Coronavirus-like Core–Shell-Structured Co@C for Hydrogen Evolution via Hydrolysis of Sodium Borohydride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Co@C
2.2. Catalytic Performance
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Structure Characterizations
3.3. Catalyst Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 2019, 44, 15072–15086. [Google Scholar] [CrossRef]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Lai, Q.; Sun, Y.; Wang, T.; Modi, P.; Cazorla, C.; Demirci, U.B.; Ares Fernandez, J.R.; Leardini, F.; Aguey-Zinsou, K.-F. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Adv. Sustain. Syst. 2019, 3, 1900043. [Google Scholar] [CrossRef]
- Muir, S.S.; Yao, X. Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems. Int. J. Hydrogen Energy 2011, 36, 5983–5997. [Google Scholar] [CrossRef]
- Amendola, S.C.; Sharp-Goldman, S.L.; Janjua, M.S.; Spencer, N.C.; Kelly, M.T.; Petillo, P.J.; Binder, M. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int. J. Hydrogen Energy 2000, 25, 969–975. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. A review on hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2021, 46, 726–765. [Google Scholar] [CrossRef]
- Schlesinger, H.I.; Brown, H.C.; Finholt, A.E.; Gilbreath, J.R.; Hoekstra, H.R.; Hyde, E.K. Sodium Borohydride, Its Hydrolysis and its Use as a Reducing Agent and in the Generation of Hydrogen. J. Am. Chem. Soc. 1953, 75, 215–219. [Google Scholar] [CrossRef]
- Bozkurt, G.; Özer, A.; Yurtcan, A.B. Development of effective catalysts for hydrogen generation from sodium borohydride: Ru, Pt, Pd nanoparticles supported on Co3O4. Energy 2019, 180, 702–713. [Google Scholar] [CrossRef]
- Bhattacharjee, D.; Dasgupta, S. Trimetallic NiFePd nanoalloy catalysed hydrogen generation from alkaline hydrous hydrazine and sodium borohydride at room temperature. J. Mater. Chem. A 2015, 3, 24371–24378. [Google Scholar] [CrossRef]
- Avcı Hansu, T. Exergy and energy analysis of hydrogen production by the degradation of sodium borohydride in the presence of novel Ru based catalyst. Int. J. Hydrogen Energy 2023, 48, 6778–6787. [Google Scholar] [CrossRef]
- Kiren, B.; Ayas, N. Nickel modified dolomite in the hydrogen generation from sodium borohydride hydrolysis. Int. J. Hydrogen Energy 2022, 47, 19702–19717. [Google Scholar] [CrossRef]
- Cai, H.; Lu, P.; Dong, J. Robust nickel–polymer nanocomposite particles for hydrogen generation from sodium borohydride. Fuel 2016, 166, 297–301. [Google Scholar] [CrossRef]
- Li, H.; Liao, J.; Zhang, X.; Liao, W.; Wen, L.; Yang, J.; Wang, H.; Wang, R. Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution. J. Power Sources 2013, 239, 277–283. [Google Scholar] [CrossRef]
- Balčiūnaitė, A.; Sukackienė, Z.; Antanavičiūtė, K.; Vaičiūnienė, J.; Naujokaitis, A.; Tamašauskaitė-Tamašiūnaitė, L.; Norkus, E. Investigation of hydrogen generation from sodium borohydride using different cobalt catalysts. Int. J. Hydrogen Energy 2021, 46, 1989–1996. [Google Scholar] [CrossRef]
- İskenderoğlu, F.C.; Baltacıoğlu, M.K. Effects of blast furnace slag (BFS) and cobalt-boron (Co-B) on hydrogen production from sodium boron hydride. Int. J. Hydrogen Energy 2021, 46, 29230–29242. [Google Scholar] [CrossRef]
- Wang, X.; Liao, J.; Li, H.; Wang, H.; Wang, R.; Pollet, B.G.; Ji, S. Highly active porous Co–B nanoalloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2018, 43, 17543–17555. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Wang, D.; Wu, S.; Cao, Z.; Zhang, K.; Liu, H.; Xin, S. Hydrogen generation from hydrolysis of sodium borohydride using nanostructured NiB catalysts. Int. J. Hydrogen Energy 2016, 41, 16077–16086. [Google Scholar] [CrossRef]
- Guo, J.; Hou, Y.; Li, B.; Liu, Y. Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2018, 43, 15245–15254. [Google Scholar] [CrossRef]
- Li, M.; Guan, S.; An, L.; Zhang, H.; Chen, Y.; Shi, J.; Fan, Y.; Liu, B. Protection and confinement effect of carbon on Co/CoxOy nano-catalyst for efficient NaBH4 hydrolysis. Int. J. Hydrogen Energy 2022, 47, 20185–20193. [Google Scholar] [CrossRef]
- Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu, P.; Hsu, J.-P. Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Res. 2022, 16, 127–145. [Google Scholar] [CrossRef]
- Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V.; Smirnova, A.L. Long-term stability of sodium borohydrides for hydrogen generation. Int. J. Hydrogen Energy 2008, 33, 5629–5635. [Google Scholar] [CrossRef]
- Guan, S.; An, L.; Chen, Y.; Li, M.; Shi, J.; Liu, X.; Fan, Y.; Li, B.; Liu, B. Stabilized cobalt-based nanofilm catalyst prepared using an ionic liquid/water interfacial process for hydrogen generation from sodium borohydride. J. Colloid Interface Sci. 2022, 608, 3111–3120. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zied, B.M.; Alamry, K.A. Green synthesis of 3D hierarchical nanostructured Co3O4/carbon catalysts for the application in sodium borohydride hydrolysis. J. Alloys Compd. 2019, 798, 820–831. [Google Scholar] [CrossRef]
- Li, J.; Hong, X.; Wang, Y.; Luo, Y.; Huang, P.; Li, B.; Zhang, K.; Zou, Y.; Sun, L.; Xu, F.; et al. Encapsulated cobalt nanoparticles as a recoverable catalyst for the hydrolysis of sodium borohydride. Energy Storage Mater. 2020, 27, 187–197. [Google Scholar] [CrossRef]
- Chang, H.; Shi, L.-N.; Chen, Y.-H.; Wang, P.-F.; Yi, T.-F. Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord. Chem. Rev. 2022, 473, 214839. [Google Scholar] [CrossRef]
- Wang, C.; Kim, J.; Tang, J.; Kim, M.; Lim, H.; Malgras, V.; You, J.; Xu, Q.; Li, J.; Yamauchi, Y. New Strategies for Novel MOF-Derived Carbon Materials Based on Nanoarchitectures. Chem 2020, 6, 19–40. [Google Scholar] [CrossRef]
- Ding, J.; Tang, Y.; Zheng, S.; Zhang, S.; Xue, H.; Kong, Q.; Pang, H. The synthesis of MOF derived carbon and its application in water treatment. Nano Res. 2022, 15, 6793–6818. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Zhou, L.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, X.; Xu, D.; Tao, X.; Dai, P.; Guo, Q.; Liu, X. Synthesis of MOF-derived Co@C composites and application for efficient hydrolysis of sodium borohydride. Appl. Surf. Sci. 2019, 469, 764–769. [Google Scholar] [CrossRef]
- Kassem, A.A.; Abdelhamid, H.N.; Fouad, D.M.; Ibrahim, S.A. Metal-organic frameworks (MOFs) and MOFs-derived CuO@C for hydrogen generation from sodium borohydride. Int. J. Hydrogen Energy 2019, 44, 31230–31238. [Google Scholar] [CrossRef]
- Hang, X.; Xue, Y.; Du, M.; Yang, R.; Zhao, J.; Pang, H. Controlled synthesis of a cobalt-organic framework: Hierarchical micro/nanospheres for high-performance supercapacitors. Inorg. Chem. Front. 2022, 9, 2845–2851. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Qu, N.; Lu, W.; Yang, S.; Tian, Y.; Zhang, Q.; Zhao, Y. Hollow Ni/Co-MOFs with Controllable Surface Structure as Electrode Materials for High Performance Supercapacitors. Adv. Mater. Interfaces 2022, 9, 2201431. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Li, Z.; Song, Y.; Zhu, S.; Wang, J.; Sun, Y.; Zhang, X.; Lin, B. Influence of Co-MOF morphological modulation on its electrochemical performance. J. Phys. Chem. Solids 2022, 160, 110336. [Google Scholar] [CrossRef]
- Li, Z.; Han, X.; Ma, Y.; Liu, D.; Wang, Y.; Xu, P.; Li, C.; Du, Y. MOFs-Derived Hollow Co/C Microspheres with Enhanced Microwave Absorption Performance. ACS Sustain. Chem. Eng. 2018, 6, 8904–8913. [Google Scholar] [CrossRef]
- Rakap, M.; Özkar, S. Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Appl. Catal. B Environ. 2009, 91, 21–29. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; Song, H.; Hou, L.; Li, Z. MOF derived C/Co@C with a “one-way-valve”-like graphitic carbon layer for selective semi-hydrogenation of aromatic alkynes. Carbon 2020, 160, 64–70. [Google Scholar] [CrossRef]
- Wu, Z.; Mao, X.; Zi, Q.; Zhang, R.; Dou, T.; Yip, A.C.K. Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles. J. Power Sources 2014, 268, 596–603. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chen, B.-H.; Hsueh, C.-L.; Ku, J.-R.; Tsau, F.; Hwang, K.-J. Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution. Appl. Catal. B Environ. 2009, 91, 368–379. [Google Scholar] [CrossRef]
- Zhao, J.; Ma, H.; Chen, J. Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co–B as catalysts. Int. J. Hydrogen Energy 2007, 32, 4711–4716. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, K.; Cui, L.; Zhu, W.; Asiri, A.M.; Sun, X. Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catal. Commun. 2016, 87, 94–97. [Google Scholar] [CrossRef]
- Loghmani, M.H.; Shojaei, A.F. Hydrogen generation from hydrolysis of sodium borohydride by cubic Co–La–Zr–B nano particles as novel catalyst. Int. J. Hydrogen Energy 2013, 38, 10470–10478. [Google Scholar] [CrossRef]
- Shen, X.; Wang, Q.; Wu, Q.; Guo, S.; Zhang, Z.; Sun, Z.; Liu, B.; Wang, Z.; Zhao, B.; Ding, W. CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution. Energy 2015, 90, 464–474. [Google Scholar] [CrossRef]
- Paladini, M.; Arzac, G.M.; Godinho, V.; Hufschmidt, D.; de Haro, M.C.J.; Beltrán, A.M.; Fernández, A. The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis. Appl. Catal. B Environ. 2017, 210, 342–351. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Liu, W.; Liang, T.; Dang, D.; Tian, X. In Situ Hybridizing Cu3(BTC)2 and Titania to Attain a High-Performance Copper Catalyst: Dual-Functional Role of Metal-Support Interaction on the Activity and Selectivity. ChemCatChem 2021, 13, 3846–3856. [Google Scholar] [CrossRef]
- Abdellatif, A.B.A.; El-Bery, H.M.; Abdelhamid, H.N.; El-Gyar, S.A. ZIF-67 and Cobalt-based@heteroatom–doped carbon nanomaterials for hydrogen production and dyes removal via adsorption and catalytic degradation. J. Environ. Chem. Eng. 2022, 10, 108848. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | Crystallite Size a (nm) |
---|---|---|---|---|
Co@C−550 | 158 | 0.09 | 3.4 | 29 |
Co@C−650 | 156 | 0.08 | 3.1 | 46 |
Co@C−750 | 189 | 0.10 | 3.2 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Chen, K.; Yang, X.; Dang, D. Coronavirus-like Core–Shell-Structured Co@C for Hydrogen Evolution via Hydrolysis of Sodium Borohydride. Molecules 2023, 28, 1440. https://doi.org/10.3390/molecules28031440
Su S, Chen K, Yang X, Dang D. Coronavirus-like Core–Shell-Structured Co@C for Hydrogen Evolution via Hydrolysis of Sodium Borohydride. Molecules. 2023; 28(3):1440. https://doi.org/10.3390/molecules28031440
Chicago/Turabian StyleSu, Shuyi, Kailei Chen, Xu Yang, and Dai Dang. 2023. "Coronavirus-like Core–Shell-Structured Co@C for Hydrogen Evolution via Hydrolysis of Sodium Borohydride" Molecules 28, no. 3: 1440. https://doi.org/10.3390/molecules28031440
APA StyleSu, S., Chen, K., Yang, X., & Dang, D. (2023). Coronavirus-like Core–Shell-Structured Co@C for Hydrogen Evolution via Hydrolysis of Sodium Borohydride. Molecules, 28(3), 1440. https://doi.org/10.3390/molecules28031440