Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications
Abstract
:1. Introduction
2. Results
2.1. Visual Observation of Chitosan
2.2. Bioactive and Antioxidant Properties
Evaluation of the Antifungal Activity on B. cinerea and P. viticola
2.3. Antioxidant Activity
2.4. Characterization of Chitosans
2.4.1. Deacetylation Degree from 1H-NMR Spectrometry
2.4.2. Molecular Weight Determination
Molecular Weight from SEC-MALS Methods
Polymerization Degree from 1H-NMR Method
2.4.3. Elemental Analysis
2.4.4. X-Ray Photoelectron Spectrometry
2.4.5. Infra-Red Spectroscopy
2.4.6. Mass Spectrometry
2.4.7. Pyrogram
2.4.8. Thermogravimetric Analysis (TGA)
3. Discussion
3.1. Deacetylation Degree
3.2. Molecular Weight
3.3. Chitosan Composition
- (i)
- CHI-1, CHI-2 and CHI-3 are under their hydrochloride form;
- (ii)
- CHI-4 and CHI-5 are under their NH2 form;
- (iii)
- CHI-3 contains a high amount of chitosan calcium complex.
3.4. Bioactivity and Antioxidant Activity
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Antioxidant Activity: 2,2-diphenyl-1-picrylhydrazyl Radical Assay (DPPH)
4.2.2. NMR
4.2.3. SEC MALS
4.2.4. Elemental Analysis (C, H, N, O)
4.2.5. XPS
4.2.6. FTIR
4.2.7. Mass Spectrometry
Electrospray
MALDI-TOF
Pyrolysis
4.2.8. TGA
4.2.9. Botrytis cinerea and Downy Mildew Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Mahmood, I.; Imadi, S.R.; Shazadi, K.; Gul, A.; Hakeem, K.R. Effects of Pesticides on Environment. J. Implic. Crop Sci. 2016, 1, 253–269. [Google Scholar] [CrossRef]
- Elmer, P.A.G.; Reglinski, T. Biosuppression of Botrytis cinerea in Grapes. Plant Pathol. 2006, 55, 155–177. [Google Scholar] [CrossRef]
- De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis Cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138. [Google Scholar] [CrossRef] [PubMed]
- Massi, F.; Torriani, S.F.F.; Borghi, L.; Toffolatti, S.L. Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara Viticola as a Case Study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara Viticola: A Review of Knowledge on Downy Mildew of Grapevine and Effective Disease Management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar]
- Zimoch-korzycka, A.; Gardrat, C.; Al, M. Food Hydrocolloids Chemical Characterization, Antioxidant and Anti-Listerial Activity of Non-Animal Chitosan-Glucan Complexes. Food Hydrocoll. 2016, 61, 338–343. [Google Scholar] [CrossRef]
- Xing, K.; Jie, T.; Fang, Y.; Zhang, J.; Zhang, Y.; Qiang, X.; Yan, X. Antifungal and Eliciting Properties of Chitosan against Ceratocystis Fi Mbriata in Sweet Potato. Food Chem. 2018, 268, 188–195. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, L.; Zhou, Y.; Yao, S.; Zeng, K. Chitosan and Pichia Membranaefaciens Control Anthracnose by Maintaining Cell Structural Integrity of Citrus Fruit. Biol. Control 2018, 124, 92–99. [Google Scholar] [CrossRef]
- Meng, D.; Garba, B.; Ren, Y.; Yao, M.; Xia, X.; Li, M.; Wang, Y. International Journal of Biological Macromolecules Antifungal Activity of Chitosan against Aspergillus Ochraceus and Its Possible Mechanisms of Action. Int. J. Biol. Macromol. 2020, 158, 1063–1070. [Google Scholar] [CrossRef]
- Huang, X.; You, Z.; Luo, Y.; Yang, C.; Ren, J.; Liu, Y.; Wei, G. International Journal of Biological Macromolecules Antifungal Activity of Chitosan against Phytophthora Infestans, the Pathogen of Potato Late Blight. Int. J. Biol. Macromol. 2021, 166, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, A.; Jorf, S.A.M.; Malihipour, A.; Saremi, H.; Nikkhah, M. International Journal of Biological Macromolecules Application of Chitosan and Chitosan Nanoparticles for the Control of Fusarium Head Blight of Wheat (Fusarium graminearum) In Vitro and Greenhouse. Int. J. Biol. Macromol. 2016, 93, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Qiao, B.; Ji, X.; Wang, X.; Zhu, E. Postharvest Biology and Technology Antifungal Activity and Possible Mechanisms of Submicron Chitosan Dispersions against Alteraria Alternata. Postharvest Biol. Technol. 2020, 161, 110883. [Google Scholar] [CrossRef]
- Wei, L.; Tan, W.; Wang, G.; Li, Q.; Dong, F.; Guo, Z. The Antioxidant and Antifungal Activity of Chitosan Derivatives Bearing Schiff Bases and Quaternary Ammonium Salts. Carbohydr. Polym. 2019, 226, 115256. [Google Scholar] [CrossRef]
- Orzali, L.; Forni, C.; Riccioni, L. Effect of Chitosan Seed Treatment as Elicitor of Resistance to Fusarium graminearum in Wheat. Seed Sci. Technol. 2014, 42, 132–149. [Google Scholar] [CrossRef]
- Li, K.; Xing, R.; Liu, S.; Li, P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. [Google Scholar] [CrossRef]
- Xoca-orozco, L.-Á.; Aguilera-aguirre, S.; Vega-arreguín, J.; Acevedo-hernández, G.; Tovar-pérez, E.; Stoll, A.; Herrera-estrella, L.; Chacón-lópez, A.; Nacional, T.; Tepic, D.M.I.T.; et al. Activation of the Phenylpropanoid Biosynthesis Pathway Reveals a Novel Action Mechanism of the Elicitor Effect of Chitosan on Avocado Fruit Epicarp. Food Res. Int. 2019, 121, 586–592. [Google Scholar] [CrossRef]
- Brulé, D.; Villano, C.; Davies, L.J.; Trdá, L.; Claverie, J.; Héloir, M.C.; Chiltz, A.; Adrian, M.; Darblade, B.; Tornero, P.; et al. The Grapevine (Vitis vinifera) LysM Receptor Kinases VvLYK1-1 and VvLYK1-2 Mediate Chitooligosaccharide-Triggered Immunity. Plant Biotechnol. J. 2019, 17, 812–825. [Google Scholar] [CrossRef] [Green Version]
- Bitas, D.; Samanidou, V. Chitosan-Based (Nano)Materials for Novel Biomedical Applications. Molecules 2019, 24, 683–723. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial Properties of Chitosan and Mode of Action: A State of the Art Review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Dutta, J.; Tripathi, S.; Dutta, P.K. Progress in Antimicrobial Activities of Chitin, Chitosan and Its Oligosaccharides: A Systematic Study Needs for Food Applications. Food Sci. Technol. Int. 2012, 18, 3–34. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial Action of Chitosan. Food Biotechnol. 1992, 6, 257–272. [Google Scholar] [CrossRef]
- Pandey, P.; De, N. Chitosan in Agricultural Context. Bull. Environ. Pharmacol. Life Sci. 2018, 7, 87–96. [Google Scholar]
- Li, Q.; Dunn, E.T.; Grandmaison, E.W.; Goosen, M.F.A. Application and Properties of Chitosan, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Ke, C.; Deng, F.; Chuang, C.; Lin, C. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, W.; Wang, G.; Yin, X.; Li, Q.; Dong, F.; Guo, Z. Synthesis, Characterization, and the Antioxidant Activity of N,N,N-Trimethyl Chitosan Salts. Int. J. Biol. Macromol. 2018, 118, 9–14. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Sorlier, P.; Rochas, C.; Morfin, I.; Viton, C.; Domard, A. Light Scattering Studies of the Solution Properties of Chitosans of Varying Degrees of Acetylation. Biomacromolecules 2003, 4, 1034–1040. [Google Scholar] [CrossRef]
- Berth, G.; Dautzenberg, H. The Degree of Acetylation of Chitosans and Its Effect on the Chain Conformation in Aqueous Solution. Carbohydr. Polym. 2002, 47, 39–51. [Google Scholar] [CrossRef]
- Ottøy, M.H.; Vårum, K.M.; Christensen, B.E.; Anthonsen, M.W.; Smidsrød, O. Preparative and Analytical Size-Exclusion Chromatography of Chitosans. Carbohydr. Polym. 1996, 31, 253–261. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, X.; Han, X.; Ji, X.; Chen, Q.; Pasch, H.; Lederer, A.; Liu, Y. Conformation and Persistence Length of Chitosan in Aqueous Solutions of Different Ionic Strengths via Asymmetric Flow Field-Flow Fractionation. Carbohydr. Polym. 2021, 271, 118402. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Hisiger, S.; Jolicoeur, M.; Winnik, F.M.; Buschmann, M.D. Fractionation and Characterization of Chitosan by Analytical SEC and 1 H NMR after Semi-Preparative SEC. Carbohydr. Polym. 2009, 75, 636–645. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, X.; Ji, X.; Bo, S.; Liu, Y. Strategy to Improve the Characterization of Chitosan by Size Exclusion Chromatography Coupled with Multi Angle Laser Light Scattering. Carbohydr. Polym. 2018, 202, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, S.; Rong, J.; Sui, Z.; Wang, S.; Lin, Y.; Xiao, J.; Huang, D. Improving the Ca(II) Adsorption of Chitosan via Physical and Chemical Modifications and Charactering the Structures of the Calcified Complexes. Polym. Test. 2021, 98, 107192. [Google Scholar] [CrossRef]
- Weißpflog, J.; Vehlow, D.; Müller, M.; Kohn, B.; Scheler, U.; Boye, S.; Schwarz, S. Characterization of Chitosan with Different Degree of Deacetylation and Equal Viscosity in Dissolved and Solid State—Insights by Various Complimentary Methods. Int. J. Biol. Macromol. 2021, 171, 242–261. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; Ibarburu, I.; Dueñas, M.T.; De La Caba, K. Characterization and Antimicrobial Analysis of Chitosan-Based Films. J. Food Eng. 2013, 116, 889–899. [Google Scholar] [CrossRef]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnacca, G. Advanced Physico-Chemical Characterization of Chitosan by Means of TGA Coupled on-Line with FTIR and GCMS: Thermal Degradation and Water Adsorption Capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Du, Y.; Fan, L.; Liu, H.; Hu, Y. Chitosan- Metal Complexes as Antimicrobial Agent: Synthesis, Characterization and Structure-Activity Study. Polym. Bull. 2005, 55, 105–113. [Google Scholar] [CrossRef]
- Miguez, N.; Kidibule, P.; Santos-moriano, P.; Ballesteros, A.O.; Fernandez-lobato, M.; Plou, F.J. Applied Sciences Enzymatic Synthesis and Characterization of Different Families of Chitooligosaccharides and Their Bioactive Properties. Appl. Sci. 2021, 11, 3212. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, X.; Li, Z.; Guo, X.; Ling, P. International Journal of Mass Spectrometry Application of Matrix-Assisted Laser Desorption / Ionization Time-of-Flight Mass Spectrometry ( MALDI-TOF-MS ) in Preparation of Chitosan Oligosaccharides (COS) with Degree of Polymerization (DP) 5–12 Conta. Int. J. Mass Spectrom. 2010, 290, 94–99. [Google Scholar] [CrossRef]
- Allison, C.L.; Lutzke, A.; Reynolds, M.M. Identification of Low Molecular Weight Degradation Products from Chitin and Chitosan by Electrospray Ionization Time-of-Flight Mass Spectrometry. Carbohydr. Res. 2020, 493, 108046. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, L.; Meng, Z.; Dou, G. Development of a Mass Spectrometry Method for the Characterization of a Series of Chitosan. Int. J. Biol. Macromol. 2019, 121, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Shen, Y. Catalytic Pyrolysis of Cellulose and Chitin with Calcined Dolomite—Pyrolysis Kinetics and Products Analysis. Fuel 2022, 312, 122875. [Google Scholar] [CrossRef]
- Zeng, L.; Qin, C.; Wang, L.; Li, W. Volatile Compounds Formed from the Pyrolysis of Chitosan. Carbohydr. Polym. 2011, 83, 1553–1557. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, S.; Liu, Y.; Sun, H.; Jia, S.; Shi, J.; Pedersen, C.M.; Wang, Y.; Hou, X. Pyrolysis of Chitin Biomass: TG-MS Analysis and Solid Char Residue Characterization. Carbohydr. Polym. 2015, 133, 163–170. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, H.; Xiao, R.; Wu, S. Value-Added Organonitrogen Chemicals Evolution from the Pyrolysis of Chitin and Chitosan. Carbohydr. Polym. 2017, 156, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, H.F.G.; Francisco, D.S.; Ferreira, A.P.G.; Cavalheiro, É.T.G. A New Look towards the Thermal Decomposition of Chitins and Chitosans with Different Degrees of Deacetylation by Coupled TG-FTIR. Carbohydr. Polym. 2019, 225, 115232. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, H.; Tang, H.; Yang, Y.; Liu, H.; Lu, Q.; Li, X.; Worasuwannarak, N.; Yao, H. In-Depth Experimental Study of Pyrolysis Characteristics of Raw and Cooking Treated Shrimp Shell Samples. Renew. Energy 2019, 139, 730–738. [Google Scholar] [CrossRef]
- Nikahd, M.; Mikusek, J.; Yu, L.J.; Coote, M.L.; Banwell, M.G.; Ma, C.; Gardiner, M.G. Exploiting Chitin as a Source of Biologically Fixed Nitrogen: Formation and Full Characterization of Small-Molecule Hetero- And Carbocyclic Pyrolysis Products. J. Org. Chem. 2020, 85, 4583–4593. [Google Scholar] [CrossRef]
- Shu, C.K. Degradation Products Fromed from Glucosamine in Water. J. Agric. Food Chem. 1998, 46, 1129–1131. [Google Scholar] [CrossRef]
- Chen, J.; Ho, C.T. Volatile Compounds Formed from Thermal Degradation of Glucosamine in a Dry System. J. Agric. Food Chem. 1998, 46, 1971–1974. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Ho, C.T. Volatile Compounds Generated from Thermal Degradation of N-Acetylglucosamine. J. Agric. Food Chem. 1998, 46, 3207–3209. [Google Scholar] [CrossRef]
- Knorr, D.; Wampler, T.P.; Teutonico, R.A. Formation of Pyrazines by Chitin Pyrolysis. J. Food Sci. 1985, 50, 1762–1763. [Google Scholar] [CrossRef]
- Huet, G.; Hadad, C.; Husson, E.; Laclef, S.; Lambertyn, V.; Farias, A.; Jamali, A.; Courty, M.; Alayoubi, R.; Gosselin, I. Straightforward Extraction and Selective Bioconversion of High Purity Chitin from Bombyx Eri Larva: Toward an Integrated Insect Biorefinery. Carbohydr. Polym. 2020, 228, 115382. [Google Scholar] [CrossRef] [PubMed]
- Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Kasaai, M.R.; Arul, J.; Charlet, G. Intrinsic Viscosity-Molecular Weight Relationship for Chitosan. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2591–2598. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Kato, Y.; Yoshida, Y.; Isogai, A. SEC-MALS Study on Aggregates of Chitosan Molecules in Aqueous Solvents: Influence of Residual N-Acetyl Groups. Carbohydr. Polym. 2006, 66, 192–198. [Google Scholar] [CrossRef]
- Nguyen, S.; Winnik, F.M.; Buschmann, M.D. Improved Reproducibility in the Determination of the Molecular Weight of Chitosan by Analytical Size Exclusion Chromatography. Carbohydr. Polym. 2009, 75, 528–533. [Google Scholar] [CrossRef]
- Novoa-Carballal, R.; Fernandez-Megia, E.; Riguera, R. Dynamics of Chitosan by 1H NMR Relaxation. Biomacromolecules 2010, 11, 2079–2086. [Google Scholar] [CrossRef]
- Schatz, C.; Viton, C.; Delair, T.; Pichot, C.; Domard, A. Typical Physicochemical Behaviors of Chitosan in Aqueous Solution. Biomacromolecules 2003, 4, 641–648. [Google Scholar] [CrossRef]
- Huet, G.; Hadad, C.; González-Domínguez, J.M.; Courty, M.; Jamali, A.; Cailleu, D.; van Nhien, A.N. IL versus DES: Impact on Chitin Pretreatment to Afford High Quality and Highly Functionalizable Chitosan. Carbohydr. Polym. 2021, 269, 118332. [Google Scholar] [CrossRef]
- Yan, X.; Evenocheck, H.M. Chitosan Analysis Using Acid Hydrolysis and HPLC/UV. Carbohydr. Polym. 2012, 87, 1774–1778. [Google Scholar] [CrossRef]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of Different Factors Affecting Antimicrobial Properties of Chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of Acetylation Degree and Molecular Weight of Homogeneous Chitosans on Antibacterial and Antifungal Activities. Int. J. Food Microbiol. 2014, 185, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Vander, P.; Våain, K.M.; Domard, A.; El Gueddari, N.E.; Moerschbacher, B.M. Comparison of the Ability of Partially N-Acetylated Chitosans and Chitooligosaccharides to Elicit Resistance Reactions in Wheat Leaves. Plant Physiol. 1998, 118, 1353–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, A.; Trotel-Aziz, P.; Dhuicq, L.; Jeandet, P.; Couderchet, M.; Vernet, G. Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology 2006, 96, 1188–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Hu, X.; Zhang, W.; John Rogers, W.; Cai, W. Hydrogen Peroxide Mediates Defence Responses Induced by Chitosans of Different Molecular Weights in Rice. J. Plant Physiol. 2005, 162, 937–944. [Google Scholar] [CrossRef]
- Palma-Guerrero, J.; Lopez-Jimenez, J.A.; Pérez-Berná, A.J.; Huang, I.C.; Jansson, H.B.; Salinas, J.; Villalaín, J.; Read, N.D.; Lopez-Llorca, L.V. Membrane Fluidity Determines Sensitivity of Filamentous Fungi to Chitosan. Mol. Microbiol. 2010, 75, 1021–1032. [Google Scholar] [CrossRef]
- Kumariya, R.; Sood, S.K.; Rajput, Y.S.; Saini, N.; Garsa, A.K. Increased Membrane Surface Positive Charge and Altered Membrane Fluidity Leads to Cationic Antimicrobial Peptide Resistance in Enterococcus Faecalis. Biochim. Biophys. Acta-Biomembr. 2015, 1848, 1367–1375. [Google Scholar] [CrossRef] [Green Version]
- Yen, M.T.; Yang, J.H.; Mau, J.L. Antioxidant Properties of Chitosan from Crab Shells. Carbohydr. Polym. 2008, 74, 840–844. [Google Scholar] [CrossRef]
- Steimetz, E.; Trouvelot, S.; Gindro, K.; Bordier, A.; Poinssot, B.; Adrian, M.; Daire, X. Influence of Leaf Age on Induced Resistance in Grapevine against Plasmopara Viticola. Physiol. Mol. Plant Pathol. 2012, 79, 89–96. [Google Scholar] [CrossRef]
- Zimmerli, L.; Métraux, J.P.; Mauch-Mani, B. β-Aminobutyric Acid-Induced Protection of Arabidopsis against the Necrotrophic Fungus Botrytis Cinerea. Plant Physiol. 2001, 126, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Asako, H.; Hisashi, O.; Akio, N. Determination of Degree of Deacetylation of Chitosan by 1H NMR Spectroscopy. Polym. Bull. 1991, 26, 87–94. [Google Scholar] [CrossRef]
Sample | IC50 (mg/L) | SE |
---|---|---|
CHI-1 | 13 | 0 |
CHI-2 | 13 | 0 |
CHI-3 | 17 | 8 |
CHI-4 | 75 | 47 |
CHI-5 | 152 | 78 |
Sample | Scavenging Effect (%) at 1.6 mg/mL |
---|---|
CHI-1 | 7.9 ± 1.7 |
CHI-2 | 78.9 ± 4.3 |
CHI-3 | 75.6 ± ND * |
CHI-4 | 36.1 ± 4.1 |
CHI-5 | 5.7 ± 1.9 |
Sample | DA NMR (%) |
---|---|
CHI-1 | 98 ± 0.2 |
CHI-2 | 98 ± 0.1 |
CHI-3 | 95 ± ND * |
CHI-4 | 94 ± ND * |
CHI-5 | 93 ± ND * |
Buffer | Sample | Mn (kDa) | Mw (kDa) | Đ | DPn |
---|---|---|---|---|---|
NH4Ac | CHI-1 | 6.8 ± 0.1 | 9.3 ± 0.1 | 1.3 ± 0.1 | 42.3 ± 0.1 |
CHI-2 | 8.0 ± 0.1 | 12.1 ± 0.7 | 1.5 ± 0.1 | 49.7 ± 0.6 | |
CHI-3 | 11.0 ± 1.2 | 16.1 ± 2.1 | 1.4 ± 0.1 | 69.0 ± 7.0 | |
CHI-4 | 22.5 ± 0.7 | 52.9 ± 5.9 | 2.3 ± 0.2 | 138.8 ± 4.6 | |
CHI-5 | 55.0 ± 8.5 | 99.2 ± 29.4 | 2.7 ± 0.3 | 339.7 ± 53.0 | |
NaAc | CHI-1 | 10.5 ± 2.2 | 11.8 ± 0.2 | 1.1 ± 0.1 | 64.8 ± 14.1 |
CHI-2 | 14.4 ± 2.1 | 17.5 ± 2.3 | 1.2 ± 0.1 | 89.3 ± 12.9 | |
CHI-3 | 17.3 ± 3.5 | 41.9 ± 2.9 | 2.5 ± 0.6 | 106.9 ± 21.7 | |
CHI-4 | 36.3 ± 2.2 | 122.9 ± 23.9 | 3.4 ± 0.8 | 224.4 ± 13.61 | |
CHI-5 | 69.4 ± 5.2 | 186.9 ± 36.4 | 2.7 ± 0.4 | 428.6 ± 32.6 |
Sample | DP (NMR) * |
---|---|
CHI-1 | 15.4 ± 0.7 |
CHI-2 | 43.8 ± 2.1 |
CHI-3 | 113.0 ± ND ** |
CHI-4 | - |
CHI-5 | - |
Element (%) | Carbon | Hydrogen | Nitrogen | Oxygen | Total | Unknown |
---|---|---|---|---|---|---|
CHI-1 | 32.2 | 6.72 | 6.22 | 38.86 | 84.00 | ≈−16 |
CHI-2 | 33.0 | 6.64 | 6.09 | 39.74 | 85.47 | ≈−14 |
CHI-3 | 34.4 | 6.32 | 6.32 | 41.88 | 88.92 | ≈−11 |
CHI-4 | 39.8 | 6.85 | 7.40 | 43.86 | 97.91 | ≈−2 |
CHI-5 | 40.6 | 7.07 | 7.57 | 43.61 | 98.85 | ≈−1 |
Element | CHI-1 | CHI-2 | CHI-3 | CHI-4 | CHI-5 |
---|---|---|---|---|---|
Carbon | 41.5 | 42.9 | 41.0 | 59.1 | 57.7 |
Nitrogen | 6.2 | 6.2 | 5.4 | 5.2 | 5.0 |
Oxygen | 31.3 | 31.6 | 33.0 | 26.8 | 26.9 |
Chloride | 13.1 | 9.4 | 5.2 | 0.6 | 0.3 |
Calcium | 0.5 | 2.8 | 7.0 | 1.3 | 2.8 |
Silicium | 0.7 | 0.5 | 2.4 | 0.2 | 0.2 |
Hydrogen * | 6.7 | 6.6 | 6.3 | 6.8 | 7.1 |
Sum of hetero atoms | 14.3 | 12.7 | 14.3 | 2.1 | 3.3 |
Sample | DTGmax (°C) | Water Content (%) | Ash Content (%) |
---|---|---|---|
CHI-1 | 201.4/241.7 | 10.0 | 1.2 |
CHI-2 | 227.9 | 12.0 | 8.3 |
CHI-3 | 251.7 | 11.0 | 4.4 |
CHI-4 | 294.7 | 9.9 | 5.2 |
CHI-5 | 302.9 | 8.6 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huet, G.; Wang, Y.; Gardrat, C.; Brulé, D.; Vax, A.; Le Coz, C.; Pichavant, F.; Bonnet, S.; Poinssot, B.; Coma, V. Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications. Molecules 2023, 28, 966. https://doi.org/10.3390/molecules28030966
Huet G, Wang Y, Gardrat C, Brulé D, Vax A, Le Coz C, Pichavant F, Bonnet S, Poinssot B, Coma V. Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications. Molecules. 2023; 28(3):966. https://doi.org/10.3390/molecules28030966
Chicago/Turabian StyleHuet, Gaël, Yunhui Wang, Christian Gardrat, Daphnée Brulé, Amélie Vax, Cédric Le Coz, Frédérique Pichavant, Silvère Bonnet, Benoit Poinssot, and Véronique Coma. 2023. "Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications" Molecules 28, no. 3: 966. https://doi.org/10.3390/molecules28030966
APA StyleHuet, G., Wang, Y., Gardrat, C., Brulé, D., Vax, A., Le Coz, C., Pichavant, F., Bonnet, S., Poinssot, B., & Coma, V. (2023). Deep Chemical and Physico-Chemical Characterization of Antifungal Industrial Chitosans—Biocontrol Applications. Molecules, 28(3), 966. https://doi.org/10.3390/molecules28030966