
2.2. Structure and Energetics of HNCO Trimers
2.3. Results of Matrix Isolation FTIR Studies
3. Experimental and Computational Details
3.1. Matrix Isolation FTIR Studies
3.2. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jathar, S.H.; Heppding, C.; Link, M.F.; Farmer, D.K.; Akherati, A.; Kleeman, M.J.; de Gouw, J.A.; Veres, P.R.; Roberts, J.M. Investigating diesel engines as an atmospheric source of isocyanic acid in urban areas. Atmos. Chem. Phys. 2017, 17, 8959–8970. [Google Scholar] [CrossRef]
- Perry, R.A.; Siebers, D.L. Rapid reduction of nitrogen oxides in exhaust gas streams. Nature 1986, 324, 657–658. [Google Scholar] [CrossRef]
- Wicke, B.G.; Grady, K.A.; Ratcliffe, J.W. Limitations on the rapid reduction of nitrogen oxides in exhaust gas streams. Nature 1989, 338, 492–493. [Google Scholar] [CrossRef]
- Lyon, R.K.; Cole, J.A. A reexamination of the RapreNOx process. Combust. Flame 1990, 82, 435–443. [Google Scholar] [CrossRef]
- Miller, J.A.; Bowman, C.T. Kinetic modeling of the reduction of nitric oxide in combustion products by isocyanic acid. Int. J. Chem. Kinet. 1991, 23, 289–313. [Google Scholar] [CrossRef]
- Leslie, M.D.; Ridoli, M.; Murphy, J.G.; Borduas-Dedekind, N. Isocyanic acid (HNCO) and its fate in the atmosphere: A review. Environ. Sci. Process. Impacts 2019, 21, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Kewley, R.; Sastry, K.V.L.N.; Winnewisser, M. The millimeter wave spectra of isocyanic and isothiocyanic acids. J. Mol. Spectrosc. 1963, 10, 418–441. [Google Scholar] [CrossRef]
- Jacox, M.E.; Milligan, D.E. Low-Temperature Infrared Study of Intermediates in the Photolysis of HNCO and DNCO. J. Chem. Phys. 1964, 40, 2457–2460. [Google Scholar] [CrossRef]
- Steiner, D.A.; Wishah, K.A.; Polo, S.R.; McCubbin, T.K., Jr. Infrared spectrum of isocyanic acid between 465 and 1100 cm−1. J. Mol. Spectrosc. 1979, 76, 341–373. [Google Scholar] [CrossRef]
- Drozdoski, W.S.; Baronavski, A.P.; McDonald, J.R. Photodissociation of HNCO at 193 nm. NH(a1∆) internal energy distribution and reaction rate with O2. Chem. Phys. Lett. 1979, 64, 421–425. [Google Scholar] [CrossRef]
- Yamada, K. Molecular structure and centrifugal distortion constants of isocyanic acid from the microwave, millimeter wave, and far-infrared spectra. J. Mol. Spectrosc. 1980, 79, 323–344. [Google Scholar] [CrossRef]
- Bondybey, V.E.; English, J.H.; Mathews, C.W.; Contolini, R.J. Infrared spectra and isomerization of CHNO species in rare gas matrices. J. Mol. Spectrosc. 1982, 92, 431–442. [Google Scholar] [CrossRef]
- Fujimoto, G.T.; Umstead, M.E.; Lin, M.C. Dynamics of CO formation in the photodissociation of HNCO and CH2CO at 193nm. Chem. Phys. 1982, 65, 197–203. [Google Scholar] [CrossRef]
- Teles, J.H.; Maier, G.; Hess, B.A., Jr.; Schaad, L.J.; Winnewisser, M.; Winnewisser, B.P. The CHNO Isomers. Chem. Ber. 1989, 122, 753–766. [Google Scholar] [CrossRef]
- Ruscic, B.; Berkowitz, J. The H–NCO bond energy and ∆H0f(NCO) from photoionization mass spectrometric studies of HNCO and NCO. J. Chem. Phys. 1994, 100, 4498. [Google Scholar] [CrossRef]
- Droz-Georget, T.; Zyrianov, M.; Sanov, A.; Reisler, H. Photodissociation of HNCO: Three competing pathways. Ber. Bunsenges. Phys. Chem. 1997, 101, 469–477. [Google Scholar] [CrossRef]
- Pettersson, M.; Khriachtchev, L.; Jolkkonen, S.; Räsänen, M. Photochemistry of HNCO in Solid Xe: Channels of UV Photolysis and Creation of H2NCO Radicals. J. Phys. Chem. A 1999, 103, 9154–9162. [Google Scholar] [CrossRef]
- Pettersson, M.; Khriachtchev, L.; Lundell, J.; Jolkkonen, A.S.; Räsänen, M. Photochemistry of HNCO in Solid Xenon: Photoinduced and Thermally Activated Formation of HXeNCO. J. Phys. Chem. A 2000, 104, 3579–3583. [Google Scholar] [CrossRef]
- Yu, S.; Su, S.; Dai, D.; Yuan, K.; Yang, X. Vacuum Ultraviolet Photodissociation Dynamics of Isocyanic Acid: The Hydrogen Elimination Channel. J. Phys. Chem. A 2013, 117, 13564–13571. [Google Scholar] [CrossRef]
- Yu, S.; Su, S.; Dorenkamp, Y.; Wodtke, A.M.; Dai, D.; Yuan, K.; Yang, X. Competition between Direct and Indirect Dissociation Pathways in Ultraviolet Photodissociation of HNCO. J. Phys. Chem. A 2013, 117, 11673–11678. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Huang, C.; Chen, Y.; Dai, D.; Parker, D.H.; Yang, X. Imaging the Pair-Correlated HNCO Photodissociation: The NH(a1∆) + CO(X1Σ+) Channel. J. Phys. Chem. A 2014, 118, 2413–2418. [Google Scholar] [CrossRef] [PubMed]
- Holzmeier, F.; Wolf, T.J.A.; Gienger, C.; Wagner, I.; Bozek, J.; Nandi, S.; Nicolas, C.; Fischer, I.; Gühr, M.; Fink, R.F. Normal and resonant Auger spectroscopy of isocyanic acid, HNCO. J. Chem. Phys. 2018, 149, 034308. [Google Scholar] [CrossRef] [PubMed]
- Shapley, W.A.; Bacskay, G.B. A Gaussian-2 Quantum Chemical Study of CHNO: Isomerization and Molecular Dissociation Reactions. J. Phys. Chem. A 1999, 103, 6624–6631. [Google Scholar] [CrossRef]
- Mladenović, M.; Elhiyani, M.; Lewerenz, M. Electric and magnetic properties of the four most stable CHNO isomers from ab initio CCSD(T) studies. J. Chem. Phys. 2009, 131, 034302. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Mattila, J.M.; Farmer, D.K.; Arata, C.; Goldstein, A.H.; Abbatt, J.P.D. Behavior of Isocyanic Acid and Other Nitrogen-Containing Volatile Organic Compounds in The Indoor Environment. Environ. Sci. Technol. 2022, 56, 7598–7607. [Google Scholar] [CrossRef]
- Milligan, D.E.; Jacox, M.E. Matrix-Isolation Study of the Infrared and Ultraviolet Spectra of the Free Radical NCO. J. Chem. Phys. 1967, 47, 5157. [Google Scholar] [CrossRef]
- Maas, M.; Gross, C.; Schurath, U. Vibronic spectra of the matrix-isolated van der Waals complexes NH·N2 and NH·CO. Chem. Phys. 1994, 189, 217–234. [Google Scholar] [CrossRef]
- Raunier, S.; Chiavassa, T.; Allouche, A.; Marinelli, F.; Aycard, J.-P. Thermal reactivity of HNCO with water ice: An infrared and theoretical study. Chem. Phys. 2003, 288, 197–210. [Google Scholar] [CrossRef]
- Sałdyka, M.; Mielke, Z. Photodecomposition of formohydroxamic acid. Matrix isolation FTIR and DFT studies. Phys. Chem. Chem. Phys. 2003, 5, 4790–4797. [Google Scholar] [CrossRef]
- Sałdyka, M. Photodecomposition of N-hydroxyurea in argon matrices. FTIR and theoretical studies. RSC Adv. 2013, 3, 1922–1932. [Google Scholar] [CrossRef]
- Sałdyka, M.; Mielke, Z. Photochemistry of acetohydroxamic acid in solid argon. FTIR and theoretical studies. J. Phys. Chem. A 2018, 122, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Keresztes, B.; Csonka, I.P.; Lajgút, G.G.; Bazsó, G.; Tarczay, G. Matrix isolation study on the 1:1 hydrogen-bonded complexes [H, C, N]· · · [H, C, N, O]. J. Mol. Struct. 2020, 1219, 128535. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M.; Lundell, J. Structure and IR spectroscopic properties of HNCO complexes with SO2 isolated in solid argon. Molecules 2021, 26, 6441. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M.; Lundell, J. Matrix isolation FTIR and theoretical study of weakly bound complexes of isocyanic acid with nitrogen. Molecules 2022, 27, 495. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Han, D.; Sun, Y.; Song, X.; Zhang, Y.; Shi, F.; Sheng, X. Interactions between isocyanic acid and atmospheric acidic, neutral and basic species. Comput. Theor. Chem. 2021, 1204, 113384. [Google Scholar] [CrossRef]
- Krupa, J.; Wierzejewska, M. Structure of isothiocyanic acid dimers. Theoretical and FTIR matrix isolation studies. Chem. Phys. Lett. 2016, 652, 46–49. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Frisch, M.J.; Head-Gordon, M.; Pople, J.A. Semi-direct algorithms for the MP2 energy and gradient. Chem. Phys. Lett. 1990, 166, 281–289. [Google Scholar] [CrossRef]
- Sæbø, S.; Almlöf, J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation. Chem. Phys. Lett. 1989, 154, 83–89. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar] [CrossRef]
- Schwabe, T.; Grimme, S. Double-hybrid density functionals with long-range dispersion corrections: Higher accuracy and extended applicability. Phys. Chem. Chem. Phys. 2007, 9, 3397–3406. [Google Scholar] [CrossRef]
- Biczysko, M.; Panek, P.; Scalmani, G.; Bloino, J.; Barone, V. Harmonic and Anharmonic Vibrational Frequency Calculations with the Double-Hybrid B2PLYP Method: Analytic Second Derivatives and Benchmark Studies. J. Chem. Theory Comput. 2010, 6, 2115–2125. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J. Chem. Phys. 1980, 72, 5639. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. Calculation of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Simon, S.; Duran, M.; Dannenberg, J.J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J. Chem. Phys. 1996, 105, 11024. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Keith, T.A. AIMAll, Version 19.10.12; TK Gristmill Software, Overland Park, KS, USA. 2019. Available online: aim.tkgristmill.com (accessed on 6 December 2022).
Complex | Geometric Parameters 1 | AIM Parameters | ||||
---|---|---|---|---|---|---|
Interatomic Distance | Angle | BCP | ρ(r) | ∇2ρ(r) | ||
H...Y | X⋯Y | X–H...Y | ||||
D1 | 2.047 | 3.055 | 173.5 | H1⋯N6 | 0.0211 | +0.0663 |
D2 | 2.039 | 3.037 | 169.7 | H1⋯O8 | 0.0170 | +0.0698 |
D3 | 3.036 | C3⋯O8 | 0.0071 | +0.0291 | ||
3.036 | C7⋯O4 | 0.0071 | +0.0291 | |||
(4 at.) 2 | 0.0070 | +0.0299 | ||||
D4 | 2.303 | 3.062 | 131.2 | H1⋯O8 | 0.0110 | +0.0437 |
D5 | 3.196 | N2⋯N6 | 0.0073 | +0.0257 |
DIMER | MP2 | CCSD(T)/ MP2 2 | B3LYPD3 | CCSD(T)/ B3LYPD3 2 | B2PLYPD3 1 | CCSD(T)/ B2PLYPD3 2 | B3LYP 1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | |
D1 | 0.00 | −15.95 | 0.00 | −15.07 | 0.00 | −16.87 | 0.00 | −15.11 | 0.00 | −16.37 | 0.00 | −15.07 | 0.00 | −12.48 (26%) |
D2 | 2.42 | −13.36 | 1.77 | −13.65 | 1.56 | −15.11 | 1.74 | −13.82 | 1.91 | −14.28 | 1.77 | −13.69 | 0.84 | −11.43 (24%) |
D3 | 2.47 | −13.19 | 1.06 | −13.82 | 0.74 | −15.91 | 0.90 | −14.03 | 1.85 | −14.28 | 0.98 | −13.98 | 4.05 | −8.04 (49%) |
D4 | 3.14 | −12.43 | 2.45 | −12.52 | 2.16 | −14.28 | 2.34 | −12.64 | ||||||
D5 | 7.92 | −7.54 | 7.66 | −6.91 | 9.17 | −7.16 | 7.63 | −6.99 | 8.88 | −6.99 | 7.63 | −6.95 | 11.03 | −0.92 (87%) |
TRIMER | MP2 | CCSD(T)/ MP2 1 | B3LYPD3 | CCSD(T)/ B3LYPD3 1 | B2PLYPD3 | CCSD(T)/ B2PLYPD3 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | ΔE | Eint | |
T1 | 0.00 | −47.90 | 0.00 | −44.76 | 0.00 | −49.70 | 0.00 | −45.30 | 0.00 | −48.73 | 0.00 | −44.88 |
T2 | 3.74 | −45.64 | 3.09 | −43.96 | 0.48 | −50.79 | 3.03 | −44.76 | 2.51 | −47.69 | 2.99 | −44.21 |
T3 | 4.63 | −43.84 | 3.32 | −41.91 | 2.45 | −48.06 | 3.31 | −42.50 | 3.84 | −45.59 | 3.27 | −42.20 |
T4 | 6.50 | −43.25 | 5.26 | −42.91 | 2.80 | −48.82 | 5.05 | −43.75 | 4.80 | −45.76 | 5.09 | −43.21 |
T5 | 15.50 | −33.08 | 13.70 | −32.28 | 14.37 | −35.96 | 13.69 | −32.53 | 14.83 | −34.50 | 13.66 | −32.28 |
T6 | 18.26 | −29.94 | 15.76 | −30.61 | 16.35 | −33.66 | 15.75 | −31.02 | 17.03 | −31.99 | 15.70 | −30.69 |
T7 | 17.61 | −29.56 | 15.44 | −28.55 | 16.70 | −32.15 | 15.47 | −28.60 | 17.84 | −30.06 | 15.43 | −28.55 |
T8 | 19.11 | −28.64 | 16.70 | −27.80 | 18.37 | −31.02 | 16.79 | −27.63 | 19.08 | −29.39 | 16.77 | −27.72 |
T9 | 26.31 | −20.85 | 23.28 | −20.77 | 25.84 | −23.15 | 23.11 | −21.10 | 26.63 | −21.35 | 23.12 | −21.02 |
B3LYPD3 1 | MP2 1 | Mode | Exp. 2 | Assignment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D1 | D2 | D3 | D4 | D5 | ν | Δν | ||
−35 | 11 | −14 | 0 | −2 | −38 | 11 | −15 | −1 | −6 | νNH | 3519.5 | +8.0 | D2 |
(158) | (185) | (324) | (188) | (298) | (174) | (197) | (354) | (207) | (4) | ||||
−165 | −78 | −48 | −143 | −62 | −50 | −6 | 3465.5 3462.5 | −46.0 −49.0 (site) | D2 and D4 | ||||
(868) | (694) | (253) | (840) | (692) | (259) | (319) | 3452.0 3448.5 | −59.5 −63.0 | |||||
7 | 11 | 11 | 3 | 11 | 5 | 12 | 10 | 4 | 8 | νasNCO | 2275.0 2261.5 | +16.0 +2.5 | D2 D4 |
(544) | (113) | (1365) | (530) | (1319) | (554) | (241) | (1200) | (544) | (1141) | ||||
−8 | −2 | −1 | −7 | 0 | −1 | 2257.5 | −2.0 −1.5 | D2 and D4 | |||||
(1131) | (1658) | (1033) | (912) | (1361) | (858) | ||||||||
81 | 19 | −8 | 36 | 9 | 84 | 12 | −16 | 28 | 14 | δHNC | 788.0 | +18.0 | D2 |
(212) | (247) | (525) | (137) | (396) | (213) | (249) | (528) | (136) | (408) | ||||
30 | −41 | −26 | 25 | −40 | −30 | 729.0 | −41.0 | D2 | |||||
(283) | (266) | (455) | (309) | (286) | (462) | ||||||||
51 | 39 | −10 | 33 | −5 | 52 | 35 | −10 | 25 | −3 | δNCO | 599.0 | +25.5 | D2 |
(28) | (67) | (180) | (140) | (103) | (27) | (72) | (220) | (157) | (111) | ||||
25 | −6 | −4 | 13 | −3 | −4 | 560.5 | −13.0 | D2 | |||||
(85) | (113) | (93) | (96) | (134) | (125) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa, J.; Wierzejewska, M.; Lundell, J. Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates. Molecules 2023, 28, 1430. https://doi.org/10.3390/molecules28031430
Krupa J, Wierzejewska M, Lundell J. Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates. Molecules. 2023; 28(3):1430. https://doi.org/10.3390/molecules28031430
Chicago/Turabian StyleKrupa, Justyna, Maria Wierzejewska, and Jan Lundell. 2023. "Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates" Molecules 28, no. 3: 1430. https://doi.org/10.3390/molecules28031430
APA StyleKrupa, J., Wierzejewska, M., & Lundell, J. (2023). Experimental FTIR-MI and Theoretical Studies of Isocyanic Acid Aggregates. Molecules, 28(3), 1430. https://doi.org/10.3390/molecules28031430