Industrial Application and Health Prospective of Fig (Ficus carica) By-Products
Abstract
:1. Introduction
2. Bioactive Compounds and Phytochemicals in Fig
2.1. Vitamins
2.2. Antioxidants
2.3. Polyphenols
2.4. Polyunsaturated Fatty Acids
3. Fig and Fig By-product Applications
3.1. Baking Industry
3.2. Beverage Industry
3.3. Dairy Industry
4. Health Prospective of Fig and Fig-Based By-products
4.1. Constipation
4.2. Cardiovascular Diseases
4.3. Diabetes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Noort, S.; Wang, R.; Compton, S.G. Fig wasps (Hymenoptera: Chalcidoidea: Agaonidae, Pteromalidae) associated with Asian fig trees (Ficus, Moraceae) in southern Africa: Asian followers and African colonists: Insecta: Hymenoptera. Afr. Invertebr. 2013, 54, 381–400. [Google Scholar] [CrossRef]
- Trad, M.; Le Bourvellec, C.; Gaaliche, B.; Renard, C.M.; Mars, M. Nutritional Compounds in Figs from the Southern Mediterranean Region. Int. J. Food Prop. 2013, 17, 491–499. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Schulte, L.A.; Jodar, D.N.N.; Carella, D.S.G.; Kremen, C. Time to Integrate Pollinator Science into Soybean Production. Trends Ecol. Evol. 2021, 36, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Bose, T.K.; Mitra, S.K.; Sanyal, D. Fruits: Tropical and subtropical, 3rd ed.; Naya Udyog: Kolkata, India, 2001; Volume 1. [Google Scholar]
- Sheikh, B.Y. The role of prophetic medicine in the management of diabetes mellitus: A review of literature. J. Taibah Univ. Med. Sci. 2016, 11, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Kunz, T.H.; Diaz, C.A. Folivory in fruit-eating bats, with new evidence from Artibeusjamaicensis (Chiroptera: Phyllostomidae). Biotropica 1995, 27, 106–120. [Google Scholar] [CrossRef]
- Frodin, D.G. History and concepts of big plant genera. Taxon 2004, 53, 753–776. [Google Scholar] [CrossRef]
- Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evidence-Based Complement. Altern. Med. 2013, 2013, 974256. [Google Scholar] [CrossRef] [Green Version]
- Barolo, M.I.; Mostacero, N.R.; López, S.N. Ficus carica L. (Moraceae): An ancient source of food and health. Food Chem. 2014, 164, 119–127. [Google Scholar] [CrossRef]
- Akhtar, S.; Anjum, F.M.; Anjum, M.A. Micronutrient fortification of wheat flour: Recent development and strategies. Food Res. Int. 2011, 44, 652–659. [Google Scholar] [CrossRef]
- Sher, H.; Bussmann, R.W.; Hart, R.; de Boer, H.J. Traditional use of medicinal plants among Kalasha, Ismaeli and Sunni groups in Chitral District, Khyber Pakhtunkhwa province, Pakistan. J. Ethnopharmacol. 2016, 188, 57–69. [Google Scholar] [CrossRef]
- Adisakwattana, S.; Yibchok-Anun, S.; Charoenlertkul, P.; Wongsasiripat, N. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase. J. Clin. Biochem. Nutr. 2011, 49, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.M.; Yu, W.; Ou, Z.P.; Ma, H.L.; Liu, W.M.; Ji, X.L. Antioxidant and immunity activity of water extract and crude polysaccharide from Ficus carica L. fruit. Plant Foods Hum. Nutr. 2009, 64, 167–173. [Google Scholar] [CrossRef]
- Afzal, M.F.; Khalid, W.; Akram, S.; Khalid, M.A.; Zubair, M.; Kauser, S.; Mohamedahmed, K.A.; Aziz, A.; Siddiqui, S.A. Bioactive profile and functional food applications of banana in food sectors and health: A review. Int. J. Food Prop. 2022, 25, 2286–2300. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Vasilopoulou, E.; Georga, K.; Soukara, S.; Dilis, V. Traditional foods: Why and how to sustain them. Trends Food Sci. Technol. 2006, 17, 498–504. [Google Scholar] [CrossRef]
- Widlansky, M.E.; Duffy, S.J.; Hamburg, N.; Gokce, N.; Warden, B.A.; Wiseman, S.; Keaney, J.; Frei, B.; Vita, J.A. Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free. Radic. Biol. Med. 2005, 38, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Escribano-Bailón, T. Anthocyanin composition in fig (Ficus carica L.). J. Food Compos. Anal. 2008, 21, 107–115. [Google Scholar] [CrossRef]
- Vallejo, F.; Marín, J.G.; Tomás-Barberán, F.A. Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chem. 2012, 130, 485–492. [Google Scholar] [CrossRef]
- Behzad, B.D. Morphological and pomological characteristics of fig (Ficus carica L.) cultivars from Varamin, Iran. Afr. J. Biotechnol. 2011, 10, 19096–19105. [Google Scholar]
- Tanwar, B.; Andallu, B.; Modgil, R. Influence of processing on physicochemical, nutritional and phytochemical composition of Ficus carica L. (fig) products. Asian J. Dairy Food Res. 2014, 33, 37–43. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharm. Biol. 2014, 52, 1487–1503. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.R.; Kumar, V.; Kumar, S.; Panesar, P.S. Microwave assisted extraction of phytochemicals from Ficusracemosa. Curr. Opin. Green Sustain. Chem. 2020, 3, 100020. [Google Scholar] [CrossRef]
- Jangde, R.K. Plant Profile of Ficusreligosa: A Review. J. Sci. Technol. 2015, 7, 193. [Google Scholar]
- Alexandre, E.; Araújo, P.; Duarte, M.F.; Freitas, V.; Pintado, M.M.; Saraiva, J.A. High-pressure assisted extraction of bioactive compounds from industrial fermented fig by-product. J. Food Sci. Technol. 2017, 54, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiao, J.; Gai, Q.-Y.; Wang, P.; Guo, N.; Niu, L.-L.; Fu, Y.-J. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. J. Pharm. Biomed. Anal. 2017, 145, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Teruel-Andreu, C.; Andreu-Coll, L.; López-Lluch, D.; Sendra, E.; Hernández, F.; Cano-Lamadrid, M. Ficus carica Fruits, By-Products and Based Products as Potential Sources of Bioactive Compounds: A Review. Agronomy 2021, 11, 1834. [Google Scholar] [CrossRef]
- Shahinuzzaman, M.; Yaakob, Z.; Anuar, F.H.; Akhtar, P.; Kadir, N.H.A.; Hasan, A.K.M.; Sobayel, K.; Nour, M.; Sindi, H.; Amin, N.; et al. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci. Rep. 2020, 10, 10852. [Google Scholar] [CrossRef]
- Yu, L.; Meng, Y.; Wang, Z.-L.; Cao, L.; Liu, C.; Gao, M.-Z.; Zhao, C.-J.; Fu, Y.-J. Sustainable and efficient surfactant-based microwave-assisted extraction of target polyphenols and furanocoumarins from fig (Ficus carica L.) leaves. J. Mol. Liq. 2020, 318, 114196. [Google Scholar] [CrossRef]
- Mopuri, R.; Ganjayi, M.; Meriga, B.; Koorbanally, N.A.; Islam, S. The effects of Ficus carica on the activity of enzymes related to metabolic syndrome. J. Food Drug Anal. 2018, 26, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Backes, E.; Pereira, C.; Barros, L.; Prieto, M.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res. Int. 2018, 113, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Prabavathy, D.; Nachiyar, C.V. Screening and characterisation of antimicrobial compound from endophytic Aspergillus sp. isolated from Ficus carica. J. Pharm. Res. 2011, 4, 34–38. [Google Scholar]
- Radwan, S.; Handal, G.; Rimawi, F.; Hanania, M. Seasonal Variations in Antioxidant Activity, Total Flavonoids Content, Total Phenolic Content, Antimicrobial Activity and Some Bioactive Components of Ficus carica L. in Palestine. Int. J. PharmTech Res. 2020, 13, 329–340. [Google Scholar] [CrossRef]
- Abdel-Rahman, R.; Ghoneimy, E.; Abdel-Wahab, A.; Eldeeb, N.; Salem, M.; Salama, E.; Ahmed, T. The therapeutic effects of Ficus carica extract as antioxidant and anticancer agent. South Afr. J. Bot. 2021, 141, 273–277. [Google Scholar] [CrossRef]
- Lazreg-Aref, H.; Mars, M.; Fekih, A.; Aouni, M.; Said, K. Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharm. Biol. 2012, 50, 407–412. [Google Scholar] [CrossRef]
- Jeong, M.R.; Kim, H.Y.; Cha, J.D. Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bacteriol. Virol. 2009, 39, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Bey, M.B.; Meziant, L.; Benchikh, Y.; Louaileche, H. Deployment of response surface methodology to optimize recovery of dark fresh fig (Ficus carica L., var. Azenjar) total phenolic compounds and antioxidant activity. Food Chem. 2014, 162, 277–282. [Google Scholar] [CrossRef]
- Ergül, M.; Ergül, M.; Eruygur, N.; Ataş, M.; Ucar, E. In vitro evaluation of the chemical composition and various biological activities of Ficus carica leaf extracts. Turk. J. Pharm. Sci. 2019, 16, 401. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Hamed, M.B.; Salama, W.H.; Ali, M.M.; Fahmy, A.S.; Mohamed, S.A. Ficus carica, Ficus sycomorus and Euphorbia tirucalli latex extracts: Phytochemical screening, antioxidant and cytotoxic properties. Biocatal. Agric. Biotechnol. 2019, 20, 101199. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jokić, S.; Mujić, I.; Bilić, M.; Velić, D. Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus carica L.). Pol. J. Food Nutr. Sci. 2011, 61, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Ercisli, S.; Tosun, M.; Karlidag, H.; Dzubur, A.; Hadziabulic, S.; Aliman, J. Color and Antioxidant Characteristics of Some Fresh Fig (Ficus carica L.) Genotypes from Northeastern Turkey. Plant Foods Hum. Nutr. 2012, 67, 271–276. [Google Scholar] [CrossRef]
- Nakilcioğlu-Taş, E.; Ötleş, S. Influence of extraction solvents on the polyphenol contents, compositions, and antioxidant capacities of fig (Ficus carica L. ) seeds. An. Acad. Bras. Cienc. 2021, 93, e20190526. [Google Scholar] [CrossRef]
- Ivanov, I.; Dincheva, I.; Badjakov, I.; Petkova, N.; Denev, P.; Pavlov, A. GC-MS analysis of unpolar fraction from Ficus carica L.(fig) leaves. Int. Food Res. J. 2018, 25, 282–286. [Google Scholar]
- Morgan, A.F.; Kimmel, L.; Nichols, P.F.; Field, A. The Vitamin Content of Figs. J. Nutr. 1935, 9, 383–394. [Google Scholar] [CrossRef]
- Fasakin, C.F.; Udenigwe, C.C.; Aluko, R.E. Antioxidant properties of chlorophyll-enriched and chlorophyll-depleted polyphenolic fractions from leaves of Vernonia amygdalina and Gongronema latifolium. Food Res. Int. 2011, 44, 2435–2441. [Google Scholar] [CrossRef]
- Silva, R.; Abílio, V.; Takatsu, A.; Kameda, S.; Grassl, C.; Chehin, A.; Medrano, W.; Calzavara, M.; Registro, S.; Andersen, M.; et al. Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 2004, 46, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Golubowicz, S.; Yablowicz, Z.; Grossman, S.; Bergman, M.; Gottlieb, H.E.; Flaishman, M.A. Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). J. Agric. Food Chem. 2006, 54, 7717–7723. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A. The functional food properties of figs. J. Cereal Sci. 1999, 44, 82–87. [Google Scholar]
- Costa, R.M.; Magalhães, A.S.; Pereira, J.A.; Andrade, P.B.; Valentão, P.; Carvalho, M.; Silva, B.M. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 2009, 47, 860–865. [Google Scholar] [CrossRef]
- Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature 2000, 405, 903–904. [Google Scholar] [CrossRef]
- Vinson, J.A.; Zubik, L.; Bose, P.; Samman, N.; Proch, J. Dried fruits: Excellent in vitro and in vivo antioxidants. J. Am. Coll. Nutr. 2005, 24, 44–50. [Google Scholar] [CrossRef]
- Genna, A.; De Vecchi, P.; Maestrelli, A.; Bruno, M. Quality of ‘Dottato’ Dried Figs Grown in the Cosenza Region, Italy. A Sensory and Physical-Chemical Approach. In III International Symposium on Fig; ISHS: Leuven, Belgium, 2005; Volume 798, pp. 319–323. [Google Scholar]
- Piga, A.; Del Caro, A.; Milella, G.; Pinna, I.; Vacca, V.; Schirru, S. Hplc Analysis of Polyphenols in Peel and Pulp of Fresh Figs. In III International Symposium on Fig; ISHS: Leuven, Belgium, 2005; Volume 798, pp. 301–306. [Google Scholar] [CrossRef]
- Jeong, W.S.; Lachance, P.A. Phytosterols and fatty acids in fig (Ficus carica, var. Mission) fruit and tree components. J. Food Sci. 2001, 66, 278–281. [Google Scholar] [CrossRef]
- Juániz, I.; Ludwig, I.A.; Huarte, E.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C.; De Peña, M.-P. Influence of heat treatment on antioxidant capacity and (poly)phenolic compounds of selected vegetables. Food Chem. 2016, 197, 466–473. [Google Scholar] [CrossRef] [PubMed]
- DuPree, E.J.; Jayathirtha, M.; Yorkey, H.; Mihasan, M.; Petre, B.A.; Darie, C.C. A Critical Review of Bottom-Up Proteomics: The Good, the Bad, and the Future of this Field. Proteomes 2020, 8, 14. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Valentão, P.; Pereira, J.A.; Silva, B.M.; Tavares, F.; Andrade, P.B. Ficus carica L.: Metabolic and biological screening. Food Chem. Toxicol. 2009, 47, 2841–2846. [Google Scholar] [CrossRef]
- Veberic, R.; Colaric, M.; Stampar, F. Phenolic acids and flavonoids of fig fruit (Ficus carica L.) in the northern Mediterranean region. Food Chem. 2008, 106, 153–157. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Kassas, H.Y. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. J. Genet. Eng. Biotechnol. 2016, 14, 299–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCune, L. A review of the antioxidant actions of three herbal medicines (Crataegus monogyna, Ginkgo biloba, and Aesculus hippocastanum) on the treatment of cardiovascular diseases. In Bioactive Food as Dietary Interventions for Cardiovascular Disease: Bioactive Foods in Chronic Disease States; Elsevier: Amsterdam, The Netherlands, 2012; Volume 243. [Google Scholar]
- Kim, M.Y.; Kim, E.J.; Kim, Y.N.; Choi, C.; Lee, B.H. Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutr. Res. Pract. 2012, 6, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends Food Sci. Technol. 2013, 31, 118–129. [Google Scholar] [CrossRef]
- Al-Marazeeq, K.M.; Angor, M.M. Chemical Characteristic and Sensory Evaluation of Biscuit Enriched with Wheat Germ and the Effect of Storage Time on the Sensory Properties for this Product. Food Nutr. Sci. 2017, 08, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Chareonthaikij, P.; Uan-On, T.; Prinyawiwatkul, W. Effects of pineapple pomace fibre on physicochemical properties of composite flour and dough, and consumer acceptance of fibre-enriched wheat bread. Int. J. Food Sci. Technol. 2016, 51, 1120–1129. [Google Scholar] [CrossRef]
- Farouk, M.M.; Yoo, M.J.Y.; Hamid, N.S.A.; Staincliffe, M.; Davies, B.; Knowles, S.O. Novel meat-enriched foods for older consumers. Food Res. Int. 2018, 104, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Hutchings, S.C.; Fang, Z.; Bandara, N.; Gamlath, S.; Ajlouni, S.; Ranadheera, C.S. Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. Int. J. Dairy Technol. 2020, 73, 182–190. [Google Scholar] [CrossRef]
- Ali, A.; Rahut, D.B. Healthy foods as proxy for functional foods: Consumers’ awareness, perception, and demand for natural functional foods in Pakistan. Int. J. Food Sci. 2019, 2019, 6390650. [Google Scholar] [CrossRef] [PubMed]
- Bolin, H.R.; Jackson, R. Factors affecting sulfur dioxide binding in dried apples and apricots. J. Food Process. Preserv. 1985, 9, 25–34. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Barber, X.; Pérez-Álvarez, J.A.; Fernández-López, J. Assessment of chemical, physico-chemical, techno-functional and antioxidant properties of fig (Ficus carica L.) powder co-products. Ind Crop. Prod. 2015, 69, 472–479. [Google Scholar] [CrossRef]
- Ayuso, M.; Carpena, M.; Taofiq, O.; Albuquerque, T.G.; Simal-Gandara, J.; Oliveira, M.B.P.; Barros, L. Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends Food Sci. Technol. 2022, 127, 1–13. [Google Scholar] [CrossRef]
- Yilmaz, P.; Demirhan, E.; Ozbek, B. Development of Ficus carica Linn leaves extract incorporated chitosan films for active food packaging materials and investigation of their properties. Food Biosci. 2022, 46, 101542. [Google Scholar] [CrossRef]
- Backes, E.; Leichtweis, M.G.; Pereira, C.; Carocho, M.; Barreira, J.C.; Kamal Genena, A.; José Baraldi, I.; Filomena Barreiro, M.; Barros, L.; Ferreira, I.C. Ficus carica L. and Prunus spinosa L. extracts as new anthocyanin-based food colorants: A thorough study in confectionery products. Food Chem. 2020, 333, 127457. [Google Scholar] [CrossRef]
- Khapre, A.P.; Satwadhar, P.N.; Deshpande, H.W. Studies on standardization of fig fruit (Ficus carica L.) powder enriched cookies and its composition. J. Dairy Foods Home Sci. 2015, 34, 71–74. [Google Scholar]
- Yeganehzad, S.; Kiumarsi, M.; Nadali, N.; Ashkezary, M.R. Formulation, development and characterization of a novel functional fruit snack based on fig (Ficus carica L.) coated with sugar-free chocolate. Heliyon 2020, 6, e04350. [Google Scholar] [CrossRef]
- Jahromi, M.; Niakousari, M. Development and characterisation of a sugar-free milk-based dessert formulation with fig (Ficus carica L.) and carboxymethylcellulose. Int. J. Dairy Technol. 2018, 71, 801–809. [Google Scholar] [CrossRef]
- Maghsoudlou, E.; Kenari, R.E.; Amiri, Z.R. Evaluation of Antioxidant Activity of Fig (Ficus carica) Pulp and Skin Extract and Its Application in Enhancing Oxidative Stability of Canola Oil. J. Food Process. Preserv. 2016, 41, e13077. [Google Scholar] [CrossRef]
- Khapre, A.P.; Satwadhar, P.N.; Syed, H.M. Studies on processing technology and cost estimation of fig (Ficus carica L.) fruit powder enriched Burfi (Indian cookie). J. Appl. Nat. Sci. 2015, 7, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Khapre, A.P.; Satwadhar, P.N.; Deshpande, H.W. Development of technology for preparation of fig (Ficus carica L.) fruit powder and its utilization in toffee. J. Dairy. Foods Home Sci. 2011, 30, 267–270. [Google Scholar]
- Kumar, A.; Elavarasan, K.; Hanjabam, M.D.; Binsi, P.; Mohan, C.; Zynudheen, A.A.; Kumar, A. Marine collagen peptide as a fortificant for biscuit: Effects on biscuit attributes. Lwt 2019, 109, 450–456. [Google Scholar] [CrossRef]
- Krystyjan, M.; Gumul, D.; Ziobro, R.; Korus, A. The fortification of biscuits with bee pollen and its effect on physicochemical and antioxidant properties in biscuits. Lwt 2015, 63, 640–646. [Google Scholar] [CrossRef]
- Nogueira, A.D.C.; Steel, C.J. Protein enrichment of biscuits: A review. Food Rev. Int. 2018, 34, 796–809. [Google Scholar] [CrossRef]
- Jung, K.T.; Park, B.G.; Lee, M.H. Quality characteristics of sourdough bread using fermented fig. Culin. Sci. Hosp. Res. 2017, 23, 56–65. [Google Scholar]
- Dogan, A.; Cat, A.; Catal, M.; Erkan, M. First report of Alternariaalternata causing postharvest decay in fig (Ficus carica L. cv. Bursa Siyahi) fruit in Turkey. J. Biotechnol. 2018, 280, S32–S91. [Google Scholar] [CrossRef]
- Martinez-Damian, M.T.; Omegar, C.A.; Oscar, C.A. Effect of modified atmosphere packaging on nutraceutical quality and overall appearance of figs stored at 1 C. Not. Bot. Horti Agrobot. 2020, 48, 2292–2305. [Google Scholar] [CrossRef]
- Lansky, E.P.; Paavilainen, H.M.; Pawlus, A.D.; Newman, R.A. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. J. Ethnopharmacol. 2008, 119, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, S.; Wang, M.; Wang, L.; Liu, J. Effect of mixed fermentation with Pichia fermentans, Hanseniasporauvarum, and Wickeramomycesanomala on the quality of fig (Ficus carica L.) wines. J. Food Process. Preserv. 2021, 45, e15169. [Google Scholar] [CrossRef]
- Ilkin, Y.S. Microbiological and chemical properties of fig vinegar produced in Turkey. Afr. J. Microbiol. Res. 2013, 7, 2332–2338. [Google Scholar] [CrossRef] [Green Version]
- Jeong, M.R.; Cha, J.D.; Yun, S.I.; Han, J.H.; Lee, Y.E. Manufacturing of wine with Korean figs (Ficus carica L.) and quality improvement by adding fig leaves. J. East Asian Soc. Diet. Life 2005, 15, 112–118. [Google Scholar]
- Shi, Y.; Mon, A.M.; Fu, Y.; Zhang, Y.; Wang, C.; Yang, X.; Wang, Y. The genus Ficus (Moraceae) used in diet: Its plant diversity, distribution, traditional uses and ethnopharmacological importance. J. Ethnopharmacol. 2018, 226, 185–196. [Google Scholar] [CrossRef]
- Weibin, J.; Kai, M.; Zhifeng, L.; Yelin, W.; Lianju, W. The production and research of fig (Ficus carica L.) in China. In II International Symposium on Fig; ISHS: Leuven, Belgium, 2001; Volume 605, pp. 191–196. [Google Scholar]
- Watson, R.; Preedy, V.R. Bioactive Foods in Promoting Health: Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Arvaniti, O.S.; Samaras, Y.; Gatidou, G.; Thomaidis, N.S.; Stasinakis, A.S. Review on fresh and dried figs: Chemical analysis and occurrence of phytochemical compounds, antioxidant capacity and health effects. Food Res. Int. 2019, 119, 244–267. [Google Scholar] [CrossRef]
- Cruz, J.M.d.A.; Corrêa, R.F.; Lamarão, C.V.; Kinupp, V.F.; Sanches, E.A.; Campelo, P.H.; Bezerra, J.D.A. Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Res. Int. 2021, 152, 110928. [Google Scholar] [CrossRef]
- Yildirim, H.K. Evaluation of colour parameters and antioxidant activities of fruit wines. Int. J. Food Sci. Nutr. 2006, 57, 47–63. [Google Scholar] [CrossRef]
- Sanders, M.E. Probiotics, strains matter. Funct. Foods Nutraceuticals Mag. 2007, 48, 36–41. [Google Scholar]
- O’Connell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Silva, L.R.; de Pinho, P.G.; Gil-Izquierdo, A.; Valentão, P.; Silva, B.M.; Andrade, P.B. Volatile profiling of Ficus carica varieties by HS-SPME and GC–IT-MS. Food Chem. 2010, 123, 548–557. [Google Scholar] [CrossRef]
- Ishurd, O.; Zgheel, F.; Kermagi, A.; Flefla, M.; Elmabruk, M.; Yalin, W.; Pan, Y. Microbial (1→ 3)-β-D-glucans from Libyan figs (Ficus carica). Carbohydr. Polym. 2004, 58, 181–184. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ouchemoukh, S.; Hachoud, S.; Boudraham, H.; Mokrani, A.; Louaileche, H. Antioxidant activities of some dried fruits consumed in Algeria. Lwt 2012, 49, 329–332. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem. 2009, 114, 1271–1277. [Google Scholar] [CrossRef]
- Abbasi, S.; Kamalinejad, M.; Babaie, D.; Shams, S.; Sadr, Z.; Gheysari, M.; Rakhshandeh, H. A new topical treatment of atopic dermatitis in pediatric patients based on Ficus carica L. (Fig): A randomized, placebo-controlled clinical trial. Complement. Ther. Med. 2017, 35, 85–91. [Google Scholar] [CrossRef]
- Ao, C.; Li, A.; Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Evaluation of antioxidant and antibacterial activities of Ficus microcarpa L. fil. Extract. Food con. 2008, 19, 940–948. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ma, P.; Chen, J.; Xie, W. Ficus carica leaves extract inhibited pancreatic β-cell apoptosis by inhibiting AMPK/JNK/caspase-3 signaling pathway and antioxidation. Biomed. Pharmacother. 2020, 122, 109689. [Google Scholar] [CrossRef]
- Ghanbari, A.; Le Gresley, A.; Naughton, D.; Kuhnert, N.; Sirbu, D.; Ashrafi, G.H. Biological activities of Ficus carica latex for potential therapeutics in Human Papillomavirus (HPV) related cervical cancers. Sci. Rep. 2019, 9, 19258. [Google Scholar] [CrossRef] [Green Version]
- Slavin, J.L. Figs: Past, present, and future. Nutr. Today 2006, 41, 180–184. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aldebasi, Y.H. Ficus carica and Its Constituents Role in Management of Diseases. Asian J. Pharm. Clin. Res. 2017, 10, 49–53. [Google Scholar] [CrossRef]
- El-Sayed, S.M.; El-Naggar, M.E.; Hussein, J.; Medhat, D.; El-Banna, M. Effect of Ficus carica L. leaves extract loaded gold nanoparticles against cisplatin-induced acute kidney injury. Colloids Surf. B: Biointerfaces 2019, 184, 110465. [Google Scholar] [CrossRef]
- Wang, E.; Chen, X.; Liu, T.; Wang, K. Effect of dietary Ficus carica polysaccharides on the growth performance, innate immune response and survival of crucian carp against Aeromonas hydrophila infection. Fish Shellfish. Immunol. 2022, 120, 434–440. [Google Scholar] [CrossRef]
- Saoudi, M.; El Feki, A. Protective Role of Ficus carica Stem Extract against Hepatic Oxidative Damage Induced by Methanol in Male Wistar Rats. Evidence-Based Complement. Altern. Med. 2012, 2012, 150458. [Google Scholar] [CrossRef] [Green Version]
- Dini, I.; Falanga, D.; Di Lorenzo, R.; Tito, A.; Carotenuto, G.; Zappelli, C.; Grumetto, L.; Sacchi, A.; Laneri, S.; Apone, F. An Extract from Ficus carica Cell Cultures Works as an Anti-Stress Ingredient for the Skin. Antioxidants 2021, 10, 515. [Google Scholar] [CrossRef]
- Bhanushali, M.; Joshi, Y.; Makhija, D. Central nervous system activity of an aqueous acetonic extract of Ficus carica L. in mice. J. Ayurveda Integr. Med. 2014, 5, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Rezagholizadeh, L.; Aghamohammadian, M.; Oloumi, M.; Banaei, S.; Mazani, M.; Ojarudi, M. Inhibitory effects of Ficus carica and Olea europaea on pro-inflammatory cytokines: A review. Iran. J. Basic Med. Sci. 2022, 25, 268. [Google Scholar] [PubMed]
- Mohan, G.K.; Pallavi, E.; Kumar, R.; Ramesh, M.; Venkatesh, S. Hepatoprotective activity of Ficus carica Linn leaf extract against carbon tetrachloride-induced hepatotoxicity in rats. DARU J. Pharm. Sci. 2007, 15, 162–166. [Google Scholar]
- Purnamasari, R.; Winarni, D.; Permanasari, A.A.; Agustina, E.; Hayaza, S.; Darmanto, W. Anticancer activity of methanol extract of Ficus carica leaves and fruits against proliferation, apoptosis, and necrosis in Huh7it cells. Cancer Inform. 2019, 18, 1176935119842576. [Google Scholar] [CrossRef]
- Canal, J.; Torres, M.; Pérez, C. Experimental diabetes treated with Ficus carica extract: Effect on oxidative stress parameters. Acta Diabetol. 2003, 40, 3–8. [Google Scholar] [CrossRef]
- El-Shobaki, F.A.; El-Bahay, A.M.; Esmail, R.S.A.; El-Megeid, A.A.A.; Esmail, N.S. Effect of figs fruit (Ficus carica L.) and its leaves on hyperglycemia in alloxan diabetic rats. World J. Dairy Food Sci. 2010, 5, 47–57. [Google Scholar]
- Read, N.; Timms, J.; Barfield, L.; Donnelly, T.; Bannister, J. Impairment of defecation in young women with severe constipation. Gastroenterology 1986, 90, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Jeong Rea, J.; Cordes, D.H. Disability assessment. J. Fam. Pract. 1985, 21, 337–338. [Google Scholar]
- Tabrizi, A.; Dargahi, R.; Ghadim, S.T.; Javadi, M.; Pirouzian, H.R.; Azizi, A.; Rad, A.H. Functional laxative foods: Concepts, trends and health benefits. J. Nat. Prod. 2020, 66, 305–330. [Google Scholar] [CrossRef]
- Williams, D.C.; Sgarbieri, V.C.; Whitaker, J.R. Proteolytic Activity in the Genus Ficus. Plant Physiol. 1968, 43, 1083–1088. [Google Scholar] [CrossRef] [Green Version]
- Wintola, O.A.; Sunmonu, T.O.; Afolayan, A.J. The effect of Aloe ferox Mill. in the treatment of loperamide-induced constipation in Wistar rats. BMC Gastroenterol. 2010, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, M.; Arshad, M.U.; Saeed, F.; Ahmed, T.; Khan, A.U.; Bader-ul-Ain, H.; Suleria, H.A.R. Exploring the Nutritional Characteristics of Different Parts of Fig in Relation to Hypoglycemic Potential. Pak. J. Life Soc. Sci. 2016, 14, 95. [Google Scholar]
- Al-Ogaili, N.A.; Osama, S.; Jazme, D.; Saad, S. In vitro antibacterial investigation and synergistic effect of Ficus carica and oleaEuropaea aqueous extracts. Res. J. Pharm. Technol. 2020, 13, 1198–1203. [Google Scholar] [CrossRef]
- Aksoy, U. The dried fig management and the potential for new products. In V International Symposium on Fig; ISHS: Leuven, Belgium, 2017; pp. 377–382. [Google Scholar] [CrossRef]
- Patil, C.R.; Thakre, S.S.; Thakre, S.B. A cross-sectional study on the risk factors for cardiovascular disease and risk profiling of adults in central India. J. Clin. Prev. Cardiol. 2017, 6, 104. [Google Scholar]
- Rodriguez-Monforte, M.; Flores-Mateo, G.; Sánchez, E. Dietary patterns and CVD: A systematic review and meta-analysis of observational studies. Br. J. Nutr. 2015, 114, 1341–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef] [PubMed]
- Soni, N.; Mehta, S.; Satpathy, G.; Gupta, R.K. Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Int. J. Pharmacogn. Phytochem. 2014, 3, 158–165. [Google Scholar]
- World Health Organization. Global NCD Target: Halt the Rise in Diabetes (No. WHO/NMH/NMA/16.186); World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Mahmoudi, S.; Khali, M.; Benkhaled, A.; Benamirouche, K.; Baiti, I. Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac. J. Trop. Biomed. 2016, 6, 239–245. [Google Scholar] [CrossRef]
- Misbah, H.; Aziz, A.A.; Aminudin, N. Antidiabetic and antioxidant properties of Ficusdeltoidea fruit extracts and fractions. BMC Complement. Med. Ther. 2013, 13, 118. [Google Scholar] [CrossRef] [Green Version]
- Mopuri, R.; Islam, M.S. Antidiabetic and anti-obesity activity of Ficus carica: In vitro experimental studies. Diabetes Metab. 2016, 42, 300. [Google Scholar] [CrossRef]
- Deepa, P.; Sowndhararajan, K.; Kim, S.; Park, S.J. A role of Ficus species in the management of diabetes mellitus: A review. J. Ethnopharmacol. 2018, 215, 210–232. [Google Scholar] [CrossRef]
Different Parts | Extraction Method | Phytochemicals | Solvent | References |
---|---|---|---|---|
Fermented fig by-product | High-pressure assisted extraction | Antioxidants, total phenolic, tannin and flavonoid | Ethanol | [24] |
Fig leaves | Tailor-made deep eutectic solvent (DES) and microwave-assisted extraction | Caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten | Methanol | [25] |
Whole fig fruit, peel, leaves and pulp | -- | Total phenols and antioxidant | -- | [26] |
Ficus carica L. latex | Maceration and ultrasound-assisted extraction (UAE) | Total phenolic content (TPC) and antioxidant | Methanol, ethanol, ethyl acetate and n-hexane | [27] |
Fig leaves | Surfactant-based microwave-assisted extraction | Caffeoylmalic acid, psoralic acid-glucoside, rutin, psoralen and bergapten reached | Ethanol | [28] |
Fruit, leaves and stembark | Ethanolic extract | Butyl butyrate, 5-hydroxymethyl furfural, 1-butoxy-1-isobutoxy butane, malic acid, tetradecanoic acid, phytol acetate, trans phytol, n-hexadecanoic acid, 9Z,12Z-octadecadienoic acid, stearic acid, sitosterol, 3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one and 2,4,5-trimethyl-2,4-dihydro-3H-pyrazol-3-one | Hexane, ethyl acetate, ethanol and water | [29] |
Ficus carica L. peel | Heat, microwave and ultrasound | Anthocyanin | Ethanol and water | [30] |
Ficus carica | Ethyl acetate | Phenol groups and amine groups | -- | [31] |
Leaves | Soxhlet extractor | Quercetin, chlorogenic acid, caffeic acid, syringic acid, coumaric acid, rutin and trans-cinnamic acid | Water, methanol and ethanol | [32] |
Fig leaf | Ethanolic | Antioxidant | Ethanol | [33] |
Fruit | Hexane extract | Chemical compounds and antibacterial | Hexane | [34] |
Ficus carica | Methanol (MeOH) extract | Antimicrobial | Methanol | [35] |
Black fresh fig | Solvent extraction | Antioxidants and total phenolic contents | Acetone | [36] |
Leaf | Methanol and water extracts | α-glucosidase and α-amylase | Water | [37] |
Latex | Methanol extracts | Total phenolic and flavonoid contents | Methanol | [38] |
Fruit | Ethanol and the temperature of extraction | Total phenolics, total flavonoids and total proanthocyanidins | Ethanol | [39] |
Fresh fig | Methanol water extraction | Total phenolics and total anthocyanins | Methanol and water | [40] |
Seed | Solvent extraction | Polyphenol contents and antioxidant | Acetone, methanol and ethanol | [41] |
Leaves | Solvent extraction | Biological active lipid components | Diethyl ether, petroleum ether, n-hexane, acetone and ethanol | [42] |
Industry | Food Product | Additive | Function | Reference |
---|---|---|---|---|
Food industry | Fig powder co-products (FPC) | Peel and pulp | FPC obtained from peel present higher antioxidant activity than FPC obtained from pulp. | [69] |
Food industry | Functional food | Leaves, pulp, peels, seeds and latex | It is the high value-added ingredients and their utilization in novel food formulation development. | [70] |
Food packaging | Fig-based Chitosan film | Leaves | Fig leaves extract incorporated chitosan films can be used for protection of the food items and increase their shelf life. | [71] |
Confectionery | Doughnut icing and pastry product “beijinhos” | Fig peels | Use of fig peels fruits as natural colorants. | [72] |
Baking | Cookies | Fresh fig fruit powder | Fig powder-incorporated cookies have rich nutrients as compared to market products. | [73] |
Snack | Fruit-based snack | Dried fig | In this study, a novel snack based on fig fruit powder was developed. | [74] |
Dairy | Sugar-free milk-based dessert | Dried figs and CMC | Figs and CMC influenced the dessert’s characteristics. | [75] |
Oil | Canola oil | Pulp and skin extract | The high efficiency of fig skin extract for oxidative stability is assessed because it is good source of phenolic compounds. | [76] |
Bakery | Burfi (Indian cookie) | Fig fruit powder | The fig fruit powder-based product was found to be low cost as compared to market products. | [77] |
Confectionery | Toffee | Fig fruit powder | The toffee products prepared by fig fruit powder were assessed for their physico-chemical and sensory parameters. | [78] |
Fig Part | In vivo/In Vitro | Disease | Action | Reference |
---|---|---|---|---|
Leaves and fruit | In vivo and in vitro | Inflammatory and Carcinogenic effects | In vivo and in vitro study illuminates that F. carica leaves and fruits play important role the prevention of inflammatory and carcinogenic effects. | [107] |
Leaves | In vivo | Kidney | The findings showed that fig extract play important role in the treatment of kidney diseases. | [108] |
Ficus carica | --- | Anemia, cancer, diabetes, leprosy, liver diseases, paralysis and ulcers | Ficus carica is a good source of traditional medicine for the treatment of anemia, cancer, diabetes, leprosy, liver diseases, paralysis and ulcers. | [21] |
Ficus carica leaf extracts | In vitro | Cancer, diabetes mellitus and Alzheimer’s disease | The results suggest that F. carica leaves may be valuable source for developing a promising therapeutic agent in cancer, diabetes and Alzheimer’s disease. | [37] |
Ficus carica polysaccharides (FCPS) | In vivo | Aeromonas hydrophila infection | Results showed that dietary FCPS can be improved the innate immune response, growth performance and disease resistance against A. hydrophila in fish. | [109] |
Ficus carica stem extract | In vivo | Hepatic oxidative damage | Fig extract played significant role in protecting animals from methanol-induced hepatic oxidative damage. | [110] |
Ficus carica cell suspension culture extract | In vitro (on keratinocytes cells) and in vivo | Skin | In vitro and in vivo tests demonstrated that the extract from Ficus carica cell cultures alleviated skin damage caused by psychological stress. | [111] |
Acetonic extract of Ficus carica L. | In vivo | Central nervous system | The outcomes showed that Ficus carica L. can be useful in insomnia, anxiety, schizophrenia, migraine and epilepsy. | [112] |
Ficus carica (fig) and Olea europaea (olive) | -- | Pro-inflammatory cytokines | Consuming figs and olives can be useful in the prevention or treatment of inflammatory diseases. | [113] |
Leaves of Ficus carica | In vivo | Hepatotoxicity | Fig leaves extract reduce the risk of hepatotoxicity. | [114] |
Leaf and fruit | In vitro | Cancer | Results suggest that leaf and fruit have anticancer activity. | [115] |
Leaves | In vivo | Diabetes | Reduce the risk of diabetes. | [116] |
Leaf and fruit | -- | Hyperglycemia | The fig fruit or its leaves in food may help to correct the hyperglycemia due to diabetes. | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasool, I.F.u.; Aziz, A.; Khalid, W.; Koraqi, H.; Siddiqui, S.A.; AL-Farga, A.; Lai, W.-F.; Ali, A. Industrial Application and Health Prospective of Fig (Ficus carica) By-Products. Molecules 2023, 28, 960. https://doi.org/10.3390/molecules28030960
Rasool IFu, Aziz A, Khalid W, Koraqi H, Siddiqui SA, AL-Farga A, Lai W-F, Ali A. Industrial Application and Health Prospective of Fig (Ficus carica) By-Products. Molecules. 2023; 28(3):960. https://doi.org/10.3390/molecules28030960
Chicago/Turabian StyleRasool, Izza Faiz ul, Afifa Aziz, Waseem Khalid, Hyrije Koraqi, Shahida Anusha Siddiqui, Ammar AL-Farga, Wing-Fu Lai, and Anwar Ali. 2023. "Industrial Application and Health Prospective of Fig (Ficus carica) By-Products" Molecules 28, no. 3: 960. https://doi.org/10.3390/molecules28030960
APA StyleRasool, I. F. u., Aziz, A., Khalid, W., Koraqi, H., Siddiqui, S. A., AL-Farga, A., Lai, W. -F., & Ali, A. (2023). Industrial Application and Health Prospective of Fig (Ficus carica) By-Products. Molecules, 28(3), 960. https://doi.org/10.3390/molecules28030960