The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen
Abstract
:1. Introduction
2. Methods
2.1. Computational Details
2.1.1. Software Parameters
2.1.2. Structural Models
2.1.3. Selection of Crystal Structures
2.2. Stability Study Model
2.2.1. Protonation: Decomposition or Desorption
2.2.2. Enthalpy Change Calculations
2.2.3. Entropy Change Calculations
3. Results
3.1. Results of Free Energy Change Analysis
3.1.1. Orthorhombic BCF8515
3.1.2. Cubic BCF8515
3.1.3. Cubic BCF1585
3.2. Electron Transfers in the Bulk Due to Reductions
3.2.1. Structural Changes of Orthorhombic BCF8515
3.2.2. Structural Changes of Cubic BCF8515
3.2.3. Structural Changes of BCF1585
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Nnabuife, S.G.; Ugbeh-Johnson, J.; Okeke, N.E.; Ogbonnaya, C. Present and projected developments in hydrogen production: A technological review. Carbon Capture Sci. Technol. 2022, 3, 100042. [Google Scholar] [CrossRef]
- United States Department of Energy. A National Vision of America’s Transition to A Hydrogen Economy—To 2030 and Beyond. Available online: https://www.hydrogen.energy.gov/pdfs/vision_doc.pdf (accessed on 20 January 2022).
- Ji, M.; Wang, J. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- Psarras, P.; Anderson, R.; Gómez-Gualdrón, D.A.; Wilcox, J. Material consequences of hydrogen dissolution in palladium alloys observed from first principles. J. Phys. Chem. C 2019, 123, 22158–22171. [Google Scholar] [CrossRef]
- Gielens, F.C.; Tong, H.D.; Vorstman, M.A.G.; Keurentjes, J.T.F. Measurement and modeling of hydrogen transport through high-flux Pd membranes. J. Membr. Sci. 2007, 289, 15–25. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Massaro, A.; Schiavo, E.; Pavone, M. Chapter 1—Tuning perovskite–based oxides for effective electrodes in solid oxide electrochemical cells. In Solid Oxide-Based Electrochemical Devices; Lo Faro, M., Ed.; Elsevier Science and Technology: San Diego, CA, USA, 2020; pp. 1–25. [Google Scholar]
- Hibino, T.; Mizutani, K.; Yajima, T.; Iwahara, H. Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method. Solid State Ion. 1992, 57, 303–306. [Google Scholar] [CrossRef]
- Richardson, J.T.; Scates, R.; Twigg, M.V. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl. Catal. A Gen. 2003, 246, 137–150. [Google Scholar] [CrossRef]
- Sastri, M.V.C.; Viswanath, R.P.; Viswanathan, B. Studies on the reduction of iron oxide with hydrogen. Int. J. Hydrogen Energy 1982, 7, 951–955. [Google Scholar] [CrossRef]
- Cheng, S.; Wang, Y.; Zhuang, L.; Xue, J.; Wei, Y.; Feldhoff, A.; Caro, J.; Wang, H. A dual-phase ceramic membrane with extremely high H2 permeation flux prepared by autoseparation of a ceramic precursor. Angew. Chem. Int. Ed. 2016, 55, 10895–10898. [Google Scholar] [CrossRef]
- Assirey, E.A.R. Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm. J. 2019, 27, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Zhou, H.; Zhang, Y.; Jiang, H. Innovative steam methane reforming for coproducing CO-free hydrogen and syngas in proton conducting membrane reactor. AIChE J. 2019, 65, e16740. [Google Scholar] [CrossRef]
- Zhu, X.; Cong, Y.; Yang, W. Oxygen permeability and structural stability of BaCe0.15Fe0.85O3−δ membranes. J. Membr. Sci. 2006, 283, 38–44. [Google Scholar] [CrossRef]
- Go, K.S.; Son, S.R.; Kim, S.D. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int. J. Hydrogen Energy 2008, 33, 5986–5995. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Fischer, C.C.; Tibbetts, K.J.; Morgan, D.; Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 2006, 5, 641–646. [Google Scholar] [CrossRef]
- Opahle, I.; Madsen, G.K.H.; Drautz, R. High throughput density functional investigations of the stability, electronic structure and thermoelectric properties of binary silicides. Phys. Chem. Chem. Phys. 2012, 14, 16197–16202. [Google Scholar] [CrossRef]
- Knight, K.S. Structural phase transitions in BaCeO3. Solid State Ion. 1994, 74, 109–117. [Google Scholar] [CrossRef]
- Wolverton, C.; Hass, K.C. Phase stability and structure of spinel-based transition aluminas. Phys. Rev. B 2000, 63, 024102. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Thermodynamics; University Science Books: Sausalito, CA, USA, 1973. [Google Scholar]
- Cai, S.; Caldararu, M.; Sohlberg, K. Entropic contributions to the atomic-scale charge-carrier/surface interactions that govern macroscopic surface conductance. J. Phys. Chem. C 2010, 114, 3991–3997. [Google Scholar] [CrossRef]
- Gallucci, F.; Comite, A.; Capannelli, G.; Basile, A. Steam reforming of methane in a membrane reactor: An industrial case study. Ind. Eng. Chem. Res. 2006, 45, 2994–3000. [Google Scholar] [CrossRef]
- Hafeez, S.; Al-Salem, S.M.; Manos, G.; Constantinou, A. Fuel production using membrane reactors: A review. Environ. Chem. Lett. 2020, 18, 1477–1490. [Google Scholar] [CrossRef]
- Levitin, V. Interatomic Bonding in Solids: Fundamentals, Simulation, and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013. [Google Scholar]
- Tao, Z.; Bi, L.; Zhu, Z.; Liu, W. Novel cobalt-free cathode materials BaCexFe1−xO3−δ for proton-conducting solid oxide fuel cells. J. Power Sources 2009, 194, 801–804. [Google Scholar] [CrossRef]
- Yamanaka, S.; Fujikane, M.; Hamaguchi, T.; Muta, H.; Oyama, T.; Matsuda, T.; Kobayashi, S.-I.; Kurosaki, K. Thermophysical properties of BaZrO3 and BaCeO3. J. Alloys Compd. 2003, 359, 109–113. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, H.; Yang, W. Novel cobalt-free oxygen permeable membrane. Chem. Commun. 2004, 9, 1130–1131. [Google Scholar] [CrossRef]
No Oxygen Vacancies Reactant | One Oxygen Vacancy Reactant | Two Oxygen Vacancy Reactant | |||||
---|---|---|---|---|---|---|---|
Material | Product | Net ∆M-O | ∆H (Kcal/mol) | Net ∆M-O | ∆H (Kcal/mol) | Net ∆M-O | ∆H (Kcal/mol) |
Orthorhombic BCF8515 | H2 | +1 | 82 | 0 | 31 | +2 | 13 |
H2O | −1 | 60 | +1 | 26 | −3 | 36 | |
½ O2 | −1 | 89 | −1 | 72 | −5 | 128 | |
Cubic BCF8515 | H2 | 0 | 47 | +1 | 6 | N/A | N/A |
H2O | −1 | 34 | −2 | 37 | N/A | N/A | |
½ O2 | +1 | 88 | −3 | 91 | N/A | N/A | |
BCF1585 | H2 | 0 | 84 | 0 | 94 | +2 | 53 |
H2O | −3 | 50 | −2 | 38 | −2 | 71 | |
½ O2 | −3 | 16 | −7 | 45 | −1 | 85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosen, B.; Sohlberg, K. The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen. Molecules 2023, 28, 1429. https://doi.org/10.3390/molecules28031429
Rosen B, Sohlberg K. The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen. Molecules. 2023; 28(3):1429. https://doi.org/10.3390/molecules28031429
Chicago/Turabian StyleRosen, Benjamin, and Karl Sohlberg. 2023. "The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen" Molecules 28, no. 3: 1429. https://doi.org/10.3390/molecules28031429
APA StyleRosen, B., & Sohlberg, K. (2023). The Stability of a Mixed-Phase Barium Cerium Iron Oxide under Reducing Conditions in the Presence of Hydrogen. Molecules, 28(3), 1429. https://doi.org/10.3390/molecules28031429