Design, Synthesis, Herbicidal Activity, and Structure–Activity Relationship Study of Novel 6-(5-Aryl-Substituted-1-Pyrazolyl)-2-Picolinic Acid as Potential Herbicides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Docking Analysis
2.3. A. thaliana Root Growth Assays to Quantify Compounds Activity
2.4. Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR)
2.4.1. Scatter Plots
2.4.2. Contour Map Analysis
2.5. Greenhouse Activity Assay
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis
3.2.1. General Synthetic Procedure of Intermediate II
3.2.2. General Synthetic Procedure of Intermediate III
3.2.3. General Synthetic Procedure of Intermediate IV
3.2.4. General Synthetic Procedure of Compound V
3.3. Homology Modeling of AFB5
3.4. Molecular Docking
3.5. Biological Assay
3.5.1. Root Growth Assays to Quantify Compounds Activity
3.5.2. 3D-QSAR
3.5.3. Greenhouse Herbicidal Activity Assay
3.5.4. Crop Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Population Division, Department of Economic and Social Affairs, United Nations. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. 2022. Available online: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (accessed on 10 January 2023).
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations Rome: Rome, Italy, 2018; p. 224. [Google Scholar]
- Umetsu, N.; Shirai, Y. Development of novel pesticides in the 21st century. J. Pestic. Sci. 2020, 45, 54–74. [Google Scholar] [CrossRef]
- Qu, R.Y.; He, B.; Yang, J.F.; Lin, H.Y.; Yang, W.C.; Wu, Q.Y.; Li, Q.X.; Yang, G.F. Where are the new herbicides? Pest Manag. Sci. 2021, 77, 2620–2625. [Google Scholar] [CrossRef] [PubMed]
- Heap, I. The International Herbicide-Resistant Weed Database. Online. Sunday, 27 November 2022. Available online: www.weedscience.org (accessed on 10 January 2023).
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef]
- Tan, X.; Calderon-Villalobos, L.I.; Sharon, M.; Zheng, C.; Robinson, C.V.; Estelle, M.; Zheng, N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007, 446, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, K. Auxin herbicides: Current status of mechanism and mode of action. Pest Manag. Sci. 2010, 66, 113–120. [Google Scholar] [CrossRef]
- True, J.H.; Shaw, S.L. Exogenous Auxin Induces Transverse Microtubule Arrays Through Transport Inhibitor Response1/Auxin Signaling F-Box Receptors. Plant Physiol. 2020, 182, 892–907. [Google Scholar] [CrossRef] [PubMed]
- Calderon Villalobos, L.I.; Lee, S.; De Oliveira, C.; Ivetac, A.; Brandt, W.; Armitage, L.; Sheard, L.B.; Tan, X.; Parry, G.; Mao, H.; et al. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 2012, 8, 477–485. [Google Scholar] [CrossRef]
- Hoyerova, K.; Hosek, P.; Quareshy, M.; Li, J.; Klima, P.; Kubes, M.; Yemm, A.A.; Neve, P.; Tripathi, A.; Bennett, M.J.; et al. Auxin molecular field maps define AUX1 selectivity: Many auxin herbicides are not substrates. New Phytol. 2018, 217, 1625–1639. [Google Scholar] [CrossRef]
- Prigge, M.J.; Greenham, K.; Zhang, Y.; Santner, A.; Castillejo, C.; Mutka, A.M.; O’Malley, R.C.; Ecker, J.R.; Kunkel, B.N.; Estelle, M. The Arabidopsis Auxin Receptor F-Box Proteins AFB4 and AFB5 Are Required for Response to the Synthetic Auxin Picloram. G3 (Bethesda) 2016, 6, 1383–1390. [Google Scholar] [CrossRef]
- Schmitzer, P.R.; Balko, T.W.; Daeuble, J.F.; Epp, J.B.; Satchivi, N.M.; Siddall, T.L.; Weimer, M.R.; Yerkes, C.N. Discovery and SAR of Halauxifen Methyl: A Novel Auxin Herbicide. In Discovery and Synthesis of Crop Protection Products; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; pp. 247–260. [Google Scholar]
- Epp, J.B.; Alexander, A.L.; Balko, T.W.; Buysse, A.M.; Brewster, W.K.; Bryan, K.; Daeuble, J.F.; Fields, S.C.; Gast, R.E.; Green, R.A.; et al. The discovery of Arylex active and Rinskor active: Two novel auxin herbicides. Bioorg. Med. Chem. 2016, 24, 362–371. [Google Scholar] [CrossRef]
- Zotz, A.; Bernhard, U.; Bonin, J. BELKAR™—A new herbicide for the control of a wide range of broadleaf weeds in winter oilseed rape applied post-emergence in autumn. Julius-Kühn-Archiv 2018, 458, 345–349. [Google Scholar] [CrossRef]
- Ludwig-Muller, J.; Rattunde, R.; Rossler, S.; Liedel, K.; Benade, F.; Rost, A.; Becker, J. Two Auxinic Herbicides Affect Brassica napus Plant Hormone Levels and Induce Molecular Changes in Transcription. Biomolecules 2021, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of Resistance to Auxinic Herbicides: Historical Perspectives, Mechanisms of Resistance, and Implications for Broadleaf Weed Management in Agronomic Crops. Weed Sci. 2017, 59, 445–457. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Yin, J.; Liu, R.; Tian, H.; Duan, L.; Li, Z.; Wang, B.; Tan, W.; Liu, S. Design, synthesis and mode of action of novel 3-chloro-6-pyrazolyl picolinate derivatives as herbicide candidates. Pest Manag. Sci. 2021, 77, 2252–2263. [Google Scholar] [CrossRef]
- Faria, J.V.; Vegi, P.F.; Miguita, A.G.C.; Dos Santos, M.S.; Boechat, N.; Bernardino, A.M.R. Recently reported biological activities of pyrazole compounds. Bioorg. Med. Chem. 2017, 25, 5891–5903. [Google Scholar] [PubMed]
- Havrylyuk, D.; Roman, O.; Lesyk, R. Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline-thiazolidine-based hybrids. Eur. J. Med. Chem. 2016, 113, 145–166. [Google Scholar] [CrossRef]
- Huang, D.; Liu, A.; Liu, W.; Liu, X.; Ren, Y.; Zheng, X.; Pei, H.; Xiang, J.; Huang, M.; Wang, X. Synthesis and insecticidal activities of novel 1H-pyrazole-5-carboxylic acid derivatives. Heterocycl. Commun. 2017, 23, 455–460. [Google Scholar] [CrossRef]
- Wu, J.; Song, B.A.; Hu, D.Y.; Yue, M.; Yang, S. Design, synthesis and insecticidal activities of novel pyrazole amides containing hydrazone substructures. Pest Manag. Sci. 2012, 68, 801–810. [Google Scholar]
- Zhang, X.; Wei, Z.; Wang, Y.; Yang, L.; Yuan, H.; Feng, J.; Gao, Y.; Lei., P.; Ma, Z. Synthesis and antifungal activity of 3-(difluoromethyl)-1-methyl pyrazole-4-carboxylic oxime esters. Chin. J. Pestic. Sci. 2022, 24, 59–65. [Google Scholar] [CrossRef]
- Kim, E.; James, M.; Zhu, Y.; Gregory, T.; Christian, T.; Cynthia, A. Process for the Preparation of 4-Amino-3-chloro-5-fluoro-6-(substituted) Picolinates. U.S. Patent 201201190857 A1, 24 January 2012. [Google Scholar]
- Chen, J.; Xia, Y.; Lee, S. Coupling of amides with ketones via C–N/C–H bond cleavage: A mild synthesis of 1,3-diketones. Org. Chem. Front. 2020, 7, 2931–2937. [Google Scholar] [CrossRef]
- Fustero, S.; Sanchez-Rosello, M.; Barrio, P.; Simon-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev. 2011, 111, 6984–7034. [Google Scholar] [PubMed]
- Zhang, Y.Z.; Tan, X.L.; Xing, W.L.; Zhang, Z. A Preparation Method for 4-Amino-3,5,6-Trichloro-2-Picolinic Acid. CN Patent 101565400 A, 5 May 2009. [Google Scholar]
- Lei, K.; Li, P.; Yang, X.F.; Wang, S.B.; Wang, X.K.; Hua, X.W.; Sun, B.; Ji, L.S.; Xu, X.H. Design and Synthesis of Novel 4-Hydroxyl-3-(2-phenoxyacetyl)-pyran-2-one Derivatives for Use as Herbicides and Evaluation of Their Mode of Action. J. Agric. Food Chem. 2019, 67, 10489–10497. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Jeong, J.-H. Structure-Activity Relationship Studies Based on 3D-QSAR CoMFA/CoMSIA for Thieno-Pyrimidine Derivatives as Triple Negative Breast Cancer Inhibitors. Molecules 2022, 27, 7974. [Google Scholar] [CrossRef] [PubMed]
Compd. | Score (kJ mol−1) | Compd. | Score (kJ mol−1) |
---|---|---|---|
V-1 | −8.07 | V-19 | −7.77 |
V-2 | −8.33 | V-20 | −7.58 |
V-3 | −8.15 | V-21 | −7.04 |
V-4 | −8.02 | V-22 | −7.88 |
V-5 | −8.00 | V-23 | −7.90 |
V-6 | −8.09 | V-24 | −7.81 |
V-7 | −8.59 | V-25 | −8.07 |
V-8 | −8.29 | V-26 | −7.97 |
V-9 | −8.30 | V-27 | −7.90 |
V-10 | −7.54 | V-28 | −7.36 |
V-11 | −7.80 | V-29 | −7.53 |
V-12 | −7.80 | V-30 | −7.62 |
V-13 | −8.23 | V-31 | −7.44 |
V-14 | −8.29 | V-32 | −6.81 |
V-15 | −8.03 | V-33 | −7.28 |
V-16 | −8.09 | Picloram | −6.53 |
V-17 | −8.05 | Halauxifen-methyl | −7.25 |
V-18 | −8.11 |
Compd. | IC50 (μmol/L) | Compd. | IC50 (μmol/L) |
---|---|---|---|
V-1 | 2.1172 | V-19 | 20.3215 |
V-2 | 0.0688 | V-20 | 36.5507 |
V-3 | 1.1394 | V-21 | 43.2911 |
V-4 | 1.4501 | V-22 | 6.7232 |
V-5 | 2.1794 | V-23 | 6.4282 |
V-6 | 1.8578 | V-24 | 7.0823 |
V-7 | 0.0389 | V-25 | 1.3623 |
V-8 | 1.4044 | V-26 | 4.1381 |
V-9 | 0.8444 | V-27 | 2.2558 |
V-10 | 25.2618 | V-28 | 33.9772 |
V-11 | 7.1501 | V-29 | 44.886 |
V-12 | 7.6716 | V-30 | 23.0342 |
V-13 | 0.8872 | V-31 | 27.6596 |
V-14 | 1.2416 | V-32 | 73.1934 |
V-15 | 1.6909 | V-33 | 57.9380 |
V-16 | 0.1850 | Picloram | 3.7240 |
V-17 | 0.6585 | Halauxifen-methyl | 1.7764 |
V-18 | 0.7218 |
Model | q2 | r2 | SEE | F | ONC | Field Contribution (%) | |
---|---|---|---|---|---|---|---|
S | E | ||||||
CoMFA | 0.679 | 0.848 | 0.337 | 44.660 | 4 | 62.7 | 36.3 |
Compd. | Dosage (gha−1) | Post-Emergence | Pre-Emergence | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SG | DS | EC | CA | AT | AR | SG | DS | EC | CA | AT | AR | ||
V-1 | 300 | 50 | 10 | 0 | 80 | 0 | 90 | 70 | 0 | 0 | 0 | 0 | 20 |
V-2 | 300 | 0 | 0 | 0 | 75 | 10 | 90 | 15 | 0 | 0 | 95 | 0 | 95 |
V-3 | 300 | 10 | 0 | 0 | 100 | 65 | 100 | 60 | 0 | 0 | 0 | 0 | 60 |
V-4 | 300 | 20 | 0 | 0 | 95 | 90 | 95 | 30 | 40 | 0 | 100 | 0 | 95 |
V-5 | 300 | 25 | 0 | 0 | 90 | 10 | 80 | 30 | 0 | 0 | 60 | 0 | 60 |
V-6 | 300 | 60 | 20 | 15 | 100 | 0 | 100 | 35 | 10 | 0 | 30 | 0 | 75 |
V-7 | 300 | 0 | 0 | 0 | 100 | 0 | 100 | 10 | 0 | 0 | 90 | 20 | 85 |
V-8 | 300 | 40 | 0 | 20 | 100 | 100 | 95 | 20 | 0 | 0 | 100 | 40 | 100 |
V-9 | 300 | 70 | 0 | 50 | 90 | 0 | 80 | 20 | 0 | 0 | 10 | 0 | 20 |
V-10 | 300 | 85 | 50 | 0 | 100 | 10 | 70 | 80 | 60 | 0 | 60 | 10 | 20 |
V-11 | 300 | 70 | 0 | 0 | 60 | 0 | 40 | 60 | 40 | 0 | 90 | 20 | 30 |
V-12 | 300 | 0 | 0 | 0 | 40 | 0 | 0 | 30 | 0 | 0 | 0 | 20 | 0 |
V-13 | 300 | 0 | 0 | 0 | 80 | 60 | 85 | 0 | 0 | 0 | 20 | 0 | 60 |
V-14 | 300 | 40 | 0 | 0 | 100 | 60 | 100 | 0 | 0 | 0 | 90 | 0 | 25 |
V-15 | 300 | 35 | 0 | 0 | 75 | 0 | 95 | 0 | 0 | 0 | 0 | 0 | 0 |
V-16 | 300 | 35 | 0 | 0 | 50 | 55 | 95 | 0 | 0 | 0 | 100 | 0 | 80 |
V-17 | 300 | 40 | 0 | 0 | 85 | 20 | 90 | 10 | 0 | 0 | 0 | 0 | 90 |
V-18 | 300 | 50 | 0 | 0 | 85 | 50 | 90 | 0 | 0 | 0 | 0 | 0 | 0 |
V-19 | 300 | 50 | 0 | 0 | 10 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-20 | 300 | 30 | 0 | 0 | 10 | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 30 |
V-21 | 300 | 55 | 0 | 0 | 10 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-22 | 300 | 20 | 0 | 0 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-23 | 300 | 40 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-24 | 300 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-25 | 300 | 40 | 0 | 0 | 10 | 0 | 15 | 0 | 0 | 0 | 30 | 0 | 0 |
V-26 | 300 | 50 | 0 | 0 | 40 | 0 | 0 | 10 | 0 | 0 | 30 | 0 | 0 |
V-27 | 300 | 60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-28 | 300 | 70 | 0 | 0 | 10 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-29 | 300 | 60 | 0 | 0 | 0 | 10 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
V-30 | 300 | 20 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-31 | 300 | 20 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-32 | 300 | 70 | 0 | 0 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
V-33 | 300 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Picloram | 300 | 45 | 65 | 0 | 90 | 80 | 90 | 25 | 0 | 0 | 90 | 30 | 75 |
Halauxifen-methyl | 15 | 30 | 40 | 60 | 90 | 80 | 98 | 0 | 0 | 0 | 0 | 20 | 40 |
Dosage (gha−1) | Post-Emergence | Pre-Emergence | ||||
---|---|---|---|---|---|---|
CA | AT | AR | CA | AT | AR | |
300 | / | / | / | 100.0 | 59.0 | 98.0 |
150 | 93.9 | 35.7 | 100 | 98.0 | 35.9 | 95.0 |
75 | / | / | / | 95.0 | 7.0 | 81.2 |
Dosage (gha−1) | Post-Emergence | Pre-Emergence | ||||
---|---|---|---|---|---|---|
Corn | Wheat | Sorghum | Corn | Wheat | Sorghum | |
300 | 0 | 0 | 0 | 13.4 | 0 | 14.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, T.; Liu, Q.; Xu, Z.-Y.; Li, H.-T.; Wei, W.; Shi, R.-C.; Zhang, L.; Cao, Y.-M.; Liu, S.-Z. Design, Synthesis, Herbicidal Activity, and Structure–Activity Relationship Study of Novel 6-(5-Aryl-Substituted-1-Pyrazolyl)-2-Picolinic Acid as Potential Herbicides. Molecules 2023, 28, 1431. https://doi.org/10.3390/molecules28031431
Feng T, Liu Q, Xu Z-Y, Li H-T, Wei W, Shi R-C, Zhang L, Cao Y-M, Liu S-Z. Design, Synthesis, Herbicidal Activity, and Structure–Activity Relationship Study of Novel 6-(5-Aryl-Substituted-1-Pyrazolyl)-2-Picolinic Acid as Potential Herbicides. Molecules. 2023; 28(3):1431. https://doi.org/10.3390/molecules28031431
Chicago/Turabian StyleFeng, Tong, Qing Liu, Zhi-Yuan Xu, Hui-Ting Li, Wei Wei, Rong-Chuan Shi, Li Zhang, Yi-Ming Cao, and Shang-Zhong Liu. 2023. "Design, Synthesis, Herbicidal Activity, and Structure–Activity Relationship Study of Novel 6-(5-Aryl-Substituted-1-Pyrazolyl)-2-Picolinic Acid as Potential Herbicides" Molecules 28, no. 3: 1431. https://doi.org/10.3390/molecules28031431
APA StyleFeng, T., Liu, Q., Xu, Z. -Y., Li, H. -T., Wei, W., Shi, R. -C., Zhang, L., Cao, Y. -M., & Liu, S. -Z. (2023). Design, Synthesis, Herbicidal Activity, and Structure–Activity Relationship Study of Novel 6-(5-Aryl-Substituted-1-Pyrazolyl)-2-Picolinic Acid as Potential Herbicides. Molecules, 28(3), 1431. https://doi.org/10.3390/molecules28031431